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Abstract: This review illustrates various types of polymer and nanocomposite polymeric based sen-
sors used in a wide variety of devices. Moreover, it provides an overview of the trends and challenges
in sensor research. As fundamental components of new devices, polymers play an important role
in sensing applications. Indeed, polymers offer many advantages for sensor technologies: their
manufacturing methods are pretty simple, they are relatively low-cost materials, and they can be
functionalized and placed on different substrates. Polymers can participate in sensing mechanisms
or act as supports for the sensing units. Another good quality of polymer-based materials is that
their chemical structure can be modified to enhance their reactivity, biocompatibility, resistance to
degradation, and flexibility.

Keywords: polymer-based sensors; natural polymers; synthetic polymers; polymer inclusion mem-
branes; nanocomposite polymeric based materials UV-vis sensors; color analysis; humidity sensors;
electrochemical devices; MIP-based sensors; wearable sensors

1. Introduction

A wide range of recently developed materials are polymers, and due to their different
physico-chemical properties, they are useful in several applications. Currently, interest
is devoted to polymers since they can change their properties (reversibly or irreversibly)
under external inputs (for example, the presence of particular ions or bioactive molecules,
pH, temperature, light radiation, electric or magnetic fields, etc.). Polymers may appear as
solids, solutions, gels, nanoparticles, or films. These materials can be adapted to specific
tasks through their appropriate modification or synthesis to develop sensor devices (a
device is a piece of equipment or a mechanism designed to serve a special purpose or
perform a special function, so in this review, we used the term device as a “synonymous”
of a solid-phase chemical sensor).

The literature of the last few years has reported several works on chemical sensors.
Recent examples of polymer-based sensors have been related to human health monitoring,
food safety, and environmental monitoring were described.

In general, traditional analytical methods required sophisticated instrumentation,
trained personnel, and protocols not adapted for ready use by common people or in
resource-limited areas. Consequently, developing cheap and user-friendly sensors, com-
bined with high sensitivity, is of great importance.

For obtaining sensors and biosensors with better performance, polymer-based tech-
nologies are the most promising. The polymeric materials used in sensor devices in-
clude molecular imprinted polymers (MIP), conducting polymers and their composites,
hydrogels, etc.

The polymer-based materials frequently applied in these kinds of sensors improve the
recognition of target molecules, behave like supports for functionalities immobilization
(e.g., dyes, fluorophores, metal nanoparticles), and by changing their physical or chemical
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characteristics, allow the detection of the target analytes. Another advantage of polymer-
based sensors is the possibility of modifying their chemical properties tuning their reactivity,
biocompatibility, flexibility, and resistance to degradation [1,2].

This review examines polymers in chemical sensing, describing groups of devices
based on different kinds of polymer materials, distinguishing between natural and syn-
thetic polymers.

For each category, we focus on detailing the polymers for different applications,
highlighting the figures of merit of the devices, i.e., sensitivity, detection limit (LOD),
quantification limit (LOQ), selectivity, and stability.

In Figure 1, an overview image is reported.
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2. Natural Polymer-Based Sensors

Natural polymers are macromolecules derived from animals or plants and are em-
ployed in several fields, for example, in aliments, pharmaceutics, cosmetics, and chemistry.
These polymers are economical, tunable, readily available, biodegradable, and biocom-
patible. Unfortunately, they may be degraded by microorganisms, the synthesis is rarely
reproducible, the hydration degree is variable, and metal ions may contaminate the poly-
mer’s surface [3].

Cellulose, hemicellulose, glucomannan, agar, starch, pectin, inulin, rosin, acacia gum
have plant origin, while chitin, chitosan, and alginate have an animal origin [3].

Natural polymers may have different textures depending on the different nature of
the monomers; for example, carboxymethyl cellulose (CMC) is water-soluble thanks to
the hydrophilicity of the monomers when the molecular weight increases, CMC forms a
hydrogel in solution. Cellulose is a polysaccharide insoluble in water, also known as cotton,
when in the ultrapure formulation. Cotton is a fiber used principally in the textile field.
Because of the different reticulation, natural polymers may have different textures, more
fibrous or more hydrogel-like; for this reason, only limited biopolymers are applied in the
sensors field.
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Cellulose is a biopolymer widely used in sensors obtained from wood and straw. This
homopolymer comprises D-anhydroglucopyranose units linked by the (1–4) β-glucosidic
bond (Figure 2) [4].
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Cellulose is colorless, odorless, adsorbent, hydrophilic, and the groups on its surface
are easy to functionalize.

Paper is a convenient cellulose-based material for sensors. Commonly developed
are colorimetric sensors due to the paper’s bright, high-contrast, colorless background,
suitable for well-appreciated color changes.

Alberti et al. [5] described a paper-based sensor for Fe(III) and V(IV) obtained by
functionalization of cellulose with deferoxamine (DFO), a strong chelating agent that forms
stable and colored complexes with these two cations.

The sensor, named DFO-paper, is prepared with a strategy originally proposed by
Takagi et al. [6], consisting firstly of halogenation of the hydroxyling groups, followed by
the reaction with DFO molecules (see Figure 3).
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The sensor’s colorimetric response to Fe(III) or V(V) in solutions allowed the detection
with the naked eye and the quantification of both cations. Indeed, RGB parameters of the
DFO–papers images after exposure to Fe(III) and V(V) solutions, acquired by a desktop
scanner, are employed for metal ions quantification.

Biesuz and colleagues [7–10] developed low-cost colorimetric sensors based on the
Colour Catcher® (CC), a commercial cellulose-based product used to prevent color run in
the washing machine. The CC substrate was functionalized with different dyes to develop
colorimetric devices for some metal ions, sulfur/thiols, and food spoilage detection. For
example, in a recent paper [9], the CC was functionalized with two dyes: Eriochrome Black
T (EBT) and 1-(2-pyridalazo)-2-naphthol (PAN). The first solid phase obtained, named
EBT-CC, can detect Ca(II) and Mg(II), while the solid phase functionalized with PAN can
be used for determining Co(II), Ni(II), and Zn(II). After contact with the cation’s solution,
these sensors change their color (see Figure 4).

The demand for biodegradable packaging films, biosorbents, and disposable sensors
supported the development of new materials obtained from natural sources, mainly agri-
cultural byproducts. Sugarcane bagasse is cellulose-rich waste from the sugar industry, and
it is a great choice for preparing cellulose-based devices. For example, Guo W. et al. [11]
developed a colorimetric device for detecting Ag+ and Cu2+. It is prepared via a one-pot
reaction by grafting the 2,5-dithiourea (DTu) onto bagasse-pulp cellulose. After contact
with metal-ion solutions, this device displays color changes from white to yellow-red or to
light grey in the presence respectively of Ag+ and Cu2+. The advantages of the proposed
sensor are simplicity, rapidity, and good selectivity for Ag+ and Cu2+.
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Nanocellulose obtained from nanofibers, nanocrystalline, or bacterial can be applied
for obtaining disposable sensors. Starting from cellulose fibers of lignocellulosic resources
(i.e., wood and agricultural residues), cellulose nanofibers (CNFs) can be isolated and
purified by distinct mechanical or chemical processes [12].

