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Abstract: Applications in security and electronic surveillance require a combination of excellent
magnetic softness with good mechanical and anticorrosive properties and low dimensionality. We
overviewed the feasibility of using glass-coated microwires for electronic article surveillance and
security applications, as well as different routes of tuning the magnetic properties of individual
microwires or microwire arrays, making them quite attractive for electronic article surveillance and
security applications. We provide the routes for tuning the hysteresis loops’ nonlinearity by the
magnetostatic interaction between the microwires in the arrays of different types of amorphous
microwires. The presence of neighboring microwire (either Fe- or Co-based) significantly affects
the hysteresis loop of the whole microwires array. In a microwires array containing magnetically
bistable microwires, we observed splitting of the initially rectangular hysteresis loop with a number
of Barkhausen jumps correlated with the number of magnetically bistable microwires. Essentially,
nonlinear and irregular hysteresis loops have been observed in mixed arrays containing Fe- and
Co-rich microwires. The obtained nonlinearity in hysteresis loops allowed to increase the harmonics
and tune their magnetic field dependencies. On the other hand, several routes allowing to tune
the switching field by either postprocessing or modifying the magnetoelastic anisotropy have been
reviewed. Nonlinear hysteresis loops have been also observed upon devitrification of amorphous
microwires. Semihard magnetic microwires have been obtained by annealing of Fe–Pt–Si microwires.
The observed unique combination of magnetic properties together with thin dimensions and excellent
mechanical and anticorrosive properties provide excellent perspectives for the use of glass-coated
microwires for security and electronic surveillance applications.

Keywords: magnetic microwires; magnetic bistability; magnetic tag; electronic surveillance; domain
wall propagation; post-processing; magnetic anisotropy; magnetostatic interaction

1. Introduction

Soft magnetic materials are an essential part of magnetic sensors and devices de-
manded by several industries, including (but not limited to) microelectronics, electrical
engineering, car, aerospace, and aircraft industries, medicine, magnetic refrigerators, home
entertainment, energy harvesting and conversion, informatics, magnetic recording, and
security and electronic surveillance [1–3]. In most cases, like in the case of security and elec-
tronic surveillance, in addition to excellent magnetic softness, a combination of mechanical
and anticorrosive properties and low dimensionality is required [4–6].

Almost all department stores, supermarkets, airports, libraries, museums, etc. are
provided with different types of security and anti-thief systems. The principle of elec-
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tronic article surveillance (EAS) systems operation is well established: articles are pro-
vided with tags that respond to electromagnetic fields generated by the gates at the
store/supermarket/library exits [6]. The response is picked up by the antenna installed on
the gate, switching on the alarm.

It is estimated that hundreds of thousands of such EAS systems have been installed
and millions of tags are produced daily. Considering the great number of tags, they must
be small, robust enough, and inexpensive.

Usually, the magnetic field values generated by the gates are limited by electromag-
netic regulations and therefore are quite low, being typically below 100 A/m. Accordingly,
the magnetic materials employed in tags must be magnetically soft enough. However,
the magnetic softness of crystalline soft magnetic materials (Permalloy, Fe–Si) is affected
by processing. Therefore, amorphous soft magnetic materials, prepared by rapid melt
quenching, are considered as among the most suitable materials for tags containing soft
magnetic materials [6,7].

Indeed, as a rule, amorphous materials present excellent magnetic softness together
with superior mechanical properties [8–12]. Abrupt deterioration of the mechanical proper-
ties (such as tensile yield) upon the devitrification of amorphous precursor is reported [12].
Additionally, the fabrication process of amorphous materials involving rapid melt quench-
ing is fast and inexpensive [4–8,10]. Accordingly, amorphous soft magnetic materials are
useful for the design of robust magnetic devices and magnetoelastic sensors [13–25].

Different rapid melt quenching methods allow the preparation of amorphous mate-
rials of planar (ribbons) or cylindrical (wires) shapes [4–7]. As discussed elsewhere, soft
magnetic materials with squared hysteresis loops and relatively low coercivities are the pre-
ferred candidates for the EAS systems using magnetic tags [6]. The rectangular hysteresis
loops can be easily implemented in different families of amorphous magnetic wires [21–25].
Therefore, considerable attention has been paid to applications of amorphous wires for
magnetic tags for different kinds of EAS systems [7,25–29].

The aforementioned squared hysteresis loops of magnetic wires are linked to the
peculiar remagnetization process of magnetic wires running through a single and large
Barkhausen jump [6,7,21–25]. In such magnetic wires, a demagnetized state cannot be
achieved [7,21–23,30–32]. Accordingly, such magnetic wires are also called magnetically
bistable [30–32].

Magnetic wires can be prepared using different techniques involving rapid melt quench-
ing [7,21–23,33]. However, glass-coated magnetic microwires prepared by so-called Taylor–
Ulitovsky technique present the widest metallic nucleus diameter range (from 200 nm up to
100 µm) [34–44]. In this way, the Taylor–Ulitovsky method is the unique technique allowing
fabrication of nanowires by rapid melt quenching [34]. On the other hand, the preparation of
amorphous magnetic wires with a diameter of about 100 µm coated by glass was recently
reported [36]. The presence of a flexible, thin, biocompatible and insulating glass coating
allows to enhance the corrosive resistance and therefore makes these microwires suitable for
novel applications, including biomedicine, electronic article surveillance, nondestructive mon-
itoring external stimuli (stresses, temperature) in smart composites, and construction health
monitoring through the microwire inclusions [37–42,45–48]. It is worth noting that, in fact,
the Taylor–Ulitovsky technique has been known since the 1960s [43] and has been used for
the preparation of amorphous microwires since the 1970s [44]. The modern Taylor–Ulitovsky
technique is suitable for the preparation of continuous glass-coated microwires of up to
10 km long, and roughly 1 km of microwire can be prepared from 1 g of metallic alloys [36,45].

