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Abstract: Image fusion combines images with different information to create a single, information-
rich image. The process may either involve synthesizing images using multiple exposures of the
same scene, such as exposure fusion, or synthesizing images of different wavelength bands, such as
visible and near-infrared (NIR) image fusion. NIR images are frequently used in surveillance systems
because they are beyond the narrow perceptual range of human vision. In this paper, we propose an
infrared image fusion method that combines high and low intensities for use in surveillance systems
under low-light conditions. The proposed method utilizes a depth-weighted radiance map based on
intensities and details to enhance local contrast and reduce noise and color distortion. The proposed
method involves luminance blending, local tone mapping, and color scaling and correction. Each of
these stages is processed in the LAB color space to preserve the color attributes of a visible image.
The results confirm that the proposed method outperforms conventional methods.

Keywords: infrared; image fusion; tone mapping; luminance blending; night surveillance

1. Introduction

The visible light spectrum spans from 400 to 700 nm, while the near-infrared (NIR)
spectrum between 700 and 1100 nm. The human visual system can perceive only visible
light. The visibility of a photograph is greatly influenced by the weather conditions, such as
haze, smoke, and fog, etc. These bad weather conditions attenuate the contrast and detail
of the captured image by scattering light. Nevertheless, the NIR light can be transmitted
through haze [1]. The NIR light response offers a higher contrast and richer textural details
than that of visible light. Most commercial image sensors can detect both visible and NIR
light, rendering them useful for night vision and surveillance applications [2].

Surveillance cameras are used to capture objects under various lighting conditions,
such as in dark rooms, in tunnels, in daylight, and in the presence of vehicle headlights.
A surveillance camera system consists of an image sensor, a hot mirror filter, and an
infrared (IR) light-emitting diode (LED) lamp. The hot mirror is an IR cutoff filter to
prevent distortion or undesired artifacts caused by NIR light. The IR lamp serves as an
auxiliary component to detect objects that cannot be perceived by human vision. The image
sensor uses the hot mirror filter to take a visible image as it blocks NIR light during the
day, while also uses IR flashes to illuminate dark regions. Visible images tend to include
numerous colors, but a high level of noise is generated by high ISO settings under low-light
conditions [3]. In contrast, NIR images demonstrate sharper detail than visible images
under low-light conditions. This is due to the use of the IR LED lamp, which tends to make
them monotonically reddish.

Surveillance cameras at nighttime often use IR LED lights that do not have a visual
effect for security or crime prevention as auxiliary light. In general, since the amount
of infrared light emitted by the lamp is fixed, the IR image becomes too bright when
capturing close objects, making it very hard to recognize an object. In particular, at night,
the hot mirror filter for blocking infrared rays in the daytime is removed, and a complex
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visible-near-infrared image is captured. The overlap of visible and strong IR lighting affects
the image’s color and saturation distortion [4].

Figure 1 demonstrates images taken under various IR LED luminosity conditions.
When photographing a distant object, the LED output increases to extend the reach of the
light, whereas IR light saturation of a close object becomes relatively higher. When the
brightness is reduced to facilitate identification of a nearby object, low-level saturation
occurs as in the red arrow area of Figure 1. The quality of an image taken at night faces a
number of problems due to low-light environments, excessive or insufficient IR light, and
inappropriate exposure times.
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Lately, a wealth of research has investigated how to clearly identify objects in dark
spaces under low-light conditions using new LED lighting and camera controls. In order to
capture a clear night image, a technology that provides adjustable illumination to different
zones of a field of view of an image sensor with a plurality of vertical cavity surface emitting
lasers, or to prevent IR oversaturation, it has been proposed to adjust an auto-exposure
target in an auto-exposure operation on a sequence of images by obtaining a histogram
of at least one of the images [5,6]. However, it is difficult to adjust the camera parameters
and the IR LED light adaptively according to the distance of the subject and amount of
light in various environments, including severe environmental changes such as moving
photography. The hardware configuration of a camera system corresponding to various
functions becomes complicated. In addition, increasing just the camera sensitivity makes it
difficult to capture an image at a level in which the human vision adapts and perceives a
wide range of luminance conditions and sudden lighting changes experienced in everyday
life. The proposed method can improve the camera performance for object identification,
while preserving color information in various environments by using photography using
IR LED pulses of a constant pattern regardless of the lighting environment and the distance
of the object.

