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Abstract: Nanocarbon-based vapour sensors are increasingly used to make anticipated diagnosis
of diseases by the analysis of volatile organic compound (VOC) biomarkers from the breath, i.e.,
volatolomics. However, given the tiny number of molecules to detect, usually only tens of parts
per billion (ppb), increasing the sensitivity of polymer nanocomposite chemoresistive transducers
is still a challenge. As the ability of these nanosensors to convert the interactions with chemical
compounds into changes of resistance, depends on the variations of electronic transport through the
percolated network of the conducting nanofillers, it is a key parameter to control. Actually, in this
conducting architecture, the bottlenecks for electrons’ circulation are the interparticular junctions
giving either ohmic conduction in the case of close contacts or quantum tunnelling when jumps
though gaps are necessary. This in turn depends on a number of nanometric parameters such as the
size and geometry of the nanofillers (spherical, cylindrical, lamellar), the method of structuring of
the conductive architecture in the sensory system, etc. The present study focuses on the control of the
interparticular junctions in quantum-resistive vapour sensors (vQRS) by nanoassembling pristine
CNT or graphene covalently or noncovalently functionalized with spherical Buckminster fullerene
(C60) into a percolated network with a hybrid structure. It is found that this strategy allows us to
significantly boost, both selectivity and sensitivity of pristine CNT or graphene-based transducers
exposed to a set of seven biomarkers, ethanol, methanol, acetone, chloroform, benzene, toluene,
cyclohexane and water. This is assumed to result from the spherical fullerene acting on the electronic
transport properties at the nanojunctions between the CNT or graphene nanofillers.

Keywords: vapour sensors; nanocomposites; graphene; CNT; hybrids; cancer biomarkers; conductive
junctions; fullerene; e-nose; volatolomics

1. Introduction

The demand for the development of miniaturized sensors arrays for fast, low-cost,
low-power detection and discrimination of volatile organic compounds (VOC) has in-
creased dramatically over the years. In particular, the detection and identification of
biomarkers in the volatolome (volatiles emitted by the human body) should lead to the
development of novel, noninvasive anticipated diagnostic methods for a wide range of
diseases. The promise of “volatolomics” [1,2] is to detect at their very early stages of
development different types of cancer [3–9], tuberculosis [10,11] liver failure [12], kidney
failure [13], Parkinson’s disease [14], and many others [15–19]. The spheres of application
of VOC sensing beyond medicine are food degradation monitoring [20–22], environment
monitoring, i.e., the indication of hazardous chemical leakage, the monitoring of organic
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solvent vapour concentration in the air [23–26], space exploration, and homeland secu-
rity [27–30], process control of chemical and food production [31], the monitoring of quality
and alcohol content in automotive fuel [32,33] and others [34]. Nanomaterials belonging to
fullerene family are already proved to act as a well-recognized component for elaboration
of VOC sensors.

Fullerenes are fully carbonaceous molecules that can be planar, hollow, spherical or
tubular in shape. Carbon nanotubes (CNT), graphene nanoplatelets (GNP), Buckminster
fullerenes (C60), each of which are allotropes of carbon belonging to fullerene family, have
attracted tremendous research interest since their discovery because of their unique physico-
chemical properties. C60 are zero dimensional with discrete molecular weight, while CNT
and graphene are one and two dimensional, respectively, with anisotropic structure and
broad molecular weight distribution. However, each of these carbon allotropes is composed
of sp2 hybridized carbon atoms, making them electrically conductive [35]. However, the
electrical conductivity of C60 (10−14–10−8 S·cm−1) is much lower than that of CNT or
graphene (≈105 S·cm−1).

Among the fullerene family, pristine CNT is considered as a suitable candidate for
vapour sensing because of its quick change in conductivity, dielectric constant or capaci-
tance with the adsorption of gas or vapour molecules [16,36]. Graphene is also expected to
perform well as a chemical vapour sensor, since the absorption of individual gas molecules
onto graphene-based sensor brings about significant changes in electrical resistance [37].
Moreover, because of the high carrier mobility of graphene [38,39], room temperature sen-
sitivity and high signal-to-noise ratio [40,41] are achievable with graphene based quantum
resistive sensors. Unfortunately its poor dispersibility in organic solvents, its inability
to control chemical selectivity (due to surface property), its low sensitivity to vapour
molecules (due to small junction gap) and hence poor tunnelling effect, are the shortcom-
ings that restrict the use of pristine CNT or graphene in vapour sensing [42,43].

