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Abstract: Temperature is a fundamental physical quantity whose accurate measurement is of critical
importance in virtually every area of science, engineering, and biomedicine. Temperature can be
measured in many ways. In this pedagogically focused review, we briefly discuss various standard
contact thermometry measurement techniques. We introduce and touch upon the necessity of non-
contact thermometry, particularly for systems in extreme environments and/or in rapid motion,
and how luminescence thermometry can be a solution to this need. We review the various aspects
of luminescence thermometry, including different types of luminescence measurements and the
numerous materials used as luminescence sensors. We end the article by highlighting other physical
quantities that can be measured by luminescence (e.g., pressure, electric field strength, magnetic field
strength), and provide a brief overview of applications of luminescence thermometry in biomedicine.

Keywords: non-contact; sensor; thermometer; luminescence; phosphorescence; fluorescence; pres-
sure; oxygen; magnetic-field; electric-field

1. Introduction

The need to measure temperature is ubiquitous in science, engineering, and biomedicine.
The methods by which temperature may now be measured in the 21st century span an
incredibly diverse spectrum of technologies, techniques, and phenomena [1]. Moreover,
many of the techniques used to measure temperature can also be used, often with sim-
ple and straightforward modifications, to measure pressure and other properties such
as electric field, magnetic field, and dissolved oxygen concentration in water or blood.
Temperatures to be measured extend from the ultra-cold µK range (cryostat cooled copper)
to the ~4-Kelvin range (liquid helium) to the ~55,000-Kelvin range (hottest stars) [2]. The
0 ◦C to 100 ◦C range (273.15 K to 373.15 K, water freezing point to boiling point) is of special
interest in that, with rare exceptions, all life processes on planet Earth operate within this
range. Temperature measurement techniques must be scaled to the physical size and the
mass of object. For small objects in particular, such has single biological cells, great care
must be taken to insure that the temperature measurement technique is not significantly
perturbing the temperature of what is being measured. In some applications, multiple
temperature measurements must be made in a fraction of a second. In other applications, it
becomes necessary to allow a long period of time for the thermometer to become thermally
equilibrated with the sample whose temperature is to be measured. A brief review of some
common and not-so-common temperature measurement devices and techniques follows to
set the stage for a detailed discussion of luminescence-based thermometry.

2. Background and Operating Principles of Some Common Thermometer Types
2.1. Liquid-in-Glass Thermometer

The classic temperature measurement device is the liquid filled bulb and capillary
thermometer (Figure 1) [1]. The total volume of the liquid in the bulb and capillary—
typically mercury or alcohol to which a dye has been added to increase visibility—increases
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with increasing temperature, forcing the liquid up the capillary to which a linear scale
marked off in degrees ◦C is attached or inscribed.
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Figure 1. Liquid-in-glass thermometer at three different temperatures.

The thermometer bulb and capillary are constructed out of a borosilicate glass with
a low thermal expansion coefficient (e.g., Pyrex) to ensure that the bulb volume and the
capillary internal diameter do not change appreciably with a change in temperature. As
the liquid in the bulb and capillary heats up, the liquid rises up in the capillary to a
distance, z, measured with respect to a reference distance, z0. The total volume and thus
the temperature may then be expressed as a linear function of z:

T = f(z) = az + b (1)

where a and b are constants. Note that Vtot = Vbulb + Vcapillary = Vbulb + πr2z where z is the
liquid height in the capillary and r is the inside radius of the capillary.

2.2. Gas Thermometer

In a gas thermometer (Figure 2), a known amount of an inert gas (e.g., nitrogen or
helium) is placed in a sealed bulb to which a pressure gauge is attached via a small-diameter
capillary tube where [1].

V = Vbulb >> Vcapillary (2)

Solving the ideal gas law for temperature yields

T = pV/nR = (V/nR)p (3)

where n is the number of moles of gas, p is the gas pressure, V is the total internal volume
of the system, and R is the gas constant (8.3144 J/mol K). Assuming the ideal gas law holds,
Equation (3) shows that the temperature T is a linear function of the pressure p. As in the
case of the liquid capillary-bulb thermometer, the internal volume of the gas capillary-bulb
unit is assumed be temperature independent.
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Figure 2. Gas thermometer at three different temperatures.

2.3. Thermocouple Thermometer

Thermocouple thermometers (Figure 3) represent an entirely different approach to
temperature measurement [1]. Two wires comprised of dissimilar metals (e.g., copper
and a copper-nickel alloy called Constantan) are joined together at one end to form a
thermocouple junction.

Chemosensors 2021, 9, x FOR PEER REVIEW 3 of 23 
 

 

 
Figure 2. Gas thermometer at three different temperatures. 

V = Vbulb >> Vcapillary (2)

Solving the ideal gas law for temperature yields 

T = pV/nR = (V/nR)p (3)

where n is the number of moles of gas, p is the gas pressure, V is the total internal volume 
of the system, and R is the gas constant (8.3144 J/mol K). Assuming the ideal gas law holds, 
Equation (3) shows that the temperature T is a linear function of the pressure p. As in the 
case of the liquid capillary-bulb thermometer, the internal volume of the gas capillary-
bulb unit is assumed be temperature independent. 

2.3. Thermocouple Thermometer 
Thermocouple thermometers (Figure 3) represent an entirely different approach to 

temperature measurement [1]. Two wires comprised of dissimilar metals (e.g., copper and 
a copper-nickel alloy called Constantan) are joined together at one end to form a thermo-
couple junction. 