Visible and IR image fusion methods have been recently found using surveillance
cameras. The literature has proposed a large number of fusion methods, including multi-
scale transform [7,8], sparse representation [9], neural network [10–12], subspace [13],
and saliency methods [14], as well as hybrid models [15–17]. These approaches improve
image quality and provide useful information by overcoming the disadvantages of visible
and IR images. The multi-scale transform-based methods divide the input image into
layers of multiple levels using wavelet, pyramid, and curvelet transforms, as well as
an edge-preserving filter. Each layer is processed to analyze the image information and
extract the image features and is recombined using a specific rule of each method. Spare
representation-based methods convert the source images into a dictionary composed of
a few atoms. This method extracts image features using a spare coefficient from the
dictionary, fuses the features according to the fusion rule, and reconstructs the fused
image. Neural network-based methods are developed based on pulse couple neuron
network (PCNN) [18]. PCNN depicts the perception behavior of the human brain to
deal with neural information. PCNN-based methods are similar to multi-scale transform
methods. Source infrared and visible images are decomposed into low and high frequency
subbands and each subband is fused using various methods, such as wavelet, contourlet,
and curvelet transforms. The final fused image is reconstructed by an inverse transform.
Recently, deep learning-based neural network methods have been introduced in various
fields [19–22]. The deep learning-based methods are applied not only to object detection
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and classification, but also to image processing such as multi-focus image fusion, remote
sensing imagery, panchromatic image fusion as well as infrared and visible image fusion.
Subspace-based methods reduce high-dimensional input data to low-dimensional space
using principal component analysis, non-negative matrix factorization, and independent
component analysis. The low-dimensional space has intrinsic information of input data
without redundant information. This method is used for image fusion because it requires
less memory and computational time and can improve generalization. Saliency-based
methods extract salient object regions from an input image and generate salient layers
and fuse the image based on these layers. The salient object region is more significant
than the background of the image. These methods maintain the integrity of salient object
regions and improve the visual quality of the fused images. Hybrid models combine the
advantages of the multiple fusion methods to improve image quality [23].

Sugimura et al. proposed an RGB and NIR image fusion method that relies on blending
different exposure times to synthesize a noise- and blur-free image under extremely low-
light conditions [24]. The researchers used an adaptive smoothness map depending on the
gradient and color correlations of each region. Vanmali et al. proposed a multi-resolution
fusion process that is guided by weighting maps for visible and NIR images [1]. These
weighting maps are generated based on the local entropy, local contrast, and visibility of
each image. Ma et al. proposed a multi-scale fusion method based on a visual saliency map
(VSM) and weighted least squares (WLS) optimization models [16]. The Ma et al. method
decomposes the visible and NIR image into base and detailed layers. The base layer of
each source is then recombined by the VSM. The VSM is used to extract salient structures,
regions, and objects from an image. The detailed layer is fused using WLS optimization,
which selects more useful details and reduces noise. Li et al. proposed deep-learning
architecture, DenseFuse, for visible and IR image fusion [12]. DenseFuse entails encoding
and decoding processes. The encoding process combines convolution layers, fusion layers,
and dense blocks to obtain useful features from input images. The decoding process is
used to reconstruct the fused image.

In the image captured at night using a conventional surveillance camera, as the
object gets closer to the camera, over-saturation occurs due to IR light reflections. It
is difficult to accurately identify the object’s color and shape. To address this problem,
it is important to design a complex hardware configuration to measure the amount of
surrounding light and the distance between the camera and the object. Another way
is to increase the camera sensitivity, but responding in real time to the instantaneous
changes in the lighting environment is challenging. Therefore, a capturing that confirms
the object shapes regardless of the distance between the object and the camera under
various environmental conditions is highly essential.