Another carbon allotrope belonging to the fullerene family is Buckminster fullerene
(C60) discovered in 1985 by Kroto et al. [44]. However, the true research interest in this ma-
terial has been minor until 1990 where Kratschmer et al. developed a method of synthesis
in macroscopic quantities [45]. C60 consists of polyhedral pentagonal-hexagonal carbon
rings with each carbon atom bonded to three other neighbours. C60 has drawn appreciable
research interest for several decades because of its exceptional physical, chemical and
electronic properties, such as very high reactivity, excellent solubility in organic solvents,
very high surface-to-volume ratio, high electron mobility (~0.1 cm−2·V−1·S−1) [46] and
free electron trapping ability [47,48]. It is considered as a novel electron pool Π system [49].
In addition, C60 can be reduced readily because of the presence of low energy LUMO,
which are triply degenerated t1u orbitals. Even they can be readily be polymerized into
directly linked fullerene nanotubes by the application of pressure, temperature or light.
One potential application of C60 is hydrogen storage since it can bind a number of hydrogen
molecules without structure disruption [50]. In addition, the gas sensing characteristics of
C60 were studied by Sakurai et al. [51] observing the change of electrical conductivity upon
exposure to gases such as ammonia, acetaldehyde, etc.

The literature studies reveal that the hybridization of C60 with polymers, various or-
ganic molecules or different nanomaterials by covalent or noncovalent techniques may pro-
vide synergistic combination of the properties of both of the two components, hence making
them attractive for a number of electronic and optical applications. Yu et al. developed
covalently bonded C60-Graphene hybrids for bulk heterojunction polymer photovoltaic
devices such as solar cells [52]. Immobilized C60-SWCNT complexes were synthesized
by Li et al. via a microwave induced functionalization approach for same application
in polymer photovoltaic cells. These devices could exploit the strong electron accepting
feature of C60 and the high electron transport ability of CNT [53]. Liu et al. developed
C60-graphene hybrids by covalent techniques for superior nonlinear optical properties [54].
C60-graphene hybrids were also prepared by Zhang et al. by chemical coupling between
graphene oxide and pyrrolidine fullerene for potential application in solar cells or optical
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limiting devices [55]. Song et al. fabricated fullerene decorated CNT for application in
flame-retardant polypropylene. Flame retardancy could be enhanced by utilizing the free
electron accepting property of C60 with the barrier property of CNT [56]. However, without
any covalent functionalization of their surface, the nanocarbons interact thanks to the van
der Waals interactions, which are well described by a Lennard-Jones potential as mod-
elled by Girifalco et al. [57]. Thus, they can naturally stack to create graphitic structures
by self-assembly.

By the control of the geometry and the dispersion of the nanofillers, conductive archi-
tecture, organic functionality, etc., it is possible to achieve a concerted disconnection of the
percolated network on chemical stress, leading to large change in electrical resistance. The
sensitivity of the CNT or graphene-based chemo-resistive sensors can, however, be tuned
by the control of the tunnel junctions in the percolated network. A first strategy consists
in building a hierarchical structure of hard PMMA microbeads bridged by CNT to form a
segregated network, in which the development of a high specific surface can enhance the
sensitivity of CNT by 240% while keeping the original selectivity of CNT unaltered [58]. A
second strategy to improve the sensitivity of the sensors consists in preventing the aggre-
gation between nanocarbons in the conducting network by separating them with “spacers”
in order to make the conductive architecture more easily disconnectable. The effectiveness
of the different kinds of “spacers” to enhance conductive polymer nanocomposites’ (CPC)
sensitivity has been evidenced in different configurations: cyclodextrins [41] and POSS [59]
with CNT, AgNP [60] and Fe3O4 [61] with graphene.