Chauhan et al. [13] described an optical pH sensor based on a one-pot synthesis of
nanocellulose functionalized with a dye. The nanocellulose is obtained from commercial
microcrystalline cellulose of cotton fibers by hydrolysis with 64% sulfuric acid at 45 ◦C, for
45 min. A Remazol dye [14] is covalently bound to the nanomaterial obtained.

The nanocellulose–dye gave stable suspensions that changed color from orange to
purple after increasing the pH from acid to alkaline. After gluing with adhesive tape, a
piece of the nanocellulose–dye film on a plastic strip, a disposable stick was obtained. It
can sense pH changes reversibly and rapidly.

Another biopolymer widely used is chitosan. This macromolecule is a polysaccharide
obtained from chitin’s deacetylation, a molecule present in shellfish’s exoskeleton [15].

Chitosan is a polymer with good adhesion properties, film ability, permeability to-
wards water, high mechanical strength, and biocompatibility. Thanks to amines on the
polymer’s surface with pKa = 6.3, chitosan is applied as an ionophore in surface-modified
sensors for anions [16] (Figure 5).
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Xin et al. [17] developed a voltammetric chitosan-modified glassy carbon electrode for
bromide detection in acid solutions (Figure 6).
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Figure 6. pH effect on chitosan. (Adapted with permission from [17], Copiright 2001, John Wiley and Sons).

A strong acid pH is necessary to obtain a good response; indeed, the amino groups
are protonated in the pH range between 1.65–1.92, and they can attract more bromide. The
detected current increases proportionally with the bromide concentrations. The method
was applied for detecting bromide content in cetyltrimethylammonium bromide, tetrabuty-
lammonium bromide, and wastewater, giving satisfactory results.

Darder et al. [18] developed a potentiometric sensor based on chitosan-clay nanocom-
posites to determine CH3COO−, tetraphenylborate, NO3

−, SCN−, Benzoate, Cl, F, Fe(CN)6
3,

Fe(CN)6
4. Chitosan is mixed in various percentages with clay to mitigate its well-known

cations exchange properties. The mixture becomes an anion exchange material by increas-
ing the concentration of chitosan. The system acquired electronic conductivity, adding
graphite particles to the mix. It is important to stress that all the sensor materials are natural
and with a low environmental impact.

In Kurnish et al. [19], the ability of chitosan to bound anions in solutions with low pH
values was exploited to develop an ion-selective electrode (ISE) for chromate. In this case,
chitosan was used as a carrier inside a PVC membrane.

Frequently chitosan is applied for electrode coatings to immobilize biological species.
In this field, Magalhães and Machado [20] prepared a urea potentiometric biosensor based
on urease immobilized on a chitosan membrane. Two electrodes were prepared following
different procedures: (A) urea is immobilized to chitosan by a physical adsorption (B) the
membranes obtained in point A are reticulated with glutaraldehyde. In the first case, the
membrane has a high activity, but the sensor’s lifetime was around one month. In the
second case, the reticulation with glutaraldehyde decreases the enzymatic activity, but the
sensor’s lifetime was around two months.

Nowadays, food safety problems are increasingly consumer concerns. During food
storage, pH and microbes lead to deterioration and spoilage. There is a need for natural
and biocompatible techniques to evaluate food quality. Chitosan itself or combined with
other biomaterials could be applied in developing sensing films to evaluate pH, enzymes,
microbial metabolism, emission of gaseous products of food degradation. These films have
several advantages; they can be small, lightweight, safe, and highly sensitive [21].

Currently, colorimetric sensors are the most popular. For example, in an interesting
paper, [22] methylene blue (MB) was immobilized on a modified chitosan-based polymeric
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film to obtain an indicator of food conditions. The color of the film is blue under enough
content of oxygen dissolved. However, it gradually turns from blue to white when oxygen
is depleted by the microorganism’s metabolism and the concomitant production of reducing
substances. A small piece of the sensor can be inserted on the packaging film’s inner face
with a reference colors scale, so the consumers can directly observe by the naked eye the
food quality.

Colorimetric chitosan-based pH sensors are also developed as indicators of food
quality, safety, and freshness.

Microbial sensors were also promising since microbial growth increases the hazard
to food safety. An interesting paper [23] describes a sensor based on chitosan hydrogel
films with a self-reporting function for β-glucuronidase secreted by E. Coli bacteria. In this
case, the fluorophore 4-methylumbelliferyl-β- D-glucuronide (MUG) and the chromophore
4-nitrophenyl-β-D-glucuronide (PNPG) were used for covalent modify the chitosan hydro-
gels, so obtain the detection of β-glucuronidase and consequently revealing the presence
of E. Coli. The naked eye can observe the color variation from colorless to yellow. This
chitosan-hydrogel-based sensor is promising for food packaging.

Chitosan-based nanocomposite biosensors are emerging tools for determining
biomolecules such as cholesterol, glucose, urea, hydrogen peroxide [24].

A fiber optic sensor for measuring total cholesterol is developed by Mathews et al. [25].
The sensor is obtained by dip-coating a long period grating optical fiber with a thin layer
of chitosan. The results showed the applicability of an LPG fiber optic-based system for the
sensing of cholesterol. The wavelength and the intensity modulation are useful parameters
for applying this sensor in real sample measurements.

Another interesting biosensor was developed by Du et al. [26]: they prepared a
nanostructured chitosan-based electrode for salivary glucose sensing, build by using layer-
by-layer, self-assembly of single-walled carbon nanotubes, chitosan, gold nanoparticles and
glucose oxidase on a screen-printed platinum electrode. Amperometric analyses are used
for quantifying the glucose concentration in both synthetic solutions and saliva samples.
Accuracy is verified by validation with a reference UV method.

An important, conclusive observation is that, when working with biopolymers, the
main problem is the material’s short lifetime. Even if good responses were obtained, the
sensor must be calibrated before each analysis because the system’s features may change
as time passes.

3. Synthetic Polymer-Based Sensors
3.1. Biocompatible Polymers

The term “biocompatible polymers” refers to all those polymeric materials which
present specific characteristics, such as very low toxicity, high stability in biological fluids,
desired mechanical properties and surface chemistry, and biodegradability.