The relevant advantage of the Taylor–Ulitovsky technique allowing the preparation
of glass-coated microwires is that the metallic nucleus diameter could be significantly
reduced (typically by an order of magnitude). Such diameter decrease is especially relevant
for magnetically bistable wires, because a perfectly rectangular hysteresis loop is only
observed for wires having a minimum length. Thus, in Fe-rich amorphous wires with
diameters of about 120 µm, such minimum length, Lm, for observation of rectangular
hysteresis loop is about 7 cm [31]. For the wire (with diameter of 120 µm) lengths below
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7 cm, magnetically bistable behavior cannot be observed [31]. For glass-coated microwires
with typical diameters of 10–15 µm, such Lm is typically of a few millimeters [22,25,47,48].
Accordingly, glass-coated microwires prepared by the Taylor–Ulitovsky technique have a
clear advantage: the magnetic tag size can be drastically reduced [22,25].

Accordingly, considering dimensionality and the combination of physical properties
(magnetic, mechanical, and corrosive), amorphous soft magnetic microwires are potentially
suitable materials for electronic article surveillance and security applications. There are
several original papers and patents dealing with rather different (multi-bit or single-
bit) security and EAS applications of magnetic wires [25–29,47,48]. However, to our
best knowledge, there are no reviews summarizing published experimental results and
analyzing trends in security and EAS applications of magnetic microwires. Consequently,
in this paper we will provide an overview of the trends related to EAS and security
applications of glass-coated magnetic microwires.

This paper is organized as follows. In Section 2, the experimental methods as well
as the microwires characteristics analyzed in this review are provided. Section 3 deals
with results on feasibility of using magnetic microwires for magnetic tags, followed by
overview of tuning of hysteresis loop nonlinearity by the magnetostatic interaction between
microwires and then by multi-bit magnetic tags applications of magnetic microwires.

2. Materials and Methods

Fe-, Co-, and Ni-rich glass-coated amorphous microwires have been prepared by
Taylor–Ulitovsky preparation method, described in details elsewhere (the compositions
and diameters of microwires are provided in Table 1) [36,45].

Table 1. Compositions and geometry of studied glass-coated microwires.

Composition Metallic Nucleus Diameter,
d (µm)

Total Diameter,
D (µm)

Ratio
ρ = d/D

Magnetostriction
Coefficient,

λs × 106

Fe74B13Si11C2 10 20 0.5 38
Fe74B13Si11C2 12.3 15 0.82 38
Fe74B13Si11C2 17.3 28.2 0.61 38
Fe74B13Si11C2 19.4 26.6 0.73 38
Fe75B9Si12C4 15.2 17.2 0.88 38
Fe65Si15B15C5 12.6 20 0.63 38
Fe65Si15B15C5 15 23.8 0.63 38
Fe65Si15B15C5 10.8 22.5 0.48 38
Fe65Si15B15C5 6 23.1 0.26 38
Fe65Si15B15C5 3 18.75 0.16; 38
Fe77.5Si7.5B15 15.1 35.8 0.42 38

Co69.2Fe3.6Ni1B12.5Si11C1.2Mo1.5 22.8 23.2 0.98 −1
Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 29.2 31 0.94 -0.5

Fe71.7B13.4Si11Nb3Ni0.9 103 158 0.65 35
Co69.2Fe4.1B11.8Si13.8C1.1 25.6 30.2 0.85 −0.03

Co64.04Fe5.71B15.88Si10.94Cr3.4Ni0.3 94 126 0.75 2
Fe16Co60Si13B11 12 29 0.41 15

Fe62Ni15.5Si7.5B15 14.35 33.25 0.43 27
Fe47.4Ni26.6Si11B13C2 29 32.2 0.9 20
Fe49.6Ni27.9Si7.5B15 14.2 33.85 0.42 20

Fe71.8Cu1Nb3.1Si15B9.1 7.0 24.8 0.282 30
Fe71.8Cu1Nb3.1Si15B9.1 18.2 39 0.467 30

Fe70.8Cu1Nb3.1Si14.5B10.6 5.8 15.2 0.38 30
Fe38.5Co38.5B18Mo4Cu1 10 16.6 0.6

Fe50Pt40Si10 8 21 0.38
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The provided microwires geometry (d- and D-values) gives the average values deter-
mined by the optical microscopy at several places of the microwires. Typically, the spread
in d- and D-values is below 0.5 µm [5].

Generally, we analyzed three different types of magnetic microwires: (i) amorphous
microwires with high, positive magnetostriction coefficients, λs, (Fe–Si–B–C, Fe–Ni–Si–B–C,
Fe–Co–Si–B, Fe–B–Si–Nb–Ni, or Fe–Ni–Si–B), (ii) amorphous microwires with vanishing
λs (Co–Fe–Ni–B–Si–Mo, Co–Fe–B–Si–Cr–Ni, or Co–Fe–B–Si–C), or (iii) partially crystalline
(nanocrystalline) (Fe–Cu–Nb–Si–B, Fe–Co–B–Mo–Cu, or Fe–Pt–Si) microwires.