In this study, the idea was to graft Buckminster fullerenes (C60) onto carbon nanotubes
(MWNT) and reduced graphene oxide (rGO) to build a novel conductive architecture
easily disconnectable by the presence of nanoscopic C60 at junctions. The robustness of the
hybrid network should be ensured by a combination of two nanostructuring strategies, self-
assembly and spray layer-by-layer (sLbL) deposition [60,62,63] to control the 3D conductive
architecture of chemo-resistive transducers. The approach of inserting spherical C60 at
CNT or GNP junctions to enhance the sensitivity of single carbon nanofiller based chemo-
resistive vapour sensors has to be significant enough to justify an implementation into an
electronic nose to improve its discrimination ability of a set of disease biomarkers. The
final objective is to keep these sensing performances at the ppb level required to make a
sharp diagnosis by volatolomics.

2. Materials and Methods
2.1. Materials

Multiwall carbon nanotubes (NC 7000) were kindly provided by Nanocyl S.A. (Sam-
breville, Belgium). This series of multiwall carbon nanotubes are produced via a catalytic
carbon vapour deposition (CVD) process. Nanotubes which exit the reactor are then puri-
fied to greater than 90% carbon to produce the NC 7000 grade. These CNT have average
mean diameter of 9.5 nm, average length of 1.5 µm. CNT were used in the same manner as
received from the production source without purification. Graphene oxide (GO) was syn-
thesized from natural graphite powder by a modified Hummer’s method [64] followed by
reduction with hydrazine hydrate at 100 ◦C under reflux condition for 24 h to give reduced
graphene oxide (rGO). Fullerene-C60 of 99.5% purity was purchased from Sigma Aldrich
(Saint-Quentin Fallavier, France). All solvents, ethanol, methanol, acetone, chloroform,
benzene, toluene, and cyclohexane, obtained from Acros Organics (Antwerp, Belgium)
were used as received.

2.2. Synthesis of Hybrid Nanomaterials

In the first step of synthesis, lithiated CNT were produced by the dropwise addition
of n-butyl lithium (in hexane) into a dispersion of CNT in toluene under the condition of
continuous stirring and nitrogen protection. In the next step the lithiated CNT is reacted
with a large excess of Buckminster fullerene by a nucleophilic addition reaction, resulting
in C60-g-CNT as described in Figure 1. C60-g-rGO was then produced following a similar



Chemosensors 2021, 9, 66 4 of 15

procedure as for C60-g-CNT [52].
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Figure 1. Schematics for synthesis of CNT-g-C60.

2.3. Fabrication of Sensors

For the fabrication of vapour sensors, first C60-g-CNT or C60-g-rGO hybrids were
dispersed in chloroform under ultrasonication for 1 h at 50 ◦C with a Branson 3510 device
(100 W, 40 kHz). In the second step, vapour sensors were processed by the spray deposi-
tion layer-by-layer (LbL) technique [43,65] onto homemade interdigitated electrodes. The
sensors were dried in controlled atmosphere at 30 ◦C for 8 h. The initial resistance of
all the sensors used in this study was adjusted within the R0 = 8 ± 3 kΩ range, so that
only the composition and not the variation of initial resistance may be considered to be
responsible for any variation of molecular selectivity of the sensors when exposed to a set
of VOC cancer biomarkers. The details of composition of the hybrid sensors are provided
in Table 1.

Table 1. Characteristics of hybrid sensors.

Nature Process R0 (kΩ)

CNT 2 layers of CNT solution in chloroform sprayed 5 ± 2
CNT-g-C60 2 layers of C60-g-CNT solution in chloroform sprayed 8 ± 3

CNT-l-C60
1 layer of CNT solution in chloroform sprayed followed by spray of 1

layer of C60 solution in toluene 4 ± 2

rGO 5 layers of rGO solution in acetone sprayed 10 ± 4
rGO-g-C60 5 layers of C60-g-rGO solution in acetone sprayed 10 ± 5

2.4. Characterization Techniques

Thermo gravimetric analysis was carried out on the Pyris 6 TGA instrument of Perkin
Elmer in a nitrogen atmosphere at a heating rate 20 ◦C·min−1 in the temperature range
50 ◦C to 750 ◦C in order to calculate the amount of C60 grafted on to CNT or rGO. The
architecture of as-synthesized nanohybrids was observed by morphological analysis such as
atomic force microscopy (AFM) and scanning electronic microscopy (SEM). The nanoscale
characterizations were done using AFM in ambient conditions using light tapping mode
(TM-AFM) on a calibre multimode scanning probe microscope from Bruker-Veeco, Lille,
France. For AFM observation, sample’s preparation was done by spin coating onto freshly
cleaved silicon substrate at 2500 rpm for 30 s using SPIN150-NPP (SPS-Europe), followed
by evaporation of the solvent. The morphology was also observed under the Zeiss Evo
series scanning electron microscope model (Evo 50 SEM).