 
Figure 3. Type T thermocouple thermometer showing copper and copper-nickel (Constantan) ref-
erence and sample junctions. 

Figure 3. Type T thermocouple thermometer showing copper and copper-nickel (Constantan)
reference and sample junctions.

At the other end, these wires are connected to the terminals of an accurate high-
impedance digital multimeter set to read volts. As expressed by the function f, the voltage
∆V changes in a well-defined way as temperature changes [1].

T = f(V) (4)
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In actual practice, it proves to be useful to set up two junctions, a sample junction
and a reference junction, in opposition to one another to yield a differential voltage ∆V =
Vsample − VReference,

T = f(∆V) (5)

which is a well-defined function of temperature as described by the function f. A commonly
used constant temperature bath for the reference junction is the 0.00 ◦C (273.15 K) distilled
water-ice mixture [1].

2.4. Resistance Temperature Devices

Resistance temperature devices (RTDs) are based upon the known temperature-
dependence of the electrical resistance R of a resistor

T = f(R) (6)

A simple RTD temperature measurement system [1] (Figure 4) is comprised of a
temperature-calibrated resistor and a high impedance digital multimeter set to measure
resistance in ohms (Ω).
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2.5. Thermometer Overview

Each of the thermometers described above operates on the same general principle; a
function f is established, which connects the input to the function—a height z, a pressure
p, a voltage difference ∆V, an electrical resistance R, or spectroscopic parameters such as
wavelength λ, wavenumber ν, spectral bandwidth ∆ν, intensity I, or lifetime τ, rise time
tr —to the temperature T [1]. The function f must be responsive to temperature. It is nice
but not necessary for f to be linear as in the cases of the bulb and capillary thermometer
and the “ideal” gas thermometer. The function f should, however, be smoothly increasing
or smoothly decreasing over the entire operating range of the thermometer. The explicit
form of f for a given thermometer is obtained by collecting a T vs. x data set where x (e.g.,
capillary liquid column height z or pressure p) is the value of the property at a known
calibration temperature T. This data set may then be fitted to a least squares polynomial to
yield a numerical power series expression for the function f:

T = a + bx + cx2 + dx3 +... (7)

as described by the temperature-dependent property x and the coefficients a, b, c, d, . . .
However, a disadvantage of this approach is the loss of insight into the mechanistic details
of the thermometer.
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Consider, for example, a thermometer based upon a copper-Constantan Type T ther-
mocouple equipped with a sample junction, a water-ice reference junction, and a high-
impedance digital multimeter set to measure voltage (see Figure 3). The desired operating
range of this thermometer is chosen to be 300–320 K. Data from a Type T thermocouple
standard data table [3] over the range 280–340 K, which extends above and below the
desired operating range, is fit to the polynomial in Equation (7) as shown in Figure 5.
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3. Luminescence Non-Contact Thermometry
3.1. Luminescence-Based Thermometers

The diverse phenomena associated with luminescence or light emission—in particular,
photoluminescence, the luminescence from a sample induced by higher energy excitation
photons—lend themselves to a wide variety of thermometric techniques and applica-
tions [4]. The advent of laser excitation sources and sensitive, accurate, energy-resolved,
and time-resolved photon detection systems, has ushered in a new era of luminescence-
based thermometry [4]. Moreover, many of these luminescence-based temperature mea-
suring techniques can be implemented on standard, commercially available fluorimeters
(i.e., luminescence spectrophotometers) [4] of modest spectral resolution (Figure 6) that are
outfitted with suitable optical systems for injecting light into the spectrophotometer for
measurement and analysis and that make use of straightforward combinations of lenses,
mirrors, and fiber optic cables.
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Figure 6. Luminescence spectrophotometer system set up for temperature measurement: (a) broad
band excitation light source (e.g., Xe arc lamp); (b) excitation monochromator; (c) alternate laser
excitation source; (d) 45◦ mirrors; (e) excitation filters and/or polarizers; (f) sample at temperature T;
(g) emission filters and/or polarizers; (h) emission monochromator; (i) emitted light detector (e.g.,
photomultiplier tube or CCD camera).

3.2. Practical Considerations: Surmounting Challenges in Temperature Measurement

Assuming a thermometer is robust in design and accurately covers the temperature
range of interest, it still may not be a suitable thermometer for its intended use. The
wires of a thermocouple can be destroyed in a high temperature environment or an acidic
environment. In a high magnetic field and/or electric field environment, a thermocouple
or other electrically-based thermometer type may give a spurious output [1]. The large size
of a liquid or gas thermometer bulb or junction may preclude measuring the temperatures
of small samples. To make accurate temperature maps of small objects such as a computer
chip or a single biological cell, the temperature probe itself (e.g., a laser beam diameter)
must be small enough to give the desired thermal resolution [4]. Many thermometer
measurement techniques are based upon physical contact between the thermometer sensor
and the sample. This becomes virtually impossible if the sample is in rapid motion.