The amorphous structure of all the microwires has been proved by the X-ray diffraction
(XRD) method. All amorphous microwires present a broad halo in the XRD patterns. The
XRD patterns have been obtained by the Bruker (D8 Advance) X-ray diffractometer with
Cu Kα (λ = 1.54 Å) radiation. Several samples have been annealed in a conventional
furnace at temperatures below the crystallization temperature. Typically, the crystallization
of amorphous microwires was observed at Tann ≥ 500 ◦C [49].

The induction method previously was used for the hysteresis loops measurements.
The details of the experimental set-up are described in details elsewhere [46]. The hys-
teresis loops were represented as the magnetic field, H, dependence of the normalized
magnetization, M/M0, where M is the magnetic moment at a given magnetic field, and M0
is the magnetic moment at the maximum magnetic field amplitude, Hm. Such hysteresis
loops are useful for comparison of the samples with different chemical compositions (hence,
different saturation magnetization).

In several cases, the hysteresis loops were measured with a conventional supercon-
ducting quantum interference device, SQUID.

The magnetostriction coefficients, λs, of the investigated microwires, were evaluated
using the SAMR method adapted for microwires, as described elsewhere [46,49].

The experimental set-up allowing to measure the electromagnetic response of a mag-
netic tag consisting of an exciting coil, a pick-up coil, a preamplifier, and registration
facilities is described elsewhere (see Figure 1) [47].
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Figure 1. Scheme of experimental set-up designed to detect the electromagnetic signals of the
magnetic labels. Reprinted with permission from [47].

The magnetic tag (up to 4 cm long) is magnetized by 5 cm long exciting coil producing a
nearly uniform magnetic field up to 640 A/m with frequency f = 332 Hz. We used a squared
pick-up coil containing 20 turns with a side of 20 cm. An exciting coil with a magnetic
tag inside was located perpendicular to the pick-up coil plane. The electromagnetic signal
from the tag was amplified by a preamplifier with a voltage gain ~100 and detected by the
registration facilities, i.e., spectrum analyzer CF 5210 and a digital oscilloscope. The noise
voltage level at a frequency higher than 1 kHz is given by ~10 µV/Hz1/2. The tag placed
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inside the exciting coil produces a periodic signal of negative and positive pulses detected
in the digital oscilloscope.

We also measured the amplitudes of the first seven harmonics of the voltage induced
in the pick-up coil using a lock-in amplifier. For these measurements, the fundamental
frequency was 200 Hz.

3. Results
3.1. Feasibility of Using Magnetic Microwires for Magnetic Tags

For magnetic tag applications, the magnetic response must be as high as possible. Fe-rich
microwires present a higher saturation magnetization. Additionally, as-prepared Fe-rich
microwires have perfectly rectangular hysteresis loops (see Figure 2a). To assess the feasibility
of using Fe-rich microwires for magnetic tags, we measured the fifth harmonic as a function
of the distance between the tag and the pick-up coil. As can be seen from Figure 2b, the fifth
harmonic of 3 cm long Fe74B13Si11C2 microwire (metallic nucleus diameter, d = 17.3 µm) can
be detected at a distance up to 25 cm. Similar studies of Fe-rich microwires with d ≈ 100 µm
show that in this case, the signal can be detected at a distance up to 50 cm [48].
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with diameter d = 17.3 µm as a function of the distance from the pick-up coil (b). Figure 2b is adapted [47].

Perfectly rectangular hysteresis loops of Fe-rich microwires are quite stable: the
character of hysteresis loops remains the same even after long annealing (180 min) at an
elevated annealing temperature, Tann = 400 ◦C (see Figure 3a,b).

Only slight coercivity, Hc, decrease is observed upon annealing at Tann = 400 ◦C
(Figure 3c). The crystallization temperature of the Fe74B13Si11C2 microwire is about
522 ◦C [49]. Therefore, a slight coercivity decrease must be associated with internal stresses
relaxation. On the other hand, quite sharp voltage peaks (about 10 µs) in the pick-up coils
are produced upon magnetization switching in such Fe-rich microwires (Figure 3d).

3.2. Tuning of Hysteresis Loop Nonlinearity by the Magnetostatic Interaction between Microwires

Magnetic tags applications require a nonlinear hysteresis loop that contains the
characteristic distribution of harmonic frequencies. It is believed that the steeper the
magnetization reversal, the higher the harmonic content of the signal. Accordingly, per-
fectly rectangular hysteresis loops with low coercivity observed in Fe-rich microwires
(Figures 2 and 3) are attractive for use as magnetic tags.
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On the other hand, the nonlinearity of the hysteresis loop of the magnetic microwires
can be further improved using the magnetostatic interaction of microwires. Below, we
will present several experimental results on magnetic response of two kinds of individual
microwires (Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 and Fe74B13Si11C2) as well as the arrays contain-
ing either microwires of the same type or containing two different kinds of microwires.
Microwires in each array were located close to each other, that is, the magnetic nucleuses
were separated only by the glass coatings.

The hysteresis loops of such microwires are rather different: microwire with high and
positive magnetostriction coefficient, λs, exhibits perfectly a rectangular hysteresis loop
with Hc ≈ 100 A/m (Figure 4a), however, an inclined hysteresis loop with quite low Hc
(Hc ≈ 5 A/m) is observed in Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 microwires (see Figure 4b).
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Figure 4. Hysteresis loops of Fe75B9Si12C4 microwires with positive (a) and Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6

with vanishing (b) magnetostriction coefficients.