2.5. Dynamic Vapour Sensing

The chemo-resistive properties of the fabricated sensors were studied by measuring
the electrical resistance when exposed alternatively to a 5 min cycles of dry nitrogen and
saturated VOC while the sensors were placed in a 100 mm × 10 mm× 3 mm chamber with
10 slots. As one can see, the amplitudes are very similar and thus the error bar would not
be clearly visible.
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The dynamic vapour sensing device is provided with a mass flow controller, solvent
bubbler, electrical valves controlled by LabView software program and Keithley 6517 multi-
metre. The total flow rate is kept constant at 100 cm3·min−1. The chemo-resistive response
of nanocarbon based sensors can be expressed by calculating the relative amplitude of
electrical signals (Ar) against solvent according to Equation (1).

Ar =
R − R0

R0
(1)

where R0 and R are the initial resistance of the sensor in pure nitrogen and the resistance of
the sensor in the presence of solvent vapour, respectively.

The vapour sensing performances of sensors under exposure of only ppm-ppb level
concentration of VOC was carried out using a combination of LabView software and OVG-4
device, a versatile chemical vapour generator which consist of two main sections, the oven
and the flow control system. The flow control system comprises of sample flow and split
flow. The sample flow was kept fixed at 100 cm3·min−1 and split flow was varied to alter
the concentration of vapour at a fixed temperature. For each analyte, permeation tubes
have been prepared following the providers’ recommendations (https://www.owlstoneinc.
com/products/build-your-own-permeation-tubes/ accessed on march 2021). For instance,
the permeation rate at a given temperature (that depends on the length of the tube and the
nature of the solvent) was 1005 ng·min−1 at 35 ◦C, 796 ng·min−1 at 40 ◦C, 2335 ng·min−1

at 40 ◦C and 2360 ng·min−1 at 40 ◦C for water, methanol, toluene and benzene, respectively.
Thus, by acting on the sample flow (100 cm3·min−1), the exhaust flow (cm3·min−1) for
a fixed detector flow of 100 cm3·min−1, the concentration of benzene was 410 ppb. The
calibration of analytes’ concentrations lasting one day per volatile organic compound,
only eight biomarkers were tested at two concentrations at 1000 and 400 ppb. In this
range the evolution of the amplitude of the chemo-resistive response Ar is assumed to be
linear with the amount of analyte molecules when Langmuir adsorption is concerned, as
already established in previous works [26,66,67]. Then, at higher contents, over several
ppm, another linear range corresponding to Henry diffusion will be found and finally, over
thousands of ppm, (more than 50% of saturation) clustering will take place. To describe
this complete chemo-resistive behaviour on the whole range of concentrations, the LHC
model can be used [58,68–70]. Moreover, here, as the targeted concentrations are extremely
low in the ppb range, the key point is to evaluate the limit of detection of vQRS, to be able
to extrapolate the response Ar down to this value.

2.6. Biomarkers

Chemo-resistive vapour sensors able to detect biomarkers in the exhaled breath of
human beings have opened up a new era for early cancer diagnosis [71,72]. The discrim-
ination between cancer patients and healthy subjects can be simply done through the
comparison of their exhaled breath VOC profile via pattern recognition algorithms [73,74].
Recent studies using gas chromatography/mass spectroscopy (GC-MS) [75] linked with a
preconcentrator have shown that the compounds of interest are generally to be found at
1–20 parts per billion (ppb) in healthy human breath [76,77]. However, VOC can also be
seen in distinctive mixture compositions at higher levels from 10 to 3000 ppb in the breath
of cancer patients; for example, see Table 2 that summarizes some cancer biomarkers found
in the breath [78,79]. The VOC biomarkers of cancer and other diseases can be broadly
divided into polar and nonpolar compounds. The polar VOC belong to alcohols, carbonyl
compounds like aldehydes and ketones, whereas nonpolar VOC are of two types, aliphatic
hydrocarbons and aromatic hydrocarbons. However, the concentrations of alkanes and
aromatic hydrocarbons in human breath are from 10 ppt to 40 ppb, hence preconcentration
becomes a very important step before analysis [77,80,81]. In this study we have selected
seven of these biomarkers—ethanol, methanol, acetone, chloroform, benzene, toluene,
cyclohexane and water—to illustrate the detection capabilities of our vQRS, being aware
that only polar analytes can be detected without preconcentration.