3.3. Luminescence-Based Temperature Measurements

Numerous exciting new developments in thermometry involve the use of temperature-
dependent photoluminescence phenomena as indicators of temperature [4]. In some
cases, classic temperature measurement techniques based upon an analysis luminescence
induced by a broad-band excitation source, are transformed by switching to monochromatic
laser excitation. A notable example involves the extraction of sample temperature from
laser-induced thermally broadened Doppler luminescence spectral profiles, as shown in
Figure 7 [5]. The temperature T of the luminescing sample is determined by inserting
the measured spectral bandwidth ∆ν of the emission at together with the measured band
maximum ν0 and solving for T in Equation (8)

∆ν = ∆νFWHM =

(√
8kT ln 2

mc2

)
ν0 (8)
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In Equation (8), ∆νFWHM is the full width at half maximum of the luminescence band
in wavenumbers (cm−1), k is the Boltzmann constant, m is the mass of a single emitting
atom or molecule in the sample, c is the speed of light, and ν0 is the experimentally
determined emission band maximum expressed in wavenumbers, and T is the absolute
temperature of the sample.

3.4. High Resolution, Non-Contact Luminescence-Based Thermometry

In photoluminescence thermometry, only excitation photons impinge on the sample.
No physical or mechanical contact needs to be made between the thermometer and the emit-
ting surface of the sample whose temperature is being measured. Moreover, temperature
mapping of a small sample (biological, chemical, electrical, mechanical) is limited in spatial
resolution only by the diameter of the excitation laser beam. High thermal resolutions
are readily achievable. Intensity-based ratiometric luminescence thermometry becomes
possible when a sample emits light from bands centered at two different wavelengths, λa
and λb, where the intensity ratio of the two bands Ia/Ib varies smoothly and monotoni-
cally with variations in the sample temperature [6–8]. The intensity ratio thermometer
is calibrated by measuring Ia/Ib of a standard at a series of known temperatures. A plot
of the experimentally determined R = Ia/Ib luminescence intensity ratio of the sample vs.
temperature, expressed as a power series to give the fitting coefficients a, b, c, d . . . , yields
the desired temperature

T = a + bR + cR2 + dR3 +... (9)

A typical temperature vs. luminescence intensity ratio plot is shown in Figure 8.
It is quite straightforward to implement the ratiometric luminescence intensity temper-

ature measurement technique using modestly priced commercial luminescence spectropho-
tometers to acquire the T vs. R data sets (see Figure 5). Alternatively, the luminescence
lifetime τ, the luminescence rise time tr, or the luminescence quantum yield Φ of a sample
can be employed to measure sample temperature (Equation (10a–c)) [9–11] (see Figure 9):

T = a + bτ + cτ2 + dτ3 + . . . (10a)

T = a + btr + ctr
2 + dtr

3 + . . . (10b)

T = a + b Φ + c Φ2 + d Φ3 + . . . (10c)
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Figure 9. Time-dependent luminescence processes: (a) pulsed excitation, (b) luminescence rise time,
(c) luminescence decay profile or luminescence lifetime τ.

The coefficients in the power series in Equations (9) and (10a–c) are determined by least
squares fits of the T vs. R, T vs. tr, or T vs. Φ data sets measured at known temperatures.

It should be noted that lifetime thermometry can be quite challenging as it depends
on several parameters such as duration and intensity of the signal and rise time of the
equipment. The interested reader is referred to the luminescence lifetime investigations by
Demas [12–14].

Luminescence lifetimes as a function of temperature can also be determined from
the phase shift φ induced in the emitted light with respect to a sinusoidally modulated
excitation source (Figure 10).
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The experimentally determined lifetime τ is calculated from the expression (Equation (11))
relating the phase shift φ to the measured modulation frequency f [15].

τ =
tan φ

2π f
(11)

3.5. Temperature Scales for Thermometry

In 1989, the International Temperature Scale (ITS-90) [16] was adopted by the Interna-
tional Committee for Weights and Measures (CPIM). This temperature scale, based upon 16
fixed or defining points, spans the range from 0.65 K to the highest temperatures that can be
measured by the Planck radiation law using monochromatic light. Almost all luminescence
thermometry measurements and systems use ITS-90 directly or indirectly for calibration.
For temperatures in the 0.9 mK to 1 K range, the Provisional Low Temperature Scale (PLTS-
2000) is used [17]. A new temperature scale based upon 3He vapor pressure was adopted in
2006 (PTB-2006) [18]. This temperature scale transitions into PLTS-2000 below 1 K and into
ITS-90 above 2 K. These temperature scales approximate the thermodynamic temperature
scale and serve to define the international Kelvin and Celsius temperatures. The ITS-90
delivers temperatures determined by primary standard thermometry to 16 highly repro-
ducible states of matter (e.g., triple point of water, melting point of gallium, and freezing
point of copper). The PLTS-2000 scale employs the melting pressure of 3He for measuring
temperature. These scales are used either directly or indirectly for all calibrations associated
with luminescence thermometry.

4. Luminescence Temperature Measurement: Emissive Materials and Systems
4.1. Oxides of Lanthanide Metals

Aggressive environments such as corrosives, strong acids and bases, radioactive
nuclides, flames, and rapidly moving high temperature devices and components (e.g.,
turbine blades in jet aircraft engines, moving parts in piston-driven internal combustion
engines, and rocket engine nozzles) pose special thermometric challenges. Sensor-sample
mechanical contact thermometry simply does not work for measuring the temperatures
of hot jet engine turbine blades spinning at ~10,000 rpm at ~1000 K. An alternative non-
contact temperature measurement approach is to exploit the temperature dependence
of luminescent lanthanide metal oxide systems to measure temperature in these extreme
environments [19]. Since lanthanide metal oxide coatings are used to protect the hot turbine
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blades, they are already physically present and available as chromophores for laser-induced
temperature-dependent photoluminescence measurements (Figure 11).
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Figure 11. Non-contact thermometry based upon temperature-dependent, laser-induced lumines-
cence of a rapidly rotating sample. Only excitation photons impinge on the sample. No physical or
mechanical contact with the sample is required [19].