Thanks to their non-toxic nature, the application of these materials has increased
exponentially in the last two decades, in many research fields, like the pharmaceutical
industry, with the creation of drug carriers, and for medical applications such as biocontrol
agents, biodegradable implants, and regenerative medicine [27].

The first example of biocompatible polymers is the naturally-derived ones, like cellu-
lose, chitosan, and agarose (described in paragraph 2). Still, synthetic polymers are a no
less good choice.

One example of synthetic biocompatible polymers is polyhydroxyalcanoates (PHAs),
a biopolymer synthesized by bacteria as a carbon and energy storage [28,29]. They have
emerged as a potential alternative to conventional plastics due to their biodegradability
and sustainable production process, allowing reusing agriculture, food, dairy, or cosmetic
industry waste as a main carbon substrate source. Poly-(R)-3-hydroxybutyrate and poly-3-
hydroxyvalerate are currently two of the main studied polymers in this class (Figure 7).
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The main characteristics of PHAs include thermo-plasticity, hydrophobicity, biodegrad-
ability, and their applications range from being used as coating materials to food packaging,
agricultural sheets, and ink.

In this paragraph, we will present the application of biocompatible polymers in sensors.
The exploration of biopolymer materials is required to attain eco-friendliness and bio-

compatibility, limiting chemical sensors’ application in personal health monitoring [30,31].
For example, polylactic-co-glycolic acid (PLGA, see Figure 8), a copolymer of poly-

lactic acid and polyglycolic acid, is already approved by the FDA as biocompatible and
biodegradable; it has been recently studied as a reactive polymer for humidity sensors.
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Figure 8. Chemical structure of polylactic-co-glycolic acid (Adapted with permission from [31],
available online).

The time of this copolymer degradation depends on the ratio of polylactic acid/
polyglycolic acid: a higher percentage of glycolic acid makes the bio-copolymer more
hydrophilic and incurs rapid biodegradation. PLGA with a 50:50 ratio of the two polymers
presents optimal characteristics since the good hydrophilic properties and the crystalline
structure supports its stability for humidity sensing.

Humidity is one of the fundamental environmental factors. Its measurement is highly
required in various industrial fields, such as agriculture and food production and health
and medical services. This type of device is prepared using all printed methods. The
high-definition interdigitated electrode structure was printed on a flexible polyethylene
terephthalate (PET) substrate, employing silver ink, by reverse offset printing set up;
otherwise, PLGA ink was deposited using spin coating.

One particular application of the humidity sensor is human breathing monitoring,
achieved since this sensor is eco-friendly and biocompatible. Lung epithelial cells were used
to verify the PLGA biocompatibility and evaluate the respiration performance. The sensor
was located under the volunteer’s nose, and impedance measurements were registered.
An increase in humidity ratio value increases the material’s conductivity (decreasing
resistance). Figure 9 shows the mechanism.
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Another application of biopolymers as coating materials is their use for antibody
support on gold surfaces [32] of plasmon resonance sensors to eliminate or minimize
non-specific protein adsorption. This type of sensor is vastly employed as a medical tool
for monitoring protein and biological markers, so stability in complex media like whole
blood is highly required to monitor every disease or event that releases markers in any
biological fluid, like myocardial infarction, using different antibodies on the surface.

Masson et al. [32] studied different biocompatible polymers as substitutes of
carboxymethylated-dextran for antibody binding materials and reduced non-specific pro-
tein adsorption from serum to a level low enough to detect a specific antigen in the media.
Non-specific binding of molecules to the SPR sensor’s surface will cause a signal that will
mask the analytes’ one. This problem has prevented many useful applications of this tool.

The data obtained revealed that the two synthesized biocompatible polymers,
polymethacrylic-acid-co-vinyl-acetate (PMAVA) and orthopyridyldisulfide-
polyethylenglycol-N-Hydroxysuccinimide (OPSS-PEG-NHS, Figure 10, showed the best
results in reducing non-specific protein binding to the surface of the SPR sensor gold
surface. PMAVA reduced the phenomenon by 71%, and OPPS-PEG-NHS reduced it by
67%, both compared to carboxymethylated-dextran, which allowed the sensor to quantify
a selected analyte up to a solid ng/mL concentration.
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Figure 10. Molecular structure of OPSS-PEG-NHS. (Reproduced with permission from [33], avail-
able online).

Another way to achieve biocompatibility is to modify existing polymers, introducing
particular groups that make the material more suitable for the desired biological applica-
tions. For example, nitric oxide-releasing/generating polymers can be used to develop
implantable chemical sensors with enhanced biocompatibility [33,34].

The main problems with the development of reliable in vivo chemical sensor for real-
time clinical monitoring of critically ill patients’ parameters (electrolytes, glucose, etc.) are
cell adhesion, thrombosis, and inflammation, that can produce inaccurate analytical results.

Nitric oxide (NO) is a known inhibitor of platelet activation and adhesion; it is a
promoter of angiogenesis and a mediator of inflammatory response. Polymers, releasing
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or generating NO at their surface, exhibit greater thromboresistance in vivo when put
in contact with flowing blood, as well as a reduced inflammatory response when placed
subcutaneously. Thus, these polymers have the potential to improve the biocompatibility
of implanted chemical sensors.

To date, the two most extensively investigated NO donors polymers for biomedical
applications are S-nitrosothiols (RSNO) and N-diazeniumdiolates (so-called NONOates),
dispersed into plasticized polyvinyl chloride (PVC) and polyurethane (PU) membranes.
These membranes are typically used for preparing potentiometric ion-selective sensors.
The NO-releasing mechanism from N-diazeniumdiolates is proton-driven, and an example
is depicted in Figure 11.
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It is of fundamental importance that the period of NO release matches the device’s
implant lifetime. The molecule release rate is a crucial point, and it must be controlled to
prevent the formation of any cytotoxic reaction product.

In conclusion, biocompatible polymers represent a valid material for sensor produc-
tion due to their biocompatibility, biodegradability, and alternative eco-friendly produc-
tion methods.

3.2. EVOH Polymers

EVOH is a copolymer of ethylene and vinyl alcohol commonly applied in food packag-
ing and pharmaceutic industries thanks to its barrier properties against gases and humidity.
The structure may not be obtained by copolymerizing ethylene and vinyl alcohol monomers
(Figure 12) because the keto–enolic tautomeric equilibrium is shifted to the aldehydic form.
For this reason, the most used synthetic pathway foresees ethylene and vinyl acetate as
monomers with subsequent hydrolysis [35].
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Commercially EVOH is sold in different percentages of ethylene 27%, 32%, 38%,
44%; the different percentage of monomers involves different barrier properties against
gases and different solubility in organic solvents. For example, high ethylene rates in the
structure would make the copolymer highly hygroscopic and, therefore, with low barrier
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properties forming hydrogels [36]. It is important to highlight that the tacticity and the new
functions on the polymer’s surface affect its solubility. The excellent mechanic properties
and the ease of functionalization of the surface make EVOH an optimum candidate for
sensors’ development.