https://www.owlstoneinc.com/products/build-your-own-permeation-tubes/
https://www.owlstoneinc.com/products/build-your-own-permeation-tubes/
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Table 2. Cancer biomarkers among breath volatile organic compound (VOC) [77–79,82,83], under-
lined vapours are used in this study.

VOC Type Representative
Vapour Biomarkers

Concentration Range in
Exhaled Breath (ppb)

Alcohols
Methanol
Ethanol

1-Propanol

157–344
96–2848

4–13

Aldehydes
Pentanal
Heptanal
Nonanal

2–7
2–7

2–107

Alkanes
Pentane

4-Methyloctane
Cyclohexane

2–18
16–19
0.1–15

Halo hydrocarbons Chloroform 10

Ketones
Acetone

2-Butanone
3-Hydroxy-2- Butanone

35–1000
0.002–3

0.002–0.05
Alkenes Isoprene 41–109

Aromatics
Ethyl benzene

Benzene
Toluene

1–18
1.1–3.5

1–37

3. Results and Discussions
3.1. Characterization of Hybrid Nanocarbons
3.1.1. Atomic Force Microscopy (AFM)

The three-dimensional AFM images of pristine CNT, GO and C60 are exhibited in
Figure 2a–c, respectively. The diameters of the C60 nanoparticle clusters were calculated
to be around 230 nm on an average. The comparison of an AFM image of pristine CNT
with that of C60-g-CNT shown in Figure 2d, distinctly proves that a large number of C60
particles have been grafted onto CNT.

The pristine CNT appears to have a smooth cylindrical surface without any visible
catalyst particles, whereas C60-g-CNT consists of many protrusions from the surface of
CNT, mostly at the junctions, which indicates that the C60 nanoparticles are grafted mostly
at the junctions of entangled CNT network. On the other hand, the surface of the pristine
GO nanosheets appears to be quite smooth, unlike that of C60-g-rGO shown in Figure 2e,
where dotted clusters are clearly visible on the surface of the rGO nanosheets due to the
grafting of C60 nanoparticles.

3.1.2. Scanning Electronic Microscopy (SEM)

Figure 3a shows SEM images of C60 nanoparticles when drop casted onto a silica
substrate. Originally, polyhedral pentagonal hexagonal shaped particles of some hundred
nanometres in diameter are observed. Figure 3b,c exhibit SEM images of C60, after disper-
sion in toluene abs sprayed onto silica substrate at high pressure at low and high resolution,
respectively. Surprisingly, fullerene nanowhiskers (FNW) are formed in this case. It is
reported by several researchers that C60 can be converted into FNW by the application of
high temperature, pressure or velocity [84].

The interfacial polymerization of C60 nanoparticles may also produce FNW of diameter
ranging from 300 nm to 1 µm and length several micrometres [85,86]. Therefore, our case
definitely provides an interesting finding where the spray layer-by-layer technique is
proved to be a novel tool for production of fullerene nanowhiskers. The surface of C60-g-
rGO shown in Figure 3d is full of dotted clusters of C60 nanoparticles unlike that of pristine
rGO as in Figure 3e, which supports the finding from AFM and confirms the presence of
grafted C60 on the surface of rGO. By comparison of SEM images of CNT with C60-g-CNT
as observed in Figure 3f,g, C60 nanoclusters are found to be fully coated with CNT.
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3.1.3. Thermo Gravimetric Analysis