This complements the increasing use of lanthanide-oxide films as barrier coatings in
jet engines and other rapidly moving high temperature systems. Non-contact thermometry
under these extreme conditions is straightforwardly implemented by laser excitation
of the moving parts followed by measurement of the luminescence spectral profile for
ratiometric studies and/or luminescence lifetime τ or rise time tr of the lanthanide-oxide
chromophore [19].

4.2. Temperature Sensing Luminescence Chromophores I: Organic and Metal Organic Materials

The luminescence lifetimes and luminescence intensities of many organic and metal
organic molecules—particularly organic molecules with extended conjugated π orbital
systems (see Figure 12)—are sensitive functions of temperature [20–23].

A typical organic chromophore has a singlet electronic ground state S0 with all electron
spins paired, singlet lowest energy excited state S1 also with all electron spins paired, and a
lowest energy triplet excited state T1 with two unpaired electron spins [20]. If these organic
molecules are soluble in water and/or other solvents, they are called dyes. If the molecules
are not water or solvent soluble, they are called pigments. Dye/pigment molecules absorb
and are excited by selected wavelengths of near-UV, visible, and near-IR light giving their
characteristic brilliant colors. Many but by no means all of these dye–pigment molecules
also emit light in the visible and near-IR. Luminescent dyes and pigments tend to have
more rigid structures that inhibit the non-radiative dissipation of energy of the excited
molecule via molecular vibrations. Excited state energy deposited in the molecule by
the excitation light is dissipated radiatively via a visible or near-IR photon. In contrast,
non-emitting molecules tend to be more fluxional allowing non-radiative dissipation of the
excited state energy to occur via molecular vibrations in the mid-to-far infrared. Increasing
temperature favors non-radiative energy dissipation pathways. Luminescence intensity
is diminished, and luminescence lifetime and quantum yield are also diminished. In this
case, luminescence is said to be partially quenched. A totally quenched dye/pigment is
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non-luminescent. Luminescence from a typical dye/pigment is induced by excitation light
and partially or completely quenched by triplet oxygen as shown in the Jablonski diagram
in Figure 13 [24].
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ground state; S1 is the lowest energy singlet excited state; and T1 is the lowest energy excited triplet state.

4.3. Temperature Sensing Luminescence Chromophores II: Transition Metal Complexes

Transition metal complexes, especially those whose ligands are comprised of poly-
cyclic aromatic π conjugated systems, exhibit significant temperature-dependent lumi-
nescence intensity and luminescence lifetime behavior over a wide range of tempera-
tures [20,21]. For example, the chromophore [Ru(bpy)3]2+ where the ligand 2,2′-bipyridine,
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abbreviated bpy, can support luminescence-based thermometry via temperature-dependent
luminescence lifetimes and intensities in the 50–290 K range, as shown in Figure 14.
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Figure 14. Simplified Jablonski diagram for a [Ru(phen)3]2+ or [Ru(bpy)3]2+ complex showing
excitation, non-radiative decay pathways, and metal-to-ligand [20] charge-transfer phosphorescence
(MLCT) T1 → S0. The phosphorescence lifetime τ is temperature-dependent in these chromophores.
Thus, they can be used for luminescence thermometry.

The bpy ligand is bidentate. It is comprised of two pyridine rings, each with a nitrogen
ligating atom joined by a single bond, around which rotational distortions can take place.
The related chromophore [Ru(phen)3]2+ can support luminescence-based thermometry
at higher temperatures, 273–393 K, via temperature-dependent luminescence lifetimes
and intensities. The bidentate ligand phen = 1,10-phenanthroline is much more rigid
structurally than bpy. This allows for effective luminescence-based thermometry in phen
transition metal complexes at significantly higher temperatures than what is achievable
with bpy complexes. Many complexes of ruthenium, platinum, iridium, and other metals
with multidentate aromatic ligands can serve as temperature sensors via fluorescence and
phosphorescence emissions. Luminescence behavior in transition metal complexes that can,
in principle, serve as temperature sensors may be metal centered (MC), ligand centered
(LC), ligand-to-ligand charge transfer (LLCT), ligand-to-metal-charge-transfer (LMCT), or
metal to-ligand-charge-transfer (MLCT) [25,26].

4.4. Temperature Sensing Luminescence Chromophores III: Transition Metal and Lanthanide Oxides

Luminescent metal ions doped in small concentrations into insulating and wide band-
gap inorganic materials are extensively used as temperature and pressure sensors. The
prototypical example of this type of system is ruby: aluminum oxide, Al2O3, into which a
small percentage of lattice Al3+ cations is replaced by dopant Cr3+ cations [27]. The site
geometry of the Cr3+ cations in aluminum oxide is distorted octahedral; each Cr3+ cation is
surrounded by six nearest neighbor O2− anionic “ligands” [27]. Some exchange-coupled
Cr3+–O2−–Cr3+ double metal sites in which two Cr3+ cations are adjacent, and are thus able
to interact or couple electronically, may also occur in ruby. When doped into an insulator
or wide band-gap inorganic material, the transition metal appears in the host as a cation
with charge

+z = +1, +2, +3, +4, +5, or +6 (12)

First row transition metal cations with 3d valence orbitals exhibit many valence
electron configurations of the type