In this paper, we propose an IR image fusion method combining high- and low-
intensities using an IR image acquisition system to enhance image quality under low-
illumination conditions. The input high- and low-intensity IR image pairs are taken
sequentially for the same scene using an alternating IR lamp. The high-intensity IR image
captures the objects with deeper distance depth, whereas the low-intensity IR image
captures the overall color information and recognizes the near objects. The proposed
method involves luminance blending, local tone mapping, and color scaling and correction
(CsC) [25,26]. The luminance blending is used to extract and enhance the detail information
of input sources. The luminance blending stage combines the low- and high-intensity IR
luminance channels to create a single radiance map using four types of weighting maps:
chroma, intensity, depth information based on intensity, and variance differences. Each
weighting map is designed to extract the local details of the low- and high-intensity IR
images. The local tone mapping is used to improve the visibility of the captured image. A
local tone mapping technique, the multi-scale luminance adaptation transform (MLAT) [27],
is applied to the radiance map to enhance local contrast. CsC is then used with scaling
factors to preserve the original color of the low-intensity IR image and to reduce the noise
and color distortion caused by luminance blending and local tone mapping.
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2. MLAT

In our previous work, the MLAT was proposed to enhance local contrast and preserve
the color of tone-mapped images [27]. The MLAT comprises the multiple luminance
adaptation transform (LAT) with different surroundings. The LAT is processed in the LAB
color space to decompose the luminance and chrominance channels. The LAT consists of
local tone mapping in the luminance channel and color compensation in the chrominance
channel. Local tone mapping uses a visual-brightness function [28,29] to enhance local
contrast and image rendition depending on the scale of the surroundings. A narrower
scope enhances detail, while a wider scope improves tonal rendition. To balance the detail
and tonal rendition of an image, a multi-scale method consisting of the weighted sum
of several single-scale methods with different surroundings is applied to the LAT. The
equations for the MLAT are the following:

Lmin = 0.021 + 0.0185L1.0314
an , (1)

Lmax = 25.83 + 30.82L0.6753
an , (2)

γv = 0.444 + 0.045 ln(Lan + 0.6034), (3)

f (x, y) =
∣∣∣∣ Ln(x, y)− Lmin(x, y)

Lmax(x, y)− Lmin(x, y)

∣∣∣∣γv(x,y)
, (4)

LAT : Lo = Igain f (x, y) + Io f f set, (5)

MLAT = ∑N−1
n=0 ωnLATn, (6)

where Lan is the normalized adaptation luminance, the Gaussian-blurred image of the input
luminance channel Ln. The maximum value of Lan is 100. Lmin and Lmax are the minimum
and maximum luminance for Lan, respectively. γv is the visual gamma function, f (x, y) is
the visual gamma image for pixel position (x, y). Lo is the output luminance channel. Igain
and Io f f set are applied to adjust the intensity range of Lo. MLAT is the multi-scale LAT, and
ω is the weight.

The color compensation stage reduces the desaturation effect after local tone mapping.
It does so by improving the chrominance gain based on the ratio of the input luminance to
the LAT, as follows:

Co = Ci

(
Lo

Li

)
, (7)

where Co is the compensated chrominance channel using the input chrominance channel
Ci and the ratio of the output luminance channel Lo to the input luminance Li. The chromi-
nance channel C represents the a and b channels of the LAB color space.