On Figure 4 C60 undergoes only 3% weight loss up to 650 ◦C, whereas around
9% weight loss takes place across the 650 ◦C to 800 ◦C temperature range. The slope
of the decomposition curve changes clearly at around 650 ◦C. rGO undergoes around
12% weight loss up to 800 ◦C with the TGA curve following a continuous slope. C60-g-rGO,
on the other hand, shows a combined decomposition trend. It decomposes by 30% up
to 800 ◦C, which may be due to the degradation of butyl group used as a linker between
rGO and C60. Beyond 600 ◦C the slope of its decomposition curve is similar to that of C60,
which proves successful grafting of C60 on to rGO. Similarly, C60-g-CNT undergoes around
20% weight loss up to 800 ◦C although the component nanomaterials like CNT and C60
degrade by 4% and 12%, respectively.
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3.2. Electrical Characterization of the Sensor
3.2.1. Dynamic Vapour Sensing

Figure 5 shows the normalized average maximum relative amplitude of a combination
of three sensors CNT (NC 7000), C60-l-CNT, C60-g-CNT, when exposed to a set of eight
VOC lung cancer biomarkers (ethanol, methanol, acetone, chloroform, benzene, toluene,
cyclohexane and water) at 1000 ppb. The responses of all sensors upon exposure to analytes
are recorded five times (see Figure 6a,b for example) and their amplitude is calculated by
making the average on the five signals, the first of which can sometimes be slightly different
(see inlet of Figure 5), presumably due to a relaxation of the conducting network. As evident
from Figure 5 the sensitivity of pristine CNT sensors underwent massive enhancement
after hybridization with C60 either by layer after layer deposition in C60-l-CNT or by
covalent grafting in C60-g-CNT. This gives a very good illustration of the boosting effect
of the grafting of C60 on CNT, where it can be seen that the chemo-resistive response of
C60-g-CNT based sensor to cyclohexane is twice that of C60-CNT and thirteen times that of
the pristine carbon nanotubes. Additionally, it can be noted that the grafting of fullerene
does not really change the selectivity of CNT sensors but it enhances the sensitivity of the
same, dramatically keeping the order of selectivity same. The sensitivity of the sensors is
directly proportional to the structure of the conductive architecture, whereas the difference
in sensitivity of CNT based sensors to different VOC most likely results from specific
interactions between the carbon species’ surface and the analytes [43]. Moreover, as
evident from the morphological images presented in Figure 3, C60 is grafted mostly at
the junctions of the CNT. Presence of spherical, strong electron acceptor C60 nanoparticles
of exceptionally high surface to volume ratio at the CNT junctions can have a strong
influence on the electronic mobility in the CNT network. This can induce a faster electronic
transport, but also larger disturbances of this flow upon the adsorption of analytes, leading
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to a dramatic rise of sensitivity to a number of VOC. A strong influence on sensitivity
naturally leads to an enhanced selectivity of sensors too. Thus, the grafting of C60 onto
CNT leads to a sensor with a high inclination towards nonpolar VOC like cyclohexane,
benzene, toluene, etc., although the principle of the doping of the sensing performances of
the CNT network by the specific addition of fullerene is the same for both C60-l-CNT (layer
after layer deposited separately) and C60-g-CNT (fullerene grafted onto CNT). However,
the enhancement of sensitivity in C60-g-CNT is much higher than that of C60-l-CNT. In
C60-g-CNT, the morphology is expected to be better controlled with C60 nanoparticles
grafted at the junctions of CNT, unlike C60-l-CNT where one layer of C60 solution was
deposited after the deposition of one layer of CNT solution onto the electrodes.
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This finding is further supported by the comparison of the chemo-resistive signals of
pristine rGO and C60-g-rGO made in Figure 6a,b, respectively, which shows that the order
of selectivity is the same for both. However, the sensitivity, i.e., the relative amplitudes
were found to be much higher in case of C60-g-rGO sensors. It is clearly visible that rGO-
based sensors are about twenty times less sensitive than C60-g-rGO. Moreover, Figure 6c,d
confirm the interest of using spacers between nanosheets as already found [41,61], and
also evidence the stabilizing effect of C60 at junctions leading to cleaner chemo-resistive
responses even at the sub-ppm level.