As discussed elsewhere, the hysteresis loop of even individual Fe-rich magnetically
bistable microwires is remarkably affected by the magnetic field amplitude. The most
relevant hysteresis loop change in a single Fe-rich magnetically bistable microwire takes
place when the magnetic field amplitude, H0, exceeds the switching field, Hs, value [50,51]:
below certain “critical” magnetic field amplitude, Hc,crit, value (for studied Fe75B9Si12C4
microwire at Hc,crit ≈ 100 A/m), the hysteresis loop abruptly disappears (see Figure 5a).
Above Hc,crit, the magnetization switching by single and large Barkhausen jump occurs.
Accordingly, such critical magnetic field is commonly referred to as the aforementioned
switching field, Hs, at which the irreversible magnetization switching begins. It is worth
noting that in AC hysteresis loops at low H0 and magnetic field frequency, f, Hs ≈ Hc (see
Figures 4a and 5a). However, with increasing H0, one can observe a deviation from the
perfectly rectangular hysteresis loop typical of magnetically bistable Fe-based microwires
(Figure 5a). This modification of the hysteresis loop shape (more noticeable for high
H0-values) was explained by taking into account the counterbalance between the sweep
rate, dH/dt, and the magnetization switching time required for single domain wall (DW)
propagation over the sample [50,52]. In the case of a triangular input signal, dH/dt is given
as the following equation [52]:

dH/dt = 4fH0 (1)

Accordingly, increasing of H0 or f results in faster sweep rate, dH/dt.
Such change of the hysteresis loops is linked with Hc increase. Previously, the fre-

quency and magnetic field amplitude dependence of coercivity in various magnetic materi-
als has been described as follows [52,53]:

Hc = Hco + B(fH0)1/n (2)

where Hco is the static coercivity, H0 is the magnetic field amplitude, and n is a coefficient
ranging from 1 to 4, which depends on the sample geometry and the type of the hysteresis
loop of the studied materials, and B—a coefficient depending on the intrinsic material
parameters [52,53].
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Figure 5. Hysteresis loops measured at different magnetic field amplitudes, H0, for a single glass-coated Fe74B13Si11C2

microwire (d = 19.4 µm) (a), and array with two microwires (b); dependence of switching field, Hs, on H0 for a sin-
gle microwire (solid line) and for an array containing 2 microwires, Hs1 and Hs2 (dot-line) (c); hysteresis loops of the
two microwires measured at different magnetic field frequencies, f (d). The schematic picture of the microwires array is
provided in the inset of (c). Reprinted with permission from [50].

Additionally, even the switching field, Hs, increases with increasing H0 and f (see
Figure 5a). However, Hs increases slower than Hc with increasing H0 and f (see Figure 5a
for H0). The origin of such Hc (f ), Hs (f ), Hc (H0), and Hs (H0) dependencies has been
discussed considering a reversible magnetization process associated with reversible DW
movement at low magnetic field (below magnetization switching) and the irreversible DW
movement associated to large and single Barkhausen jump [52,53].

The hysteresis loop of an array containing two Fe74B13Si11C2 microwires is rather
different from that of a single Fe74B13Si11C2 microwire. Two Barkhausen jumps can be
observed at H0 > 80 A/m (see Figure 5b). Such peculiar hysteresis loop shape has been
explained by considering the magnetostatic interaction in the two-microwire array [50,51].
Such magnetostatic interaction is a consequence of stray fields created by magnetically
bistable microwires: the superposition of external and stray fields causes magnetization
reversal in one of the samples, when the external field is below the switching field of a
single microwire. Single rectangular hysteresis loop (similar to the case of single microwire
shown in Figure 5a) is observed for 60 A/m < H0 < 80 A/m (see Figure 5b).

In the array consisting of two microwires, the lower switching field of the first
Barkhausen jump, Hs1, decreases, while the switching field of the second Barkhausen
jump, Hs2, increases (Figure 5c). Such difference must be attributed to the stray field
created by neighboring microwire [50,51]. The origin of the different Hs-values of individ-
ual microwires can be related with metallic nucleus diameters or glass-coating thickness
fluctuations, stresses induced by cutting, and so forth.
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At an increasing magnetic field amplitude (approximately at H0 > 250 A/m), this
splitting of the hysteresis loop disappears (Figure 5d). Such dependence of the hysteresis
loop of two microwires array can be understood from the counterbalance between the
dH/dt and the switching time determined by the velocity of the DW propagation along the
whole wire.

As can be appreciated from Equation (2), Hc is also affected by the frequency, f.
Accordingly, Hc, as well as overall hysteresis loops of the two-microwires array are affected
by f in a similar way as by H0 (see Figure 5c,d). For a two-microwires array, two-steps
hysteresis loops are observed for f < 150 Hz. At f > 150 Hz, the hysteresis loop splitting
disappears, and at 150 < f < 1000 Hz, a single smooth magnetization jump is observed.

Accordingly, the odd and even harmonics of the signal of two Fe-rich microwires
array are affected by H0 and f (see Figure 6a,b).
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Figure 6. Dependences of odd harmonics (a) and even harmonics (b) on magnetic field amplitude in Fe74B13Si11C2

microwires (d = 19.4 µm). Reprinted with permission from [51].

