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Abstract: The effects of functionalization of carbon nanotubes on the properties of nanocompos-
ite sheets prepared from high-density polyethylene (HDPE) and carbon nanotubes (CNTs) were
investigated. Carbon nanotubes were first oxidized, followed by amine group functionalization.
The Fourier transform-infrared (FTIR) spectroscopy results confirm the presence of oxygenated
and amide groups at the surface of the CNTs after each treatment. The HDPE/CNT nanocom-
posites sheets were prepared using a melt compounding method. Six types of CNTs were used;
pristine Single-walled Carbon nanotubes (SWCNT) and pristine Multi-walled Carbon nanotubes
(MWCNT), oxidized (O-SWCNT and O-MWCNT) and amide (Amide-SWCNT and Amide-MWCNT).
All prepared nanocomposite sheets were characterized using Thermal gravimetric analysis (TGA),
Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electronic microscope
(SEM). TGA results measured increased thermal stability of the polymer with the addition of CNTs,
O-MWCNT showed the best enhancement. XRD measurements confirmed that the addition of
CNTs did not change the crystal structure of the polymer, although the crystallinity was decreased.
The maximum crystallinity decrease resulted from O-SWNTs addition to the polymer matrix. SEM
imaging showed that oxidized and functionalized CNTs have more even dispersion in the polymer
matrix compared with pristine CNTs.

Keywords: HDPE polymer; SWCNT; MWCNT; nanocomposites; melt compounding; O-CNTs;
amide-CNTs

1. Introduction

High-density polyethylene (HDPE) polymer is routinely used for a wide variety of
high-end applications such as household plastic products, distribution pipes, heavy duty
bags, agriculture packaging, toys, and many others [1–3]. However, industrial application
of HDPE is limited by its low strength (Tensile strength, yield at 23 ◦C (23.0–29.5 MPa),
Break at 23 ◦C (30.5–33 MPa) [3,4]. The introduction of inorganic nanomaterials, as reinforc-
ing materials into polymer systems, resulted in nanocomposite (polymer nanostructural
materials), thus exhibiting multifunctional, high performance polymer characteristics be-
yond that of the traditional polymer [5] The reinforcing material (nano material) can be
particles, sheets, fibers, or nanotubes. The large surface area of reinforcement material
means that a relatively small amount of nano-scale reinforcement material can have an ob-
servable effect on the macro scale properties of the polymer nanocomposite systems [6–10].
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Carbon nanotubes (CNTs) have drawn significant interest from the scientific commu-
nity due to their unique mechanical, electrical and thermal conductivity properties which
have now been the focus of countless fundamental studies from both theoretical [11,12]
and experimental perspectives [8–13]. These studies have found that CNTs have interesting
reinforcement properties when used incorporated in the polymer matrix while strongly in-
fluencing the material properties of polymer nanocomposites [10,11]. The major challenges
in the practical implementation of CNTs for industrial applications are enhancing their
dispersibility and chemical compatibility in other materials systems [11,13]. A potential
solution for this is the use of surface treatments, including chemical oxidation of CNTs.
Several methods of chemical oxidation of CNTs have been reported in the literature: wet
chemical oxidation (using acids) [14–19], plasma treatments oxidation [20,21], ozone and
hydroxyl radicals [22], ionizing environment [23], and synthetic organic chemistry [24]. The
most common method is wet chemical oxidation using different oxidizing acids (H2SO4,
HNO3, or H2SO4/HNO3 solution) or strong oxidants (O3) [25] due to the ease of imple-
mentation in a laboratory and industry setting. Chemical oxidation with acids damages the
graphite-like structure, generates chemically active defects, and attaches various chemical
(oxygenated) groups. The diversity and abundance of attached groups depend on the
oxidation protocol and type of acid used [8,26,27]. Further functionalization of the oxidized
CNTs is achieved by converting the oxygenated surface groups to other functional groups
such as esters or amides by direct coupling between an organic amine or ester and the
oxygenated (carboxylic acid) groups previously formed on the CNT surface [28,29]. The
primary obstacle for functionalizing the oxidized CNTs (O-CNTs) is selecting an ideal
organic molecule, which must be able to provide both efficient surface bonding with CNTs
and reactivity towards the polymer matrix in the polymer nanocomposite [30].

A wide variety of preparation methods have been used to improve dispersion of CNTs
in the HDPE polymer matrix [31–33], such as melt processing, solution casting, in situ
polymerization, and mechanical agitation of molten polymer followed by compression
casting and spin casting [34–39]. The melt compounding method is among the most widely
used due to its advantages of large