The work presented here corresponds to the preliminary step in the design of an
e-nose for breath analysis in order to diagnose severe diseases such as cancers, i.e., the
determination of the selectivity and sensitivity to volatiles organic compounds considered
as biomarkers of a considered disease. To go further it will be necessary to assemble more
than 10 different vQRS of different selectivities into an array (e-nose) and to classify their
responses with an algorithm such as PCA to be able to discriminate the different VOC
into a 2D map, which was done there [59,87,88]. Another step consists of checking the
influence of water molecules on the detection of biomarkers, as breath contains more
than 80% moisture, which was done previously [89]. Therefore, it is believed that if
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sensors are not very sensitive to water, this drawback can be compensated by including a
vQRS with a much higher sensitivity to water, such as chitosan functionalized CNT, for
instance [70,87,88], in the e-nose.
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3.2.2. Limit of Detection at ppb Level

Since breath extract consists of VOC mostly present at tiny concentrations, it is impor-
tant to analyse the performance of our sensors under real conditions of ppb level exposure
to VOC. In order to assess the efficiency of the sensors during sensing of trace level of
vapour molecules in the surroundings, the signal-to-noise ratio (SNR) was measured
according to Lewis et al. [90] using Equation (2).

SNR =
∆Rmax

σbaseline
(2)

where ∆Rmax = the steady-state resistance change upon exposing the sensor to solvent
vapour molecules (analyte), i.e., the difference between the maximum resistance of a sensor
obtained after exposure to a solvent and the baseline resistance of a sensor; σbaseline = the
standard deviation in baseline resistance of the sensor before analyte delivery, calculated
using 10 data points.

It is accepted that the chemo-resistive response can processed if its SNR value is
higher than or equal to 2.0 (SNR ≥ 2.0) at a defined concentration of solvent. Table 3
clearly demonstrates that the noise density of the rGO based sensors has been reduced
considerably after the grafting of C60.
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Table 3. Signal-to-noise (S/N) ratio of rGO and C60-g-rGO sensors towards four selected VOC at
400·ppb concentration.

VOC S/N [rGO] S/N [C60-g-rGO]

Toluene 61 109

Methanol 30 224

Benzene 18 231

Water 19 153

As also evident from Figure 6c,d, the enhancement of the sensitivity the of rGO based
sensors by around four times, on grafting of the C60 even at 400 ppb VOC concentration
validates the reliability of our sensors even in sub-ppm level exposure of VOC.

4. Conclusions

It has been demonstrated in this paper that the grafting of Buckminster fullerenes
at the junctions of CNT or graphene networks can strongly boost the sensitivity and the
selectivity of the conducting architecture of chemo-resistive vapour sensors. It has been
assumed that the enhancement of the electronic mobility through the CNT or graphene
network, due to the grafting at junctions of spherical Buckminster fullerene with high
surface area, is the most likely reason for the important gain of sensing properties obtained.
Given that the major limitation of crude CNT or graphene-based sensors results from their
too low and nonadjustable selectivity to volatile organic compounds, this work shows
that such a lock can be lifted by synthesizing their nanohybrids based on Buckminster
fullerene, which improves by tenfold the performances of crude carbon nanotubes or
graphene-based sensors. Although the ranking of selectivity towards the different selected
VOC remained the same, the increase in sensitivity automatically led to the enhancement
of the sensors’ discrimination ability. Thus, it can be concluded that grafting C60 at the
nanojunctions of a carbon nanoarchitecture by covalent or noncovalent functionalization
is a powerful tool to tune both sensitivity and selectivity of carbon-based nanosensors
without functionalization by polymers as usually done. The present study unveils an
innovative approach for boosting chemo-resistive transducers by improving the electronic
mobility of their junctions through the grafting of Buckminster fullerenes thanks to their
high surface area. These promising results are expected to bring an interesting input in
the design of sharper sensor arrays for volatolomics in order to make the anticipated
diagnostics of severe diseases like cancers more reliable. However, the study also points
out that among all selected biomarkers, only ethanol, methanol, acetone, chloroform, and
water can be detected directly by our vQRS when they present in breath at a concentration
close to 400 ppb. Nonpolar analytes such as benzene, toluene, and cyclohexane, being
under the limit of detection in breath, will require a preconcentration step before analysis
as expected.
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