[core](3d)n (13)

where n = 1 to 10 is the number of valence electrons in the 3d orbitals of the transition
metal cation symmetry. Partially filled 3d orbitals in transition metal cations give rise
to a plethora of electronic energy states from which luminesce capable of supporting
luminescence-based thermometry can occur. Tanabe–Sugano diagrams (Figure 15) provide
excellent pictures of the disposition of the electronic states arising from [core](3d)n electron
configurations [28,29].
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Figure 15. Tanabe–Sugano energy diagram for a d3 transition metal complex with octahedral site
symmetry. Various electronic states of the complex are listed as term symbols. For example, the term
symbol 4A2 has a spin multiplicity of 4 and an orbital symmetry of A2. Tanabe–Sugano terms may
also be written as 4A2g with the subscript g indicating an additional symmetry of the complex. The
vertical axis is an energy axis; the horizontal axis is the ligand field strength or pressure axis [28,29].

The familiar 2Eg → 4A2g phosphorescence in ruby is a notable case in point. Third
row transition metal cations in octahedral environments with the same number of 3d
electrons tend to exhibit similar luminescence behaviors as exemplified by a comparison
of the luminescence spectra of the [core] (3d)3 cations Mn4+ and Cr3+. The lanthanide
metal cations have proven to be an excellent class of luminescence thermometers [22,30].
The most common oxidation states of these elements are +2 or +3, with the +3 oxidation
state being more extensively utilized for luminescence thermometry. Like the 3d transition
metal cations, cations of the 4f lanthanide elements yield multiple electron configurations
and states that support temperature-dependent luminescence behavior as presented in a
Dieke diagram [31–33]. Electronic states and transitions associated with the +3 lanthanide
cations of a given element are quite different those corresponding states and transitions
associated with the +2 cations of that same element. In the +3 lanthanide cations, all
valence d and s electrons are removed. The valence electron configuration of a lanthanide
cation Ln3+ is [core](4f)n where the number of valence 4f electrons is n = 1 to 13. Electronic
transitions between the f-f states of Ln3+ cations are orbitally forbidden (Laporte rule)
formally but become allowed with a reduction in symmetry of the local environment. The f-f
luminescence transitions of different Ln3+ cation guest/matrix host systems therefore reflect
the individual Ln3+ guest/matrix host interactions. These interactions are temperature
dependent and can be used for luminescence temperature sensors (see Figure 16).
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Figure 16. For some systems, the luminescence lifetime τ decreases with increasing temperature. For sensitive higher
temperature measurements, it is best to use a chromophore (a) for which |dτ/dT| is large (e.g., Ln3+ doped materials such
as YAG:Dy3+ (see Figure 8 Ref. [19]). For sensitive lower temperature measurements, it is best to use a chromophore (b) for
which |dτ/dT| is large at lower temperatures (e.g., ruby, Al2O3:Cr3+) [34–36].

Emissive fluoride-containing matrices into which lanthanides are dispersed represent
an important class of luminescent materials potentially useful in luminescence thermome-
try. The luminescent material Er:Yb:NaY2F5O, for example, has been proven to function
effectively for temperature measurements of biological tissues based upon luminescence
upconversion [37]. However, care must be taken regarding their use. For example, in
emissions from NaYF4:Eu3+ (5D1 and 5D0), where Eu3+ ions are present only in low concen-
trations, Boltzmann thermal equilibrium is not achieved in the 300–900 K range [38]. In the
absence of Boltzmann thermal equilibration, the determination of temperature by lumines-
cence intensity ratios becomes problematical. However, increasing the Eu3+ concentration
increases the number of closely spaced Eu3+ ion pairs and thus facilitates 5D1–5D0 cross
relaxation leading to the achievement of thermal equilibrium and extension of the viable
temperature measurement range to the full 500 K−900+ K temperature window.

4.5. Temperature Sensing Luminescence Chromophores IV: Semiconductor Quantum Dots

Quantum dots (QDs) are semiconductor systems intermediate in size between indi-
vidual atoms and bulk solid state materials [39,40]. A typical QD is comprised of a few
hundred to a few thousand atoms [41,42]. In contrast, consider a ~0.1 mg bulk sample of
silicon, the smallest bulk amount that can be weighed on a standard laboratory analytical
balance. This 0.1 mg sample is comprised of ~2 × 1018 silicon atoms! The small size of
QDs leads to quantum confinement effects similar in many aspects to the familiar particle-
in-a-box quantum systems (Figure 17). These quantum effects are quite different from the
quantum effects observed in single atoms and bulk materials. In QD systems, it is common
to see properties that are a combination of atomic and bulk material properties. QDs
exhibit large size-dependent changes in optical properties including high luminescence
intensity and high thermal sensitivity of luminescence, making them excellent candidates
for luminescence-based thermometry [43].



Chemosensors 2021, 9, 109 15 of 22
Chemosensors 2021, 9, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 17. Luminescent quantum dots (QDs) showing the correlations between quantum dot size, 
the band gap between the conduction (CB) and valence bands (VB), and the photon emission en-
ergy. 