A sharp increase in the harmonics amplitudes is observed when H0 exceeds Hs1 and
Hs2 (see Figure 6a,b). The even harmonics amplitudes are significantly inferior to the odd
harmonics amplitudes. The field dependences of odd harmonics have a “plateau” between
60 and 90 A/m, which reflects the hysteresis loops splitting (see Figure 6a).

Another example of tuning the nonlinearity of hysteresis loops and harmonics is the
magnetostatic interaction of microwires with different character of hysteresis loops. Rather
nonlinear hysteresis loops can be obtained in an array consisting of one Fe74B13Si11C2 and
one Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 microwire (see Figure 7a). In such array, at H0 < 90 A/m
(which corresponds to Hs of Fe74B13Si11C2 microwire), the hysteresis loops character is
typical of those for a single Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 microwire. Essentially, nonlinear
hysteresis loops have been observed at H0 > 110 A/m (Figure 7a). Such peculiar hys-
teresis loops can be interpreted as the superposition of two hysteresis loops: one from
magnetically bistable Fe74B13Si11C2 microwire (shown in Figure 4a) and the other one from
Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 microwire with linear hysteresis loop (shown in Figure 4b).
At intermediate H0-values, the shape of the hysteresis loop depends on H0.
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Figure 7. (a) Hysteresis loops of the Fe74B13Si11C2 (d = 19.4 µm) + Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 array; (b) dependences
of odd harmonics on magnetic field amplitude and (c) dependences of even harmonics on magnetic field amplitude. The
schematic picture of the microwires array is provided in the inset of (c). Reprinted with permission from [50].

The peculiar hysteresis loop character at H0 ≤ 120 A/m can be explained by the partial
magnetization reversal of the magnetically bistable wire under the influence of the stray
field from the Co-based wire. The stray field is affected by the sample demagnetizing factor
and the sample magnetization [54,55]. In the case of Co-rich microwire, the magnetization
and hence, the stray field are affected by the applied magnetic field (as can be appreciated
from the hysteresis loops shown in Figure 4b). In contrast, the magnetization of Fe-rich
sample change by abrupt jump and below and above Hs is almost independent of magnetic
field (see Figure 4a).

Accordingly, such microwire array consisting of two microwires (Fe-rich and Co-rich)
with different hysteresis loops presents odd and even harmonics quite different from the
case of the array with two Fe-rich microwires (see Figure 7b,c). A single, sharp jump of
odd and even harmonics is observed at H0 ≈ Hs. There is also a change in the odd and
even harmonics in the weak (H0 < Hs) field region (see Figure 7b,c).

Further tuning of harmonic spectra is observed in the array consisting of three
Fe74B13Si11C2 and one Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 microwires (see Figure 8). The hys-
teresis loop of such array, consisting of three magnetically bistable microwires and one
microwire with inclined hysteresis loop, is essentially nonlinear and has a complex shape
(see Figure 8a).
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Figure 8. Hysteresis loops of four-wires system consisting of three Fe74B13Si11C2 microwires and a Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6

microwire (a); odd and even harmonics vs. H0 are given in (b,c), respectively. The schematic picture of the microwires array
is provided in the inset of (c). Reprinted with permission from [51].

Basically, the hysteresis loop observed in low H0 region is similar to those of a single
Co-rich microwire (see Figure 8a). The superposition of a linear hysteresis loop and three
rectangular hysteresis loops with three Barkhausen jumps is observed with increasing H0
(see Figure 8a).
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The harmonic spectra also reflect the multistep magnetization process of the array
consisting of four microwires with different hysteresis loops with regions of gradual
changes and abrupt jumps (see Figure 8b,c).

Thus, the use of arrays consisting of magnetic microwires allows us to create a complex
and unique spectra of magnetic harmonics in magnetic microwires.

One of the main features of magnetically bistable amorphous microwires is that such
microwires behave similarly to single-domain magnets. Such behavior is linked to perfectly
rectangular hysteresis loops of Fe-rich microwires (see Figures 4a and 9a) and the magneto-
static interaction described above. Accordingly, the hysteresis loops of a single magnetically
bistable microwire and of the array of magnetically bistable microwires are substantially
different. In the case of a single Fe65Si15B15C5 microwire and arrays consisting of 2, 5, and
10 Fe65Si15B15C5 microwires, the hysteresis loops are rather different (see Figure 9).
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Figure 9. Hysteresis loops of a single glass-coated Fe65Si15B15C5 amorphous microwire (d = 12.6 µm)
(a) and of arrays consisting of 2 (b), 5 (c), and 10 (d) Fe65Si15B15C5 microwires, dependence of the
hysteresis loop splitting on the distance between Fe65Si15B15C5 microwires in the two-microwires
array (e), and hysteresis loop of the array consisting of two Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 glass-coated
microwires (f). The line in (e) is just a guide to the eyes; (a–e) are reprinted with permission from [55];
(f) is reprinted with permission from [50].

The hysteresis loops shown in Figure 9 have been obtained when the microwires in the
array were placed touching each other: the distance between the magnetic nucleuses was equal
to the double glass-coating thickness (7.4 µm). For a single microwire, a single Barkhausen
jump is observed (Figure 9a). An increase in the number of microwires causes an increase in the
number of jumps (see Figure 9b–d) that correlates with the number of microwires.