3. Visible and NIR Image Acquisition and Fusion

The proposed method assumes an indoor scene under ambient light, which contains
less outdoor IR light and less ambient IR effect on the camera. This condition considers
capturing that is only affected by the emitted IR light by the designed system. First, we
designed an image acquisition system to capture IR image pairs using an alternating IR
lamp with low and high intensities. The low level is for closer objects, and the high level is
for relatively distant objects. The hot mirror filter was removed from the camera to capture
IR images. The IR light can affect the visible image, but the low-intensity IR lamp under
normal illumination has been adjusted for minimal impact. The proposed acquisition
system is illustrated in Figures 2 and 3. In Figure 2, the proposed hardware consists of a
wide-band camera that includes the visible and near-infrared band (OmniVision OV5640
CMOS, 1920 (W) × 1080 (H) pixels), two IR lamps (5 V–3 W), an IR lamp control circuit,
and a camera trigger circuit. The IR lamps were synchronized with the capturing cycle and
alternately light up in two levels, color information and near-field subject information were
acquired at the low-level intensity of IR lamps for short distance, and detailed luminance
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information of distant subjects were acquired at the high-intensity of IR lamps for long
distance, then images were synthesized. As shown in Figure 3, in dark surroundings, the
high level of IR light can effectively capture a distant subject, and the low level of IR light
can effectively capture a close subject. However, as the surround level increases, the lower
level-IR does not significantly affect the image, and information in the visible light band
without distortion, including color information, can be captured. Against this backdrop,
the proposed system captures two types of IR images: high-intensity IR and low-intensity
IR. High- and low-intensity IR images are captured when the alternating level of the IR
lamp is high and low, respectively. These IR lamps are synchronized with the capturing
period. The IR lamp pulse rate and the image frame rate are synchronized by the camera
trigger circuit. As a result, the IR lamps alternately light up in two levels during high–
low intensity IR image captures. The camera acquires color information and near-subject
contour information at a low level and obtains distant subject contour information at a
high level.
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Figure 3. IR image acquisition system.

The images captured by the proposed acquisition system demonstrate the following
features. In a dark scene, an image obtained with high-intensity IR is generally shot with a
brighter image than that of low-intensity IR, but with a saturation of an adjacent object.
Conversely, an image obtained with low-intensity IR has less light, containing details of the
saturated region of high-intensity IR. In a bright scene, the low-intensity IR image contains
less IR information, and most of the captured image has a visible light band. This enables
the color of the scene to be preserved. In our experiments, we captured indoor images to
reduce the impact of IR light found in natural light.

In Figure 4, the left-hand image depicts the high-intensity IR image, which includes
little color information, whereas the right-hand image depicts the low-intensity IR image.
The low-intensity IR image has color information resulting from ambient light. The flower
details and colors clearly appear in the low-intensity IR image, but some regions close to the
camera in the high-intensity IR image are oversaturated due to the IR light reflections. For
the flowerpot under the flowers and the lightbox in the background of the scene, compared



Chemosensors 2021, 9, 75 6 of 16

to the low-intensity IR image, the high-intensity IR image demonstrates more details. The
red boxes indicate areas with prominent details.
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Figure 5 presents a block diagram of the proposed method for the captured images. It
shows luminance blending and CsC. Each stage uses the LAB color space to decompose
the luminance and chrominance components of the image.
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3.1. Step 1: Depth-Weighted Luminance Blending

Luminance blending combines the input IR image pairs based on weighting maps
to produce a radiance map with enhanced details. The weighting maps are calculated in
the depth-weighted blending block of Figure 5, incorporating chroma, intensity, intensity
difference, and variance difference. Each weighting map shows weights ranging from zero
to one. As a weight value moves closer to one, the radiance map becomes increasingly
similar to the low-intensity IR image.

The chroma weighting map uses the chrominance channels of the input low-intensity
IR image to produce higher weighting values for the objects in a scene. Compared to
high-intensity IR images, low-intensity IR images are more colorful and accurate, without
dim surroundings. Furthermore, the color components can be used as local details for the
objects in a scene. The equation for this process is the following:

ωc = N
(√

a2 + b2
)

, (8)

where N(·) is a normalization function that converts the range of the weighting map from
zero to one, ωc is the chroma weighting map, and a and b are the chrominance channels of
the input low-intensity IR image in the LAB color space.

The intensity weighting map represents the local contrast, using the illumination
component of the low-intensity IR image that can be obtained using bilateral filtering. In a
simplified computer vision model, the pixel values of an image are the product of illumina-
tion and surface reflectance [30,31]. The illumination components can be represented by
the weighted sum of adjacent pixels, such as through the use of a bilateral filter. A bilateral
filter is an edge-preserving filter that smooths an image while retaining strong edges [32].
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Such a filter reduces halo artifacts caused by local tone mapping. The intensity weighting
map is calculated as follows:

ωi = N(B(Llow)), (9)

where ωi is the intensity weighting map, B(·) is the bilateral filter function, and Llow is the
luminance channel of the low-intensity IR image in the LAB color space.