QD luminescence is also pressure dependent; dual mode temperature-pressure 
measurements are a possible application of QD systems [44]. The small size of QDs (na-
nometers) makes them excellent temperature nanosensors. Overall, temperature sensitiv-
ity of QDs (e.g., lead sulfide, PbS) increases with QD size and approaches the bulk values 
(~500 μeVK−1) in the large QD size limit (~15.5 nm). QD luminescence can be used for 
intracellular temperature mapping in biology and microelectronic circuit temperature 
mapping in semiconductor electronics industries. QDs provide excellent, reproducible 
temperature-dependent changes in luminescence wavelength maxima, spectral band-
widths, intensities (see Figure 18), and lifetimes that can be exploited for temperature 
measurement. Luminescence band profiles of QD systems are Gaussian [45,46]. 

 
Figure 18. Schematic of near IR luminescence spectra of PbSe QDs showing peak wavelength and 
intensity trends: peak wavelengths λ1 < λ2 < λ3, peak intensities I1 > I2 > I3. 

Peak energies of these QD luminescence bands depend upon their composition, size, 
and the local microscopic environment into which they are imbedded. Temperature sen-
sitivity of the band gap dEg/dT, and hence the energy and wavelength of the emitted pho-
ton, depend upon QD size. Luminescent QDs deposited on a moving part or component 
of a system (Figure 11) can provide a robust, sensitive, non-contact way to remotely mon-
itor the system’s temperature and to map out temperatures differences in different parts 
of the system with nanometer resolution. 
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QD luminescence is also pressure dependent; dual mode temperature-pressure mea-
surements are a possible application of QD systems [44]. The small size of QDs (nanome-
ters) makes them excellent temperature nanosensors. Overall, temperature sensitivity
of QDs (e.g., lead sulfide, PbS) increases with QD size and approaches the bulk values
(~500 µeVK−1) in the large QD size limit (~15.5 nm). QD luminescence can be used for
intracellular temperature mapping in biology and microelectronic circuit temperature
mapping in semiconductor electronics industries. QDs provide excellent, reproducible
temperature-dependent changes in luminescence wavelength maxima, spectral band-
widths, intensities (see Figure 18), and lifetimes that can be exploited for temperature
measurement. Luminescence band profiles of QD systems are Gaussian [45,46].
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Peak energies of these QD luminescence bands depend upon their composition, size,
and the local microscopic environment into which they are imbedded. Temperature
sensitivity of the band gap dEg/dT, and hence the energy and wavelength of the emitted
photon, depend upon QD size. Luminescent QDs deposited on a moving part or component
of a system (Figure 11) can provide a robust, sensitive, non-contact way to remotely monitor
the system’s temperature and to map out temperatures differences in different parts of the
system with nanometer resolution.
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However, one important consideration with quantum dots is their easily changeable
optical properties due to their dimensions in the nanometer range. For example, Cd/Te
QDs, one of the most frequently used variants, has been noted to experience significant
thermal expansion and increase in diameter once it reaches a critical temperature [47]. The
expansion creates an additional red-shift in luminescence, interfering with the spectral
shift used for luminescence thermometry by shifting the emission peak position. This
problem can be circumvented with the use of proper surface coatings on the QDs. These
are often organic ligand compounds that bind to the surface atoms of the QD and maintain
its size in high temperatures. For example, the emission peak position remains constant
at temperatures above 65 ◦C for Cd/Te QDs with a coating of per-6-thio-β-cyclodextrin,
while the same QDs without surface coatings find their peak position shifting at the same
temperature [47].

The tunability of the QDs in their luminescence characteristics via surface coating
choice is thus one of the great advantages of using QDs as non-contact luminescence
thermometers. Yet, the challenges of synthesizing and applying proper coatings on QDs is
compounded by the extremely high sensitivity of QDs to their environments and nature
and quality of solvents. For example, QDs produced with the same techniques often
yield significantly different quantum yields [48]. Thus, for QD systems to reach their
full potential, a better understanding of the effects of surface coatings on QDs is needed
through advancements in nanotechnology.

5. Combined Simultaneous Temperature and Property Measurements via Luminescence

In principle, luminescence can be employed to measure temperature and other prop-
erties of the system such as pressure, pH, dissolved oxygen concentration, and electric
and magnetic field strength. Examples of some dual property measurement systems are
discussed in the following subsections.

5.1. Temperature and Modest Pressure: Temperature- and Pressure-Dependent Luminescent Paints

The luminescence properties of platinum(II) porphyrin complexes Pt(porph) and
ruthenium(II) tris-imine complexes such as [Ru(bpy)3]2+ and [Ru(phen)3]2+ where bpy
= 2,2′-bipyridine and phen = 1,10-phenanthroline are used to measure the pressures on
airfoils and surfaces in wind tunnels [49]. These complexes are dispersed in oxygen-
permeable and therefore pressure sensitive paints or coatings that can be applied to the
aerodynamic surfaces under test [50]. Greater air pressure at a given point on an airfoil
results in greater oxygen concentration of the oxygen-permeable membrane into which the
ruthenium chromophore is imbedded and increased quenching of the luminescence of the
chromophore resulting in a lower pressure-dependent luminescence intensity. Designs for
dual luminescence sensors comprised of two emitting species that luminesce in different
spectral regions—one that is pressure sensitive and one that is temperature sensitive—are
now available [51,52]. For example, consider a dual pressure-temperature measurement
system that utilizes [Ru(phen)3]2+, whose luminescence is temperature dependent, and
fullerene C70, whose luminescence is pressure dependent but insensitive to temperature.
Temperature and oxygen concentration/pressure of this dual emission system are extracted
from the luminescence lifetime [53].