Cui et al. [37] developed a sensor for determining Cu2+ in aqueous solution using
EVOH as a polymeric solid phase. EVOH nanofibers are modified with 4-aminobenzoic
acid, forming EVOH-PABA and then with 1-pyrenecarboxyaldheyde (Py-CHO) (see the
scheme of the process in Figure 13).
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Figure 13. General scheme of the synthesis and the application of the sensor for Cu2+.

The principle of this sensing method is the luminescence quenching by Cu2+. The
nitrogen probably coordinates the metal cation; thus, an electron transfer from the pyrene
to Cu2+ takes place, favoring a non-radiative relaxation. Measurements are purchased in
the presence of Fe3+ and Hg2+ in the solution phase. These cations gave a low quenching
of luminescence. For this reason, the proposed method may be considered selective against
Cu2+ in solution [37].

Magnaghi et al. [38] developed a very interesting innovative polymeric optode based
on EVOH copolymer for high-protein food spoilage. In this study, EVOH was functional-
ized with different dyes (see Figure 14), changing color at different pHs.
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Sensors change color depending on the ambient pH in which they are introduced.
RGB data were collected and analyzed thanks to principal component analysis.

Similarly, Alberti et al. [39] developed a sensor for Fe(III) where EVOH was used
as a solid phase. The copolymer was functionalized with deferoxamine mesylate (DFO)
and 3,4-hydroxypyridinone ligand (KC18) (Figure 15). These ligands can form colored
complexes with Fe(III).
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Figure 15. (A) Deferoxamine (B) 3,4-hydroxipyridinone structures. (Adapted with permission
from [39], open access Creative Common CC licenced 4.0, MDPI).

López-Carballo et al. [40] developed a chromatic sensor for O2 based on blue methy-
lene, glycerol, TiO2, and EVOH. The presence of oxygen must be prevented inside food
packaging in order to preserve the content. The research group developed a sensing solid
phase where TiO2, glycerol, and blue methylene are mixed inside an EVOH matrix. The
obtained material was used to form films and coatings. The sensing mechanism is reported
in the following image (Figure 16).
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Figure 16. Mechanism scheme of the sensor for O2 detection. (Adapted with permission from [39],
open access Creative Common CC licenced 4.0, MDPI).

As evident, the presence of O2 causes the color change of the sensor from blue to white.
Mahato and Adhikari [41] developed an e-tongue to monitor drinking water quality.

It is based on functionalized polymer membrane electrodes. The study aims to compare
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different drinking waters according to the mineral salts content, and data were treated
thanks to the chemometric principal component analysis (PCA) tool. The developed
sensors can detect the change of the surface polarizability by interacting with the analytes
ions with the polymer’s surface. In this study, EVOH was phosphorylated in order to
optimize swelling properties. This copolymer’s surface has polar functional groups that
interact with the drinking water’s dissolved minerals. The sensor’s mechanism is directly
related to the Gouy–Chapman theory of the electrical double layer.

The double-layer at the metallic electrode’s surface is different from that of the elec-
trode surface after modification with the EVOH polymer. In the presence of an ionic
solution, an interaction between ions and the charged surface occurred. This interaction
contributed to the electric potential: the potential varied consequently to the changes in the
solution’s minerals content.

In summary, EVOH can be efficiently used for developing chemical sensors, particu-
larly as support for obtaining extrudable material, which, in principle, is convenient for
practical applications thanks to its ability to be dissolved in hydro-alcoholic mixtures and
applied on flexible substrates by coating or printing procedures.

3.3. Acrylic Polymers

Acrylic polymers pertain to the class of typical polymeric materials. They can be used
in sensors thanks to their versatility since several sensory functionalities can be chemically
bound to their structure, conferring to the obtained materials different properties. The
most important acrylic polymers used for this aim are prepared with esters of methacrylic
or acrylic acid, acrylamide derivatives, and copolymers. Several functionalities can be
anchored to the acrylic moiety to design polymer-based sensors [42].

Garcia et al. developed several fluorescent and colorimetric sensors based on acrylic
polymers for different analytes [43–48]. The strategy consists of preparing a thin film
polymer by radical polymerization of three monomer units: 1-vinyl-2-pyrrolidone (VP)
as the hydrophilic unit, methylmethacrylate (MMA) as the hydrophobic monomer, and a
sensory unit, i.e., a monomer with a reactive side moiety properly designed. For example,
in the most recent paper, ninhydrin-based colorimetric polymer for monitoring chronic
human wounds’ evolution was presented (see Figure 17) [48].
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The kit consists of a colorimetric polymer film able to change its color after contact
with amino acids. The kit lets quantify a total amino acid concentration by analyzing the
sensory film’s color parameters (RGB) obtained from a smartphone’s photos. With this
simple equipment, the amino acid concentration of chronic human wounds of 34 patients
was determined. The author also demonstrated a correlation between the amino acid
concentration associated with protease activity and the evolution of the wound’s diagnoses.
This device can help diagnose chronic human injuries, providing an analytical method not
affected by subjective estimation.

A pH polyacrylate-based sensor is developed by Chowdhury et al. [49]. In this
study, polyacrylic acid (PAA) is synthesized by free-radical polymerization in aqueous
solutions under ultrasound. The employment of ultra-sound allows a robust and green
polymerization. PAA is then used as a capping agent to synthesize AgNPs without any
other reducing agents or UV/gamma radiations. The Ag-PA sol obtained is applied for
sensing pH by the naked eye. This work is an example of a low-cost pH sensor based on a
colorimetric smart polymer of practical utility.

Another interesting study reports the development of Sc(III) polyacrylic-based opto-
electronic humidity sensor [50]. Nanostructured scandium polyacrylate is deposited on flat
borosilicate substrates to study the sorption/desorption of humidity at room temperature.
Figure 18 shows the humidity sensing mechanism; in particular, chemosorption and less
bending of light are verified in a less humid region. Conversely, physisorption and greater
bending of light are observed in a high humid region.

Chemosensors 2021, 9, x FOR PEER REVIEW 14 of 28 
 

 

The kit consists of a colorimetric polymer film able to change its color after contact 

with amino acids. The kit lets quantify a total amino acid concentration by analyzing the 

sensory film’s color parameters (RGB) obtained from a smartphone’s photos. With this 

simple equipment, the amino acid concentration of chronic human wounds of 34 patients 

was determined. The author also demonstrated a correlation between the amino acid con-

centration associated with protease activity and the evolution of the wound’s diagnoses. 