The weighting map for the intensity difference represents the local edges between the
high- and low-intensity IR images. In the captured images, a high-intensity IR image is
brighter than a low-intensity IR image. The over-saturation occurs in the high-intensity IR
image when an object is close to the camera. The intensity difference, ωid, between input
IR image pairs has higher value when the object is close to the camera. Therefore, the more
local edges can be obtained by increasing the weight of the low-intensity IR image when
the value of ωid is close to 1:

ωid = N
(

B
(

Lhigh

)
− B(Llow)

)
, (10)

where ωid is the intensity difference weighting map, and Lhigh is the red channel of the
high-intensity IR image.

The variance difference weighting map was calculated using the difference in the local
variance between the high- and low-intensity IR images. The local variance, obtained from
pixel-wise processing, represents the local details of each input image. The difference in
the local variance represents the local gain at a particular pixel position for each image.
The intensity difference has a positive value because the luminance of a high-intensity
IR image is always higher than that of a low-intensity IR image. However, the variance
difference has both positive and negative values, because local variances have different
values for scenes and pixel positions. To set the range for the variance difference weighting
map between zero and one, we introduce an additional normalization function with a
constraint, as follows:

ωvd =

 0.5
(

Di f fvar
max(Di f fvar)

+ 1
)

, f or Di f fvar ≥ 0

−0.5
(

Di f fvar
min(Di f fvar)

− 1
)

, f or Di f fvar < 0
, (11)

Di f fvar = Var
(

Lhigh

)
− Var(Llow), (12)

where ωvd is the variance difference weighting map, Di f fvar is the variance difference, and
Var(·) is the local variance based on pixel-wise processing. In Equation (12), the variance
difference weighting map ωvd is rearranged based on the variance difference Di f fvar. The
constraint is set at 0.5, where Di f fvar = 0, to assign the same weighting value for an input
image pair.

Finally, the proposed weighting map was computed from the above four types of
weighting maps as follows:

ωmap = (ωc + ωi + ωid + ωvd)/4. (13)

The radiance map can be obtained using the weighted blending of the input images:

LR = ωmapLlow + (1 − ωmap)ERLhigh, (14)

ER = mean(Llow)/mean
(

Lhigh

)
, (15)

where LR is the radiance map, ER is the relative exposure gain, and mean(·) calculates the
global mean intensity of the image.
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3.2. Step 2: Local Tone Mapping

After luminance blending, we applied local tone mapping using the MLAT to the
radiance map, with the following steps:

(1) In Equations (1)–(6), the luminance channel Ln and the normalized adaptation
luminance Lan are calculated as follows:

Ln = 100
(

LR
max(LR)

)
, (16)

Lan = G(Ln, σ), (17)

where the constant value of 100 is used in normalizing the output range. G(·) is a Gaussian
filter with standard deviation σ that controls the local contrast of the LAT.

(2) The MLAT is performed using the weighted sum of three LAT versions. The
weighting value ω of the MLAT is 1/3, and the standard deviation σ is 15, 50, and 250 for
the respective versions of the LAT.

3.3. Step 3: Color Scaling and Correction

After MLAT processing, CsC was used to preserve the colors in the tone-mapped
image. CsC reduces the noise and the color distortion caused by luminance blending and
tone scaling using scaling factors, as follows:

ao = aTs, bo = bTs, (18)

Ts = B(Lo)/B(LR), (19)

where a and b are the chrominance channel of the low-intensity IR image in the LAB
color space, and ao and bo are the results of using CsC. Ts is the tone scaling factor, which
identifies the luminance change rates after tone mapping through bilateral filtering. Lo is
the result of using the MLAT.

Finally, the tone-mapped luminance channel Lo and the compensated chrominance
channels ao and bo are converted back from the LAB color space to the RGB color space.