5.2. Temperature and High Pressure Measurements in Diamond Anvil Cells

Diamond anvil cells provide a simple, compact, robust, and spectroscopically viable
way to investigate the luminescence behaviors of substances at extreme pressures (~15 GPa)
and at cryogenic temperatures (~10 K) [27]. As noted earlier, ruby—a form of doped
aluminum oxide in which a small percentage of Al3+ cations in the lattice is replaced by
Cr3+ cations—is well suited to serve as a pressure gauge and as a temperature gauge
in diamond anvil cells via pressure- or temperature-induced spectral shifts in the sharp
phosphorescence bands arising from the 2Eg → 4A1g phosphorescence transitions of the
octahedrally coordinated Cr3+ cations in the aluminum oxide matrix (Figure 19). The
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phosphorescent chromophore in ruby is [CrO6]9−, which can be thought of as a “complex”
comprised of a central Cr3+ cation and six O2− ligands.
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The sites occupied by the Cr3+ cations in the lattice are thus modestly distorted
octahedral sites that split the 3d Cr3+ orbitals into two sets: a lower energy set labeled t2g
comprised of the dxy, dxz, dyz orbitals and a higher energy set labeled eg comprised of
the dz

2 and dx
2–y

2 orbitals. The lowest energy orbital configuration is [core](t2g)3 from
which the 4A2g ground state of this system arises with a (dxy)α(dxz)α(dyz)α quartet spin
arrangement. The lowest excited state is the 2Eg spin flip state, which also arises from
the [core](t2g)3 electron configuration with a doublet (dxy)α(dxz)β(dyz)αspin arrangement
where α = up spin and β = down spin. Referring to the lower energy states of the d3 Tanabe–
Sugano Diagram (Figure 15), it is apparent that the energy of the 2Eg state exhibits a modest
decrease with respect to increasing pressure, thus decreasing the energy of the 2Eg → 4A1g
phosphorescence transitions and introducing measurable spectral red redshifts that can be
used to measure pressure and temperature. Moreover, this decrease in phosphorescence
energy with increasing pressure holds for both the R1 and R2 components of the 2Eg excited
state (Figure 20) [54].
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Figure 20. Splitting of the 2E excited state of ruby gives rise to two closely spaced luminescence
bands designated R1 and R2. These bands shift in wavelengths as a function of temperature and also
as a function of pressure. At room temperature and pressure λ(R1) = 694.3 nm and λ(R2) = 692.7 nm.
The ruby temperature calibration range extends from 15–600 K. Increasing pressure redshifts both the
R1 and R2 luminescence bands. The standard values for the R line shift are +0.0365 nm kbar−1 [54].
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5.3. Luminescence-Based Measurements of Electric Fields

Application of an electric field E to a luminescent sample may induce observable
changes in the luminescence from the sample arising from splittings or shifts in the wave-
length, intensity, spectral bandwidth, or polarization of a luminescence band or bands.
This is called the Stark Effect. Stark effects can be linear (effect proportional to E = E1) or
quadratic (effect proportional to E2). With suitable calibration, a sample manifesting these
Stark Effect emission phenomena may be used as a sensor to measure the strength and
orientation of an applied electric field. Dual luminescence-electric field sensors are possible
in which one sensor is sensitive to temperature and insensitive to electric field and the
other sensor is insensitive to temperature and sensitive to electric field [55].

5.4. Luminescence-Based Measurements of Magnetic Fields

Readily observable perturbations frequently appear in the luminescence spectra of
substances subjected to magnetic fields. A magnetic field B acts to split and shift the
quantum energy levels and the luminescence bands emanating from transitions between
these magnetically perturbed energy levels. Emission band intensities and lifetimes are also
affected by magnetic fields. This magnetic-field-dependent splitting of quantum energy
levels is termed the Zeeman Effect. Selected organic films and organic semiconductors
such as tetracene and rubricene exhibit singlet exciton fission, a phenomenon known to be
dependent on the magnitude and direction of the applied magnetic field. Rubricene, for ex-
ample, forms amorphous films that exhibit large perturbations in their photoluminescence
behavior when subjected to an applied magnetic field. These effects can be exploited to
produce high resolution luminescence-based microscopic magnetic field maps [56].

6. Luminescence-Based Temperature Measurements in Molecular Biology and Biomedicine

While the luminescence thermometry technique is now well established in diverse ar-
eas of science and technology, the main roadblock to its widespread usage in the biomedical
field arises from the complicated optical properties of human tissues. Tissue luminescence
arises from the summative contributions of emitted light from vitamins, aromatic amino
acids, proteins, and porphyrins. The human skin is composed of a variety of different
chemicals and layers, each with different absorption and scattering properties, which
severely hamper the extent to which visible and UV light can penetrate. Therefore, the
excitation light must be restricted to specific wavelength ranges to ensure it can reach
organs and deeper tissues of interest. Even after bypassing the issue of optical skin barriers,
many more factors must be fulfilled for biomedical use of luminescence thermometry for
temperature measurement to be viable. For example, the luminescent dopant particles that
give rise to emission must be nontoxic and enter and exit the body noninvasively at the
desired rates.