This device can help diagnose chronic human injuries, providing an analytical method 

not affected by subjective estimation. 

A pH polyacrylate-based sensor is developed by Chowdhury et al. [49]. In this study, 

polyacrylic acid (PAA) is synthesized by free-radical polymerization in aqueous solutions 

under ultrasound. The employment of ultra-sound allows a robust and green polymeri-

zation. PAA is then used as a capping agent to synthesize AgNPs without any other re-

ducing agents or UV/gamma radiations. The Ag-PA sol obtained is applied for sensing 

pH by the naked eye. This work is an example of a low-cost pH sensor based on a colori-

metric smart polymer of practical utility. 

Another interesting study reports the development of Sc(III) polyacrylic-based opto-

electronic humidity sensor [50]. Nanostructured scandium polyacrylate is deposited on 

flat borosilicate substrates to study the sorption/desorption of humidity at room temper-

ature. Figure 18 shows the humidity sensing mechanism; in particular, chemosorption 

and less bending of light are verified in a less humid region. Conversely, physisorption 

and greater bending of light are observed in a high humid region. 

 

Figure 18. Humidity sensor’s sensing mechanism. The picture shows, for less humid regions, 

chemisorption and less bending of light. For high humid regions, physisorption and greater bend-

ing of light were observed. (Adapted with permission from [50], Copyright 1969, IEEE) 

Figure 18. Humidity sensor’s sensing mechanism. The picture shows, for less humid regions,
chemisorption and less bending of light. For high humid regions, physisorption and greater bending
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The sensor showed a sensitivity value of 2.1 µW/%RH with 89% of reproducibility;
response and recovery times of the sensor are at 25 and 155 s, respectively. It is promising
as a very efficient humidity sensing device.

3.4. Molecular Imprinting Polymers (MIPs)

Molecular imprinting consists of the formation of synthetic receptors in a polymer
by a template-induced method. Specific recognition sites obtained using the molecular
imprinting process possess excellent properties such as high affinity, specificity, robustness,
and economical production, making them interesting alternatives to natural receptors. En-
hancements in nanotechnology and polymer science have contributed to the advancement
of molecularly imprinted polymer (MIP) sensors’ performance.

Molecular recognition is essential in biological processes. At present, it is the focal
point of several pieces of research due to its importance in techniques such as sensing,
separations, and catalysis. Natural systems produce antibodies against a range of antigens;
however, the use of such receptors in chemical processes encounters numerous problems,
such as sensitivity to environmental conditions and high cost. Modern sensor research
aims to develop synthetic receptors able to mimic the natural antibody−antigen interaction
with similar sensitivity and specificity.

The molecular imprinting process consists of the formation, in a polymer, of molecular
recognition sites obtained by performing the synthesis in the presence of the target analyte
that acts as a template. Connections between the template and functional monomers are
retained in their arrangement during the polymerization and stabilized by the polymer’s
crosslinking. The resulting MIP is consequently able to recognize the target analyte in the
template-derived sites selectively [51,52].

Figure 19 shows a scheme of the molecularly imprinted polymer preparation [53].
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Molecular imprinting polymers can be prepared for several templates such as enzymes,
proteins, bacteria, viruses, metal ions, toxins, etc. Thanks to their perfect recognition sites,
they are promising materials, especially in sensor devices.

MIPs-based sensors are capable and cost-effective devices for biomolecules. They can
be applied in different techniques, including electrochemical, optical, and piezoelectric
sensing [53].
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Electrochemical sensors are based on the interaction between the analyte and a recep-
tor on an electrode’s surface. These devices employ different electroanalytical techniques.
Commonly measured properties are the potential at zero current (potentiometry), the cur-
rent vs. potential variations (voltammetry), the current at a fixed potential (amperometry);
otherwise, conductivity, and capacitance or impedance variations.

A current trend in electrochemical MIPs-based sensors is the employment of micropar-
ticles and nanoparticles (NPs) or nanostructured coatings.

For example, in an interesting work [54], a voltammetric sensor for theophylline is pro-
posed, using sol-gel immobilized molecularly imprinted polymer particles. Theophylline
is a methylxanthine alkaloid of the purine family. It can be found in cocoa beans, teas, some
beverages, and plant material; its structure is analog to caffeine and theobromine. For over
seventy years, it has been used to treat asthma and chronic pulmonary disease, thanks to
its low cost and large availability. In this paper, a theophylline-imprinted polymer incorpo-
rated in a voltammetric sensor is described. Using the sol-gel technique, microspherical
and macroporous MIP particles are immobilized together with graphite (the conducting
medium) on a carbon electrode’s surface. Differential pulse voltammetry is applied as a
voltammetric technique to quantify theophylline at concentrations low to 1 µM, similar or
more down to the values reported for other electrochemical methods.

Another unusual but promising work [55] proposed a novel duplex MIP-based sensor
for metronidazole detection. Metronidazole (MNZ) is a synthetic antiprotozoal drug firstly
introduced in 1960 for medical practice. In particular, it is an antibiotic used to treat a wide
range of infections. It works by blocking the growth of some bacteria and parasites. In
this study, the sensor is based on a novel duplex molecularly imprinted polymer (DMIP),
deposited on a carbon paste electrode (CPE). The DMIP film is comprised of two layers: one
of a conductive polymer and the second of an imprinted polysiloxane. Initially, a conductive
film of poly(anilinomethyltriethoxysilane) is electrodeposited on the surface of CPE. The
polymer’s triethoxysilyl groups are hydrolyzed with 3-aminopropyltriethoxysilane, the
functional monomer, tetraethyl orthosilicate, the crosslinker, in the presence of the template
MNZ, forming a MIPS film over the conductive layer. The so obtained DMIP modified
CPE is used for MNZ determination in pharmaceutical and biological samples applying
differential pulse voltammetry (DPV). The sensor showed high sensitivity, selectivity, and
pretty good accuracy.

Over the recent years, there is an evident increase of MIP-based sensors applied to
biological samples. One example reported a cocaine potentiometric MIP nanoparticle-
based sensor [56]. Cocaine is one of the most popular recreational drugs. Its abuse causes
dangerous side-effects such as organ damage, anxiety, and cardiac arrest, in addition to
economic and social impacts. Consequently, it is really important to develop sensitive
and easy-to-use methods for cocaine detection, particularly for medical and forensic pur-
poses. The potentiometric sensor developed is based on molecularly imprinted polymer
nanoparticles (nanoMIPs) obtained by a solid-phase imprinting technique. In particular,
nanoMIPs prepared with acrylamide as a functional monomer demonstrated the highest
yield and affinity to cocaine, so they were selected for sensor development. For designing
the ion-selective membrane of the electrode, the nanoparticles were incorporated within a
PVC matrix. The sensor can determine cocaine in blood serum samples in the range of 1
nM–1 mM concentrations.