4. Simulation Results

We compared the results of the proposed method with those of two conventional
methods introduced by Vanmali et al. [1] and Li et al. [12]. Vanmali et al. proposed a
weighted-map-guided Laplacian–Gaussian pyramid to fuse visible and NIR images. Li
et al. proposed deep-learning architecture based on a convolutional neural network and
dense blocks for fusing infrared and visible images. In this study, the test images were
taken using the proposed image acquisition system. For the two input images, only the
red channel of the high-intensity IR image was used for the IR luminance image and the
RGB channels of the low-intensity IR image was used for the visible image. We have the
parameters of the conventional methods by referring to their original reports. The results
of the respective methods are shown in Figures 6–13.

The Vanmali approach does not consider low-light conditions. The algorithm uses
the hue–saturation–value (HSV) color space to decouple the luminance and chrominance
components. Weight maps are used to combine the luminance channels of the visible
and NIR images. The combined luminance channel is converted back from the HSV color
space to the RGB color space without color compensation for the luminance variation.
As a result, color distortion and color noise appear in regions where there are brightness
differences between the input images. In the results for Li, the bright regions of the NIR
image display blurring and desaturation effects. This is because the reflected NIR light
affects the feature maps in the encoder, and the fused image is reconstructed from the sum
of each feature map.
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In Figure 6, Vanmali’s method shows strong noise and color blocking for the overall
image, and also over-saturation is shown in the book and the color checker. Li’s method
shows the desaturation and low local contrast in the results. In Figure 7, Vanmali’s method
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shows color noise on the desk at right bottom and over-saturation in the color checker,
and the Li’s method shows white balance shift and de-saturation. In Figure 8, Vanmali’s
method shows strong color noise in the sharpness test chart and the flower area, whereas
Li’s method shows a desaturation effect in the flower and flowerpot regions. In Figure 9,
Vanmali’s method shows color noise and over-saturation in the color checker and the front
of the desk and represents low-level noise in the dark region. The proposed method reduces
noise and color blocking, providing a higher local contrast than that of other methods.

In Figures 10–13, the red boxes represent the low contrast, color distortion, and color
noise regions. In Figure 10, Vanmali’s method shows color distortion in the cup, while
Li’s method shows low contrast and desaturation effects in the same region. In Figure 11,
Li’s method shows reflected light from the bright IR light. In Figure 12, Vanmali’s method
shows low-level noise in the red box at left bottom and color shift in the red box at right
top. In contrast, the proposed algorithm demonstrates little color distortion and high
contrast. Figure 13 is taken in a dark scene. The low-intensity IR image contains little color
information because the dark scene uses only an IR lamp, which provides the camera with
insufficient color information. However, it offers detailed information about areas that are
not displayed owing to saturation in the high-intensity IR image. In the synthesized image,
Vanmali’s method results in image distortion in the background, and the contrast is low in
the monitor area around the red box. In contrast, the proposed algorithm shows a higher
contrast than the conventional methods, and the image inside the monitor appears well.
These facts confirm that the proposed method has less color distortion and noise and better
local contrast than the images produced using the conventional methods.

Subsequently, we performed objective evaluations for the naturalness image quality
evaluator (NIQE) [33] and the chroma difference. The NIQE is a supervised method
based on a natural scene statistics (NSS) model. The NSS model is trained on statistical
features derived from a corpus of natural and undistorted images. The NIQE measures the
distance between the NSS model and the extracted features from the fused image. Lower
NIQE scores reflect better perceptual quality of an image. The result of NIQE is shown
in Figure 14. The results of Figures 7, 10 and 13 are in Figure 14; the proposed method
is visually superior, but the proposed method does not have the lowest score compared
with the conventional methods. NIQE is based on an “opinion unaware” model that does
not require training on databases of human judgments of distorted images. It often does
not match human perceived quality. In particular, NIQE is evaluated using a gray scale
image. As a result, the results of NIQE are somewhat insensitive to the color noise and the
desaturation. To evaluate the color distortion, we added chroma difference using color
patches of a color checker.

For 24 color points of the color checker in Figure 11, the relative chroma difference
scores were calculated from the Euclidean distance between the result image and the
reference image on the chrominance channel in the LAB color space. The reference image
was captured with the proposed image acquisition system in a normal environment without
the IR lamp. The image in the right top of Figure 15 shows the color checker of the reference
image. The chroma difference equation is as follows:

∆ab =

√
(a2 − a1)

2 + (b2 − b1)
2, (20)

where ∆ab is the chroma difference. a and b represent mean values of chrominance channels
of each color patch. The subscript 1 represents the reference image and 2 represents the
result image of each method.