As discussed above, the different Hs-values of the two jumps are explained by the
influence of the stray field on the magnetization reversal in the array of a pair of mi-
crowires. The hysteresis loop splitting, ∆H, defined as the difference between Hs2 and
Hs1, depends on the distance between the microwires (see Figure 9e). At a distance of
about 2 mm, such splitting becomes negligible (Figure 9e). It is worth mentioning that such
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magnetostatic interaction in Co-rich microwires with inclined hysteresis loops is not quite
pronounced. Thus, the presence of the second Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 microwire in
two Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 microwires array causes a slight increase in the effective
anisotropy field (see Figure 9f). The hysteresis loop shape remains almost the same.

3.3. Multi-Bit Magnetic Tags Applications of Magnetic Microwires

Hysteresis loops with several sharp jumps, observed in magnetically bistable mi-
crowire arrays, seem to be suitable for multi-bit magnetic tags. Such magnetic tags, con-
sisting of several magnetically bistable microwires and presenting an overall hysteresis
loop with several Barkhausen jumps, have been proposed for the magnetic codification
method [25,27,56]. In such a magnetic tag, exposed to an AC magnetic field, each particular
microwire is remagnetized in a different magnetic field, giving rise to an electrical signal
on the detection system (see Figure 10).
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Figure 10. Schematic representation of the encoding system based on magnetic bistability of the
microwires. Reprinted with permission from [56].

In a magnetic tag consisting of magnetically bistable microwires of the same compo-
sition, the hysteresis loop splitting, among other factors, is substantially affected by the
distance between microwires. Therefore, multi-bit magnetic tags consisting of magnetically
bistable microwires with rather different switching fields are considered more suitable for
such application [25,56]. The extended range of switching fields provides a possibility to
use a large number of combinations for magnetic codification.
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A variety of Hs-values can be achieved either by compositional Hs dependence or by
the effect of internal stress or thermal treatments on Hs.

The influence of chemical composition on the Hs-values of amorphous microwires is
originated by the compositional dependence of λs: a decrease in λs is observed in FexCo1−x
amorphous alloys upon doping Fe-rich microwires with λs ≈ 40 × 10−6 for x = 1, by Co up
to λs ~ −(5−3) × 10−6 for x = 0 [57–59]. Similarly, a decrease in λs is reported in FexNi1−x
alloys with an increase in Ni content [59,60].

A tendency of decrease in coercivity in FexCo1−x-based amorphous microwires can
be appreciated from Figure 4, where the coercivity, Hc, drops from Hc ≈ 100 A/m for
Fe75B9Si12C4 (λs ≈ 40 × 10−6) up to Hc ≈ 5 A/m for Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 mi-
crowire (λs ≈ −0.5 × 10−6). The other example illustrating Hs compositional depen-
dence is shown in Figure 11, where hysteresis loops of Fe77.5Si7.5B15 (λs ≈ 38 × 10−6),
Fe47.4Ni26.6Si11B13C2 (λs ≈ 20 × 10−6), and Fe16Co60Si13B11 (λs ≈ 15 × 10−6) microwires
are shown.
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Figure 11. Hysteresis loops of as-prepared Fe77.5Si7.5B15 (a), Fe47.4Ni26.6Si11B13C2 (b), and
Fe16Co60Si13B11 (c) microwires. Reprinted with permission from [60]. Copyright © 2021 MDPI
Publishing, Open Access.

The lower coercivity of Fe47.4Ni26.6Si11B13C2 and Fe16Co60Si13B11 microwires as com-
pared with Fe77.5Si7.5B15 microwire correlates with lower λs-values (see Figure 11).

However, even for microwires with fixed chemical composition, the Hs-values can be
tuned by the internal stresses, σi, values. The main (though, not the unique) origin of the
internal stresses in glass-coated microwires is the different thermal expansion coefficients
of the metallic nucleus and the glass coating [36,61–64]. Accordingly, it is assumed (and
experimentally confirmed) that σi-magnitude inside the metallic nucleus is affected by
the ρ-ratio between the metallic nucleus diameter, d, and the total microwire diameter,
D (ρ = d/D) [36,62–64].

As can be appreciated from Figure 12, even for the same microwire composition, Hs
can be modified by almost an order of magnitude (from 85 to 630 A/m) by changing the
ρ-ratio. The correlation of Hs and ρ-ratio is evidenced by the Hs(ρ) shown in Figure 12e.
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2021 MDPI Publishing, Open Access.

The main problem with magnetic tags consisting of microwires with different d-values
is that the magnetic moments of microwires with different d-values are rather different.
Accordingly, the alternative approach lies in the use of heat treatment allowing internal
stresses relaxation keeping the magnetization values the same.

For the Fe75B9Si12C4 microwires, annealing is not very effective: annealing allows
only a slight Hs decrease (see Figure 3a–c).

Annealing is the more effective route for Hs tuning in Fe62Ni15.5Si7.5B15 and Fe49.6Ni27.9
Si7.5B15 microwires with positive magnetostriction (λs ≈ 27 × 10−6 and 20 × 10−6, respec-
tively) [61,65,66].