In a recent research [57], a temperature-sensitive electrochemical MIP-based sensor
for the detection of bovine serum albumin (BSA) was proposed. Namely, the biosensor is
based on a thermo-responsive hydrogel film obtained by free radical polymerization on a
glassy carbon electrode’s surface. The BSA sensing is due to a reversible structural change
of the MIP after applying an external temperature stimulus. In particular, sorption and
desorption processes have been observed by cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS) of the electrochemical probe [Fe(CN)6]3−/4−. This BSA
sensor showed high selectivity, stability, with good recovery and reproducibility.
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Moreover, MIP-based sensors are compliant with disposable plastic fiber optics and
screen-printed electrodes (SPEs).

About these topics, Pesavento and co-workers recently proposed a MIP-based electro-
chemical sensor for 2-furaldehyde (2-FAL) detection in beverages [58]. The detection bases
on the reduction of 2-FAL sorbed on the MIP layer in contact with the working electrode of
a screen-printed cell. The peak current signal (ip) measured by square wave voltammetry
(SWV) is directly proportional to the 2-FAL concentration. The good sensitivity and so the
detection limit (LOD) of about 2.5 µM, was successfully improved by applying the design
of experiments (DoE) approach for selecting the best SWV conditions.

Furthermore, a completely different transduction principle was exploited to study
the binding properties of the same MIP for 2-FAL, i.e., a platform based on the optical
phenomenon of the SPR [59]. For preparing the MIP-SPR sensor, a D-shaped plastic optical
fiber (POF) with a planar surface is prepared by erasing the cladding and partially the core.
Over this POF was deposited a multilayer of MIP. The platform is suitable for investigating
the binding properties of the MIP since the signal, namely the variation of the resonance
wavelength (λ shift), occurs in response to the bind between the 2-FAL and the MIP sites.
Indeed, it is due to the refractive index variation of the MIP layer. Also, the possibility of
performing single drop measurements is a good aspect for real sample analysis. 2-FAL
determination in fermented beverages is becoming a crucial task, mostly for the effects of
furans on the flavor of food and their toxicity.

About MIPs-based optical sensors, we can distinguish two categories: MIP-affinity
sensors and optoelectronic MIP sensors.

In the first case, the devices can detect analytes with optical properties (for example,
absorbance, fluorescence, refractive index. The binding analyte/MIP’s site produces an
optical change, such as an increase of absorbance at a defined wavelength or a fluorescence
quenching, or a refractive index variation. A typical example of this category of optical
MIP sensing is that just above described [59].

For the second category sensors, the mechanism bases on the presence of monomers
with optical properties, able to sense changes in their surroundings and respond to the
analyte’s presence. An example is an optical fiber fluorescent chemical sensor for cocaine
developed by Wren and co-workers [60]. A rationally designed fluorophore was synthe-
sized, and then it was introduced into a molecularly imprinted polymer, so obtaining an
optical fiber fluorescent probe. The change of the emitted fluorescence is related to the
concentration of cocaine in the sample. A good limit of detection of about 1 µM makes
this sensor promising and builds on develops in a new direction by defining a rapid and
low-cost method. It may be a help for forensic analysis of drugs.

Concluding, we have described some MIPs-based electrochemical and optical sensors
highlighting the applications to real samples. MIPs went further to be a simple proof of
concept. The challenge now is to increase the robustness, scale up the production, and find
a suitable market.

3.5. Conducting Polymers

Conducting polymers are characterized by their capacity to delocalize electrons thanks
to the π structure of the polymer chain. In 1972 MacDiarmid, Shirakawa and Heeger
showed for the first time that polyacetylene could turn into a conducting polymer when
doped with Br2 and I2 [61]. This innovation was rewarded with the Nobel prize for
chemistry in 2000. Conducting polymers has several advantages; for example, they show
metallic and semiconducting properties by doping. The materials can combine electronic
and plastic properties. They can be modified, solubilized in organic solvents, and printed
with low-cost procedures. Obviously, there are also some disadvantages; for example,
they do not have long-term stability. Thanks to their behaviors, the application fields are
various: supercapacitor, nano-coatings, catalysis, biomedical, and sensors [62]. The most
used conducting polymers are polyacetylene (PA), polyaniline (PANI), polypyrrole (PPy),
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polythiophene (PTH), poly(para-phenylene) (PPP), poly(phenylenevinylene) (PPV), and
polyfuran (PF) (see Figure 20).
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In this section, we discuss the application of conducting polymers in sensors. Thanks
to their redox behavior, conducting polymers are used for electrochemical sensing to detect
gases. To understand how the sensor works, we have to focus on the different kinds of
polymer dopings. Doping may be p-type or n-type; both configurations may turn the
polymer from a semiconducting material to a conducting. In p-type, electrons flow from
the HOMO of the polymer chain to the LUMO* of the electron with-drawing doping agent.
This transition generates holes in the polymer, which will become electron-poor. In n-type
doping, electrons flow from the HOMO of the doping agent to the LUMO* of the polymer,
which will become electron-rich. The polymer chain may also be oxidized or reduced with
electrochemical techniques by imposing the appropriate potential.

When polyacetylene is not doped, it behaves like a semiconductor material with
a bandgap of 3.16 eV; actually, when p-type doped, the polymer chain is oxidized and
twists the configuration from benzoid to quinoid. The polymer doping generates a new
band structure with a bandgap of 1.4 eV, turning the polymer from a semiconductor to a
conductor. The instrumental setups may be several, for example, amperometric, transistor
and diode sensor, piezoelectric crystal sensor, optic sensor, but the most widely used is the
chemoresistor because it gives rapid responses and LOD is under 10 ppm [63].

When the oxidized polymer (p-type) met a reducing agent (CO, NH3, CH4, H2, H2S,
acetone, ethanol), the resistivity increases; vice versa if the surface of the polymer reacts
with an oxidating agent (NOx, CO2, SO2, O2, O3) the resistivity decreases [62,64].