Chemosensors 2021, 9, 75 14 of 16

Chemosensors 2021, 9, x FOR PEER REVIEW 14 of 16 
 

 

resolution 640 (W) × 480 (H), WITHROBOT, Seoul, Korea). The proposed method and Li’s 
method were processed using a Python code and Vanmali’s method was run based on 
MATLAB. The results show the computational speed of the proposed method is faster 
than the conventional methods. From the overall assessment, we conclude that the pro-
posed method performs better than the conventional methods. 

 
Figure 14. Naturalness image quality evaluator (NIQE) scores for each method (lower scores re-
flect better image quality). 

 
Figure 15. Chroma difference for each method (lower scores reflect better image quality). 

Table 1. Computational speed for each method. 

Image Resolution Vanmali Li Proposed 
640 (W) × 480 (H) 0.363 s 0.802 s 0.335 s 

Figure 14. Naturalness image quality evaluator (NIQE) scores for each method (lower scores reflect
better image quality).

Chemosensors 2021, 9, x FOR PEER REVIEW 14 of 16 
 

 

resolution 640 (W) × 480 (H), WITHROBOT, Seoul, Korea). The proposed method and Li’s 
method were processed using a Python code and Vanmali’s method was run based on 
MATLAB. The results show the computational speed of the proposed method is faster 
than the conventional methods. From the overall assessment, we conclude that the pro-
posed method performs better than the conventional methods. 

 
Figure 14. Naturalness image quality evaluator (NIQE) scores for each method (lower scores re-
flect better image quality). 

 
Figure 15. Chroma difference for each method (lower scores reflect better image quality). 

Table 1. Computational speed for each method. 

Image Resolution Vanmali Li Proposed 
640 (W) × 480 (H) 0.363 s 0.802 s 0.335 s 

Figure 15. Chroma difference for each method (lower scores reflect better image quality).

The scores show how well those methods preserve chroma information after image
fusion. The accuracy of color reproduction for the reference image was found to be the
best in the proposed method on average. Figures 14 and 15 show the scores resulting from
using NIQE and chroma difference, respectively.

Table 1 lists the computational time for each method. All methods run on the same
environment (a single CPU i7-6700 3.4 GHz, Ram 8 G, GPU Nvidia RTX 2070 super, image
resolution 640 (W) × 480 (H), WITHROBOT, Seoul, Korea). The proposed method and
Li’s method were processed using a Python code and Vanmali’s method was run based on
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MATLAB. The results show the computational speed of the proposed method is faster than
the conventional methods. From the overall assessment, we conclude that the proposed
method performs better than the conventional methods.

Table 1. Computational speed for each method.

Image Resolution Vanmali Li Proposed

640 (W) × 480 (H) 0.363 s 0.802 s 0.335 s

5. Conclusions

This paper suggested a high- and low-intensity IR image fusion method to enhance
local contrast and reduce noise and color distortion for use in a surveillance system under
low-light conditions. Images were taken with an image acquisition system that utilizes
an alternating IR lamp. The proposed method consists of luminance blending, local tone
mapping, and CsC. Luminance blending combines the high- and low-intensity IR images
using weighting maps based on chroma, intensity, the difference in depth of base intensity,
and details. In local tone mapping, we used the multi-scale method based on the LAT
to balance local details and global rendition. The CsC stage was used to preserve the
chrominance components of the low-intensity IR image and reduce the noise and color
distortion caused by blending and local tone mapping. The performance of the proposed
method was compared to conventional methods. Results showed that the proposed
method outperformed other methods in terms of high quality of object details, overall
tone rendering, and color visibility compared to the captured images. The proposed
image acquisition system assumes an indoor scene containing less outdoor IR light and
less ambient IR effect on the cameras. In future research, we plan to capture and fuse
images in various environments through hardware improvements. Additionally, we will
apply the proposed method to object detection to improve the detection performance in
various scenes.
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