As-prepared Fe62Ni15.5Si7.5B15 and Fe49.6Ni27.9Si7.5B15 microwires present rectangular
hysteresis loops (see Figures 13a and 14a), as expected for microwires with positive λs-values
(about 27 × 10−6 and 20 × 10−6, respectively). The rectangular character of the hysteresis
loop is maintained for all annealed Fe62Ni15.5Si7.5B15 and Fe49.6Ni27.9Si7.5B15 microwires (at
Tann = 410 ◦C) (see Figures 13 and 14). However, a remarkable increase in Hs is observed in
both Fe–Ni-based microwires upon annealing (see Figures 13b–d and 14b–d).
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Figure 13. Hysteresis loops of as-prepared (a) and annealed for 4 min (b), 16 min (c), and 32 min (d)
Fe62Ni15.5Si7.5B15 microwires.
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The magnetic hardening, observed in Fe–Ni-based amorphous microwires upon
annealing, has been explained considering the effect of DW stabilization [60,65–68]. The
mechanism of such DW stabilization is linked to directional atomic pair ordering along
a preferred magnetization direction during the annealing and is usually observed for
amorphous alloys with two or more ferromagnetic elements [60]. The nonmonotonic
Hc(tann) dependence (see Figure 14e) was explained in terms of the simultaneous effect of
internal stresses relaxation (allowing a decrease in Hc) and DW stabilization (leading to an
increase in Hc) [65,66].

The observed possibility to tune coercivity of Fe–Ni-based microwires by annealing
makes them suitable for multi-bit tags applications.

Even a wider range of coercivities can be achieved by partial or complete devitrification
of amorphous microwires. The main attractive feature of nanocrystalline materials is their
magnetic softening upon nanocrystallization [17,60]. Such magnetic softening is commonly
attributed to the mixed amorphous nanocrystalline (average grain size of 10–15 nm) structure
of properly annealed amorphous Fe-based alloys doped by Cu and Nb [17,60,69]. Such
nanocrystalline FeSiBCuNb alloys are commonly known as Finemet [60,69]. More recently,
another family of nanocrystalline FeCoB-M-Cu (Hitperm) alloys has been proposed [69].

From the viewpoint of tags applications, the main advantage of nanocrystalline alloys
is the high saturation magnetization [60,69–74].

As shown in Figure 15, as-prepared Finemet-like and Hitperm-like glass-coated
microwires also present perfectly rectangular hysteresis loops. In the present case, the
Fe38.5Co38.5B18Mo4Cu1 microwire presents a nanocrystalline structure in the as-prepared
state [70,71]. The advantage of as-prepared nanocrystalline materials is that they can
present better mechanical properties [70,72]. On the other hand, a rectangular hystere-
sis loop can be observed in nanocrystalline microwires devitrified by annealing of an
amorphous precursor [70,74]. Thus, a rectangular hysteresis loop with Hc ≈ 2000 A/m
is observed in Fe71,8Cu1Nb3,1Si15B9,1 microwire (ρ = 0.282) annealed at Tann = 700 ◦C (see
Figure 16a).

In several cases, partial devitrification also allows to obtain peculiar step-wise hystere-
sis loops [74,75]. Such two-jump-like hysteresis loop observed in Fe71,8Cu1Nb3,1Si15B9,1
microwire (ρ = 0.467) (see Figure 16b) has been explained by mixed amorphous—crystalline
(bi-phase) structure [74].
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Figure 15. Hysteresis loops of as-prepared Fe70.8Cu1Nb3.1Si14.5B10.6 (ρ = 0.38) (a) and
Fe38.5Co38.5B18Mo4Cu1 (ρ = 0.6) (b) microwires. Adapted from [70,71], respectively.



Chemosensors 2021, 9, 100 17 of 22

Chemosensors 2021, 9, x FOR PEER REVIEW 16 of 21 
 

 

The observed possibility to tune coercivity of Fe–Ni-based microwires by annealing 
makes them suitable for multi-bit tags applications. 

Even a wider range of coercivities can be achieved by partial or complete devitrifi-
cation of amorphous microwires. The main attractive feature of nanocrystalline materi-
als is their magnetic softening upon nanocrystallization [17,60]. Such magnetic softening 
is commonly attributed to the mixed amorphous nanocrystalline (average grain size of 
10–15 nm) structure of properly annealed amorphous Fe-based alloys doped by Cu and 
Nb [17,60,69]. Such nanocrystalline FeSiBCuNb alloys are commonly known as Finemet 
[60,69]. More recently, another family of nanocrystalline FeCoB-M-Cu (Hitperm) alloys 
has been proposed [69]. 

From the viewpoint of tags applications, the main advantage of nanocrystalline al-
loys is the high saturation magnetization [60,69–74]. 

As shown in Figure 15, as-prepared Finemet-like and Hitperm-like glass-coated 
microwires also present perfectly rectangular hysteresis loops. In the present case, the 
Fe38.5Co38.5B18Mo4Cu1 microwire presents a nanocrystalline structure in the as-prepared 
state [70,71]. The advantage of as-prepared nanocrystalline materials is that they can 
present better mechanical properties [70,72]. On the other hand, a rectangular hysteresis 
loop can be observed in nanocrystalline microwires devitrified by annealing of an 
amorphous precursor [70,74]. Thus, a rectangular hysteresis loop with Hc ≈ 2000 A/m is 
observed in Fe71,8Cu1Nb3,1Si15B9,1 microwire (ρ = 0.282) annealed at Tann = 700 °C (see Fig-
ure 16a). 