One of the most studied conducting polymer-based gas sensors is for NH3. Korent
et al. [65] described in 2021 a simple and economical sensor for NH3 based on the function-
alization of a screen printed electrode (SPE) with polyaniline (PANI). In this work, the SPE
is modified with polyaniline electrochemically polymerized in the presence of HCl. The
collected signal is given from the redox reaction between the oxidized polymer substrate
(PANIH+) and the gas; this exchange of electrons generates electric flow:

PANIH++NH3 � PANI + NH+
4

The redox activity of conducting polymers is often used in electronic noses. Electronic
noses are arrays able to simulate the olfactive human system, which can detect and identify
an odor. All information is sent to the brain, which must attribute every signal to a
compound. Like the brain, the electronic nose must attribute every signal to a compound
contained in a mixture of molecules. This data analysis is possible thanks to pattern
recognition which is an algorithm able to split the data coming from the sensor; an example
is the principal component analysis (PCA). Before electronic noses, the only method able to
detect and identify a mixture of gases was GC/MS; this method is very expensive, needs
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qualified personnel and the response time was very long. Sensors made with conducting
polymers are chipper than GC/MS. The assembling of the device can be automated, for
example, with the 3D printing technology, and the response time is in the range of few
seconds [66,67].

Conducting polymers are also used for biosensors. Forzani et al. [68] studied an
electrochemical sensor for glucose using glucose oxidase (GOx). The array is made of
polyaniline nano junctions where the monomer is electropolymerized in the presence of
poly(acrylic acid). Then the glucose oxidase is fixed on the surface of the polymer. GOx
promotes glucose oxidation to gluconolactone, and the enzyme is reduced to GOx(FADH2).
The reduced enzyme reacts with the oxygen present in the solution forming GOxFAD and
H2O2. In the last step, the peroxide oxidizes the conducting polymer [68]:

glucose + GOx(FAD) → gluconolactone + GOx(FADH2)
GOx(FADH2) + O2 → GOx(FAD) + H2O2

PANIred+H2O2 → H2O + PANIox

The oxidized polymer shows a decrease in resistivity when increasing the glucose
concentration. The sensor’s response time is around 1 s. This very fast response is possible
thanks to the polymer nano junctions’ nanostructure and is necessary for
real-time determinations.

An interesting application of conducting polymers was studied by Swager et al. [69].
They assembled a sensor for Na+ using modified polythiophene as conducting polymer.
In the first part of this work, the polythiophene chain is modified with a crown ether able
to complex the alkaline metals. When the modified polymer does not bound the cations,
the polythiophene backbone maintains the planarity, and the charge is delocalized in the π

system. When the crown ether complexes Na+, the structure is twisted, this distortion from
the planarity decreases the conjugation and so the conductivity (Figure 21).
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Copyright 1995, ACS).

This kind of sensor is based on the variation of the conductivity by varying the
concentration of the alkaline metals in solution.

In the second part of this research, the polythiophene chain is modified with a cal-
ixarene, able to emit in fluorescence, and with an electron donor spacer, which can decrease
the oxidation potential of the polymer. If the polymer chain is able to delocalize the charge,
the calixarene can emit in fluorescence (Figure 22).
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Figure 22. Calixarene modified polythiophene for sensing of alkaline metal cations.

A variation of fluorescence was noted when the concentration of Na+ changed in the
solution; besides, the emitted band was very sharp and red-shifted in the presence of Na+.
These two characteristics of the emitted band are related to the presence of Na+ inside of the
macrocycle. The alkaline metal cation contributes to modify the bond length and promotes
the planarization of the polymer chain. When the polymer chain is flat, the conductivity
increases. From the electrochemical studies, the obtained data are different compared to
those from the fluorescence measurements. If the polymer is electrochemically oxidized in
the presence of Na+, the conductivity decreases. This effect is probably due to the inductive
influence of oxygens in the macrocycle, which is stronger than planarization [69,70].

In summary, conducting polymers are widely used in all kinds of sensors thanks to
their tunable electronical behaviors, ease of polymerization, and low-cost production.

3.6. Polymer Nanocomposites

Polymer nanocomposites (PNCs) are obtained by combining a continuous polymeric
phase and nanoparticles as a discontinuous phase. Numerous pros in mechanical, optical,
and electric properties have attracted scientists worldwide. PNCs can be synthesized in
different forms, suitable for developing chemical and biological sensors.

Nanostructured polymers greatly impact biological and technology areas, especially
in drug delivery, catalysis, and sensor applications [71].

High electrical conductivity, large surface area, and fast electron rate make PNCs
excellent candidates for electrochemical sensor development.

These electrochemical devices are based on three different categories of PNCs: those
obtained by the combination of conductive polymers and inorganic nanomaterials, the
other formed by conductive polymers and graphene, and those obtained by conductive
polymers and carbon nanotubes [72].

In the first case, the insertion of metal nanoparticles in the PNC matrice improved
electrocatalytic electrode detection leading to several applications. For example, zinc oxide
nanoparticles intercalated into polypyrrole (ZnO–PPy) PNCs are employed to develop a
xanthine sensor. The enzyme xanthine oxidase is immobilized onto the nanocomposite
film through physisorption. The sensor gave optimum response within 5 s (at pH 7.0 and
35 ◦C), and linearity from 0.8 to 40 µM, with a detection limit of 0.8 µM [73].
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A voltammetric sensor based on polyaniline-gold nanoparticles deposited on a glassy
carbon electrode is used for the simultaneous epinephrine and uric acid determination [74].
Cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy
are applied to characterize the sensor. The electrochemical behavior of both analytes was
investigated in phosphate buffer solutions at pH 6.6. The method showed sensitivity, high
precision, and good reproducibility.

The recent advances in wearable devices and nanotechnology have made great efforts
in polymer nanocomposite-based wearable sensors for healthcare and medical diagnosis,
prosthetics, professional sports, robotic systems, and visual realities. Wearable devices
can be linked to clothes or taped on the human skin by adhesive or elastic straps for
monitoring physical signals and motions [75]. The recent progress in materials science
and nanotechnology significantly contributed to developing high-performance wearable
sensors with high flexibility, stretchability, and sensitivity. For obtaining devices with these
properties, the selection of suitable functional materials is fundamental. Several conductive
nanomaterials were employed to develop polymer nanocomposite-based sensors, includ-
ing carbon nanotubes, graphene, Ag or Au nanowires, and conductive polymers. Even
though they provide good electrical conductivity, these materials often show inadequate
mechanical properties such as poor stretchability and flexibility. These two properties can
be obtained by developing composite materials consisting of electrically conductive fillers
and an elastomeric matrix. The conductive fillers provide the sensing mechanism, and the
elastomeric matrix provides the required mechanical properties [75].

In this field, an interesting work [76] reported piezoresistive sensors developed for
strain-sensors using a triblock copolymer (styrene−butadiene−styrene) thermoplastic
elastomer as a polymeric matrix, reinforced with carbon nanofillers as the conductive
material. These sensors were obtained by extrusion or spray printing techniques that allow
scaling-up and incorporation into new devices.