Recent studies have established this specific wavelength range to be in the infrared,
with most of the wavelength range above 1000 nm. These ranges are termed “biological
windows.” Three principal ranges have been designated: Region I, 750–950 nm; Region
II, 1000–1350 nm; Region III, 1550–1870 nm [57]. Only the first and second biological
windows are in widespread use for medical and biological purposes at the clinical level
at this time (e.g., bioimaging and biothermometry), while current research is focused on
the exploitation of the third long-wavelength infrared biological window that can further
minimize loss of emitted light intensity by absorption into and scattering from the tissues.
Penetration of higher energy UV and visible excitation photons into tissues is dramatically
inhibited by Rayleigh scattering. Penetration intensity drops off with the 4th power of
the wavelength (~1/λ4) [58]. Thus, longer wavelength infrared excitation light is strongly
preferred over visible light if deep penetration of the excitation radiation into the tissues is needed.

Currently, the technique that best satisfies all these requirements and has potential
temperature resolution of ±0.1◦C is based upon the luminescence upconversion spec-
troscopy of emissive water-dispersed lanthanide nanoparticles (e.g., NaYF4:Er3+,Yb3+)
doped into individual cells and the intercellular region. Luminescence upconversion spec-
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troscopy [59] is capable of monitoring temperatures in individual biological cells as well as
the intercellular region. For example, two infrared excitation photons, each with energy
hcνex can induce a luminescence that is higher in energy than the individual hn excitation
photons. This is in contrast to traditional Stokes shift in classical luminescence spectroscopy,
where the emission photon energy is lower than the excitation photon energy [60]. While
upconversion happens in various ways, the most basic explanation is the combination of
multiple low-energy photons yield one higher-energy excitation photon. A two-photon
luminescence upconversion process is shown, in Figure 21.
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excitation photons hcνex penetrate to the desired tissue depth owing to the minimization of Rayleigh
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photon hcνem that can be used as a laser scalpel to destroy a tumor or an individual cell.

As shown in Figure 21, an upconverting nanoparticle is composed of two distinct
elements: the sensitizer/absorber ion surrounding the emitter ion in a crystal lattice. When
two photons from the sensitizer ion are transferred to the emitter ion, the two undergo a
process of annihilation where one photon drops to ground state while the other photon
gains all the energy and is promoted to a higher state. Thus, by producing one high-
energy photon from two low-energy photons, the particle achieves upconversion and
obeys conservation of energy [60].

One specific advantage of upconversion luminescence spectroscopy in biological
systems as compared to traditional Stokes luminescence, lies in the suppression of autoflu-
orescence. Autofluorescence typically occurs when the emitting chromophore luminesces
naturally with a Stokes Shift, yielding emitted photons that are lower in energy than single
excitation photons. Thus, autofluorescence rarely occurs with upconversion emission,
as the individual excitation photons are too low in energy induce Stokes luminescence,
improving both the thermal and spatial resolution [61].

A second advantage of upconversion is that due to this aforementioned structure,
the luminescence only occurs when the emitter ion is surrounded by sensitizer ions.
Thus, changes in the environment do not affect the emission, allowing the upconver-
sion absorber/emitter species to maintain the same behavior in various biological fluids.
Among the most promising materials for luminescence upconversion nanothermometers
are lanthanide-doped nanoparticles (e.g., NaYF4:Er3+,Yb3+) [62].

7. Perspective

Luminescence-based thermometry, while not without challenges, provides an amazing
diversity of viable techniques and materials that can be used for the measurement of tem-
perature. Moreover, luminescence sensor technology can be deployed in such a way that
it enables the simultaneous measurement of temperature and other quantities of interest:
electric fields, magnetic fields, pressure, fluid flow, thermal profiles of electronic circuits
and devices, numerous biomedical applications including intracellular and intercellular
temperature measurements, and temperature mapping of microfluidic and nanofluidic
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systems. Advances in modern laser technology, laser spectroscopy, and material science are
driving the emergence of new luminescence-based devices and thermometric techniques.
Particularly noteworthy is the deployment of luminescence upconversion spectroscopy in
biomedical applications to measure temperature and other properties in deep tissues and in-
dividual cells with nanoscale resolution. The wide range of luminescent materials that can
be used as luminescence temperature and property sensors encourages experimentation
and facilitates the development of sensors with specialized properties. While traditional
contact thermometry enjoys the advantages of simplicity, accuracy, and modest cost, it
cannot measure the temperatures of objects in motion. If the object whose temperature is
to be measured is moving, non-contact luminescence thermometry shines. Luminescence
sensors in the future could benefit from the implementation of more standardization and
calibration protocols.

8. Conclusions

While traditional methods of thermometry have been and will continue to be impor-
tant, new frontiers in science, engineering, and medicine will require ever more precise,
sensitive, high resolution, contact, and non-contact thermometric methods. Luminescence
thermometry is the perfect tool to accomplish this. Luminescence thermometry functions
by exploiting various relationships between temperature and quantities that characterize
luminescence, including spectral band maxima, bandwidths, intensity ratios, risetimes,
and lifetime decay profiles. The four most commonly viable materials as sensors are lan-
thanide and transition metal doped systems, organic chromophores, and quantum dots.
The unique physical properties of each of these materials create different niche temperature
ranges and environmental conditions where each can function best. Future areas of study
in thermometry should focus on developing new temperature scales compatible with the
precise and narrow temperature ranges where luminescence thermometry is applicable.
Studies should focus on the utilizing the potential of luminescence to also measure pressure,
magnetic fields, and electric fields to create a single, multi-functional measurement tool.
The scattering and absorption of UV-visible radiation by tissues poses a unique biomedical
challenge and opportunity for luminescence thermometry. Further investigations into opti-
mizing the upconversion spectroscopy can circumvent this problem and allow biomedicine
to reap the full benefits of luminescence thermometry.
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