-200 -100 0 100 200

-1.0

-0.5

0.0

0.5

1.0

M
/M

0

H(A/m)  

-600 -300 0 300 600

-1.0

-0.5

0.0

0.5

1.0

H (A/m)

M
/M

0 

 

 
(a) (b) 

Figure 15. Hysteresis loops of as-prepared Fe70.8Cu1Nb3.1Si14.5B10.6 (ρ = 0.38) (a) and 
Fe38.5Co38.5B18Mo4Cu1 (ρ = 0.6) (b) microwires. Adapted from [70,71], respectively. 

-8000 -4000 0 4000 8000

-1

0

1

-8000 -4000 0 4000 8000

-1

0

1

 M
/M

0

ρ=0.282

H(A/m)

ρ=0.467

 
(a) (b) 

Figure 16. Hysteresis loops of Fe71,8Cu1Nb3,1Si15B9,1 microwires with ρ = 0.282 (a) and ρ = 0.467 (b)
annealed at 700 ◦C. Adapted from [74].

Accordingly, an alternative route allowing to avoid the problems with high-precision
tag design is the development of partially devitrified microwires presenting multi-step
hysteresis loops [74–76].

The second magnetic phase can also be created on the glass shell. Accordingly, bimagnetic
glass-coated microwires consisting of glass-coated microwire surrounded by an external
magnetic microtube have been reported [77,78]. However, such technology requires one
more technological process related to precise sputtering or electroplating of the magnetic
microtube [77,78]. Considering thousands of security systems and millions of tags required
for such applications on a daily basis, such a technological scheme can be challenging.

The above-described magnetostatic interaction between various microwires requires cer-
tain precision and special attention to magnetic multi-bit tag design. Accordingly, appropriate
digital algorithms have been developed for the multi-bit tag recognition [26]. Additionally,
the magnetization process of microwire arrays with different geometrical configurations has
been analyzed theoretically by considering dipole–dipole interaction [79–81].

On the other hand, magnetically hard and semihard microwires are required for the
development of smart markers for the electronic article surveillance [82]. A semihard
magnetic material is proposed as a “deactivating element”. When the deactivating element
is magnetized, it creates a stray magnetic field that saturates the neighboring soft magnetic
element, making the soft magnetic element undetectable by the interrogator used in the
interrogation zone.

One of the routes allowing magnetic hardening is the use of Fe–Pt-based microwires
and proper annealing, allowing the formation of an L10-type superstructure [83]. Elevated
coercivity, Hc ≈ 40 kA/m, has been achieved in properly annealed Fe50Pt40Si10 microwires
upon devitrification of the amorphous precursor (see Figure 17).

Several alternative routes allowing magnetic hardening include controllable crys-
tallization of Co- or Fe-rich microwires by Joule heating [84,85], by directional crystal-
lization [86], by conventional furnace annealing [74], or by employing novel chemical
compositions [87].



Chemosensors 2021, 9, 100 18 of 22

Chemosensors 2021, 9, x FOR PEER REVIEW 17 of 21 
 

 

Figure 16. Hysteresis loops of Fe71,8Cu1Nb3,1Si15B9,1 microwires with ρ = 0.282 (a) and ρ = 0.467 (b) 
annealed at 700 °C. Adapted from [74]. 

In several cases, partial devitrification also allows to obtain peculiar step-wise hys-
teresis loops [74,75]. Such two-jump-like hysteresis loop observed in Fe71,8Cu1Nb3,1Si15B9,1 
microwire (ρ = 0.467) (see Figure 16b) has been explained by mixed amor-
phous-–crystalline (bi-phase) structure [74]. 

Accordingly, an alternative route allowing to avoid the problems with 
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Provided routes for the design of nonlinear hysteresis loops allow us to consider amor-
phous and devitrified Fe-, Co–Fe-, Fe–Ni-, and Fe–Pt-rich microwires as quite promising
candidates for the use in security and electronic surveillance applications. We were able to
tune the switching field of magnetically bistable microwires, by chemical composition of
the metallic nucleus, by the internal stresses value (through the glass-coating thickness),
by heat treatment as well as by magnetostatic interaction between magnetic microwires
(through the magnetic field dependencies of even and odd harmonics). A predictable
design of nonlinear hysteresis loops can serve as a good basis for magnetic tags application
using glass-coated microwires.

4. Conclusions

We overviewed the properties of soft magnetic glass-coated microwires and the routes
allowing to obtain nonlinear hysteresis loops either by different postprocessing or by
using magnetostatic interaction between the microwires, making them quite attractive for
electronic article surveillance and security applications.

The feasibility studies show that the fifth harmonics of 3 cm long typical Fe-rich
microwire can be detected at a distance up to 25 cm.

We showed that the presence of neighboring microwire (either Fe- or Co-based)
significantly affects the hysteresis loop of the whole microwires array. In a microwires
array containing magnetically bistable microwires, we observed splitting of the initially
rectangular hysteresis loop with a number of Barkhausen jumps correlated with the number
of magnetically bistable microwires. Essentially, nonlinear and irregular hysteresis loops
have been observed in mixed arrays containing Fe- and Co-rich microwires. The observed
nonlinear hysteresis loops allowed to increase the harmonics and to tune their magnetic
field dependencies.

Nonlinear hysteresis loops have been also observed upon devitrification of
amorphous microwires.

On the other hand, several routes allowing to tune the switching field by either
postprocessing or modifying the magnetoelastic anisotropy have been reviewed.

The observed unique combination of magnetic properties, together with thin dimen-
sions and excellent mechanical and anticorrosive properties, provide excellent perspectives
for the use of glass-coated microwires for security and electronic surveillance applications.
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