The materials were integrated into a glove with the readout and wireless communica-
tion system (see Figure 23); their ability to monitor finger movements was demonstrated.Chemosensors 2021, 9, x FOR PEER REVIEW 22 of 28 
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Graphene is an emergent two-dimensional carbon material. It can be an excellent
candidate for strain sensors because of its smart electrical, optical and mechanical properties.
Chun et al. [77] developed graphene (single-layer graphene and graphene flake thin film)
based sensors on stretchable polydimethylsiloxane substrate, able to detect infinitesimal
strains (as low as 0.1%) with distinct output signals. This sensor can monitor various
human body motions such as stretching, bending, and torsion.

The effective combination of various nanoscale materials with conductive polymers
opens new opportunities for applying PNCs in electrochemical sensing and biosensing
platforms with high-level performances.

3.7. Polymer Inclusion Membranes

Polymer inclusion membranes (PIMs), introduced about 50 years ago, are polymer-
based liquid membranes used as the sensing part of ion-selective electrodes and optical sen-
sors (optodes). Recently, PIMs are also applied in sample preparation and pre-concentration,
passive sampling and can be incorporated into online and automated instruments.

A PIM is composed of a liquid phase and a polymeric support, usually poly(vinyl
chloride), cellulose triacetate, or poly(vinylidene fluoride-co-hexafluoropropylene).

The skeleton of the membrane is the polymeric phase since it provides mechanical
strength. The liquid phase contains an extractant (carrier) responsible for binding the
analyte by ion-pair formation or complexation. Some carriers already present plasticizing
characteristics; however, an additional plasticizer or modifier is incorporated during the
membrane preparation for improving the flexibility or making the analyte more soluble in
the liquid phase.

PIMs are commonly obtained by dissolving all components in a small volume of a
volatile solvent (dichloromethane or tetrahydrofuran) and casting. The solvent was left to
evaporate slowly until a homogeneous and transparent PIM is obtained on the cast surface
that can be flat or cylindrical. For example, the membrane can be cast onto an electrode
body’s tip to prepare an ion-selective electrode. Flat-sheet PIMs can be used to develop
optical sensors by inserting a chromophore into the membrane composition [78,79].

In a recent study [80], a label-free potentiometric biosensor for Salmonella typhimurium
(ST) is described. It is assembled in a homemade pipette-tip electrode. A gold nanoparticle
polymer inclusion membrane (AuNPs–PIM) was applied both as a sensing platform and
for immobilizing the antibody. The proposed sensor shows potential for on-site food
control thanks to a simple experimental procedure and potentiometric instrumentation
portability. A working range of 1.3–13 × 106 cells mL−1 and a LOD of 6 cells mL−1,
comparable with other electrochemical label-free immunosensors for ST, demonstrated the
good performance of the developed platform. The proposed method can be applied to a
different bacteria-antibody couple, simply changing the specific antibody and optimizing
the AuNP-PIM.

A disposable optode is developed for Zn(II) determination [81]. It is obtained by
immobilization of a dye, the 2-acetylpyridine benzoyl hydrazone (2-APBH), in a polymer
inclusion membrane stuck on the surface of a strip of polyester. An experimental factorial
design is applied for optimizing the membrane composition to obtain a material of good
appearance and suitable physical and optical properties. The optimal membrane is formed
by 2.5 g PVC, 4 mL of tributyl phosphate, and 40 mg of 2-APBH. The optode showed a
linear range from 0.03 (i.e., the LOD) to 1 mg L−1, of Zn(II), and it responds in about 30 min
when immersed in aqueous solutions at pH = 6. The sensitivity to Zn(II) compared to that
for other common cations is excellent. The device is applied for Zn(II) determination in
certified water (reference material), spiked tap water, mineral drink, food integrators, and
foot health care products, providing reliable results.

This paragraph highlighted the growing interest in PIMs in chemical sensing. The
future challenge is the production of miniaturized PIMs-based devices with high sensitivity
and suitable for environmental, biological, and clinical analysis [78].
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4. Conclusions

Several sensors are based on polymers with well-defined characteristics. Polymers can
be directly involved in the sensing mechanism, or specific receptors can be immobilized on
them. Table 1 summarizes the natural and synthetic polymers often used in sensors. The
current trend in polymer-based technologies for sensing applications is reviewed here. The
advantages of employing polymers for sensors are not restricted to lightweight, softness,
biocompatibility, flexibility, stretchability, ease functionalization, cost-effective production,
and long lifetime. Even if significant attempts were made to obtain better performances for
the current sensors, modest signs of progress were perceived in these devices’ marketing.
Interdisciplinary collaboration among chemists, engineers, and computer scientists should
be the right direction to implement large-scale development and production to overcome
these difficulties (see outlook Figure 24).

Table 1. Name, origin and applications of the natural and synthetic polymers used for preparing the sensors described in
this review.

Name Origin Applications Ref.

Cellulose Plant Paper, colorimetric sensor, textile fiber [4,82]

Hemicellulose Plant Stabilizer in cosmetic and pharmaceutic, fuel [83,84]

Glucomannan Plant Alimentar field [85]

Agarose Plant Matrix for the analysis of biological molecules [86]

Starch Plant Alimentar field [87]

Pectin Plant Alimentar field [88]

Inulin Plant Alimentar field [89]

Acacia gum Plant Alimentar field [90]

Chitin Animal Medical and alimentar field [91,92]

Chitosan Animal Alimentar field [92]

Alginate Animal Solid phase in chemistry [93]

Polyhydroxyalcanoates Bacteria Agriculture, food packaging and cosmetics [28]

Polylactic-co-glycolic acid
(PLGA) Synthetic Humidity sensors [31]

Polyethylene terephtalate
(PET) Synthetic Packaging, flexible substrate for sensors [94]

Ethylene vinyl alcohol
(EVOH) Synthetic Packaging, flexible substrate for sensors [35]

Polyvinyl chloride (PVC) Synthetic Industrial field, construction, chemical matrix for sensors [34,95]

Polyfuran (PF) Synthetic Electronics [96]

Polypyrrole (PPy) Synthetic Electronics and chemical sensors [73]

Polythiophene (PTH) Synthetic Antistatic coatings, windows and mirrors coatings,
chemical sensors [69,97]

Polyaniline (PA) Synthetic Acid base sensor, supercapacitor, biosensor [68]

Poly(para-phenylene) (PPP) Synthetic Electronics [62]

Poly(phenylenevinylene)
(PPV) Synthetic Electronis [62]

Polyacetilene (PA) Synthetic Electronics and chemical sensors [98]

Polyaniline (PANI) Synthetic Conductive polymer-based sensors, printed circuit
manufacturing, [65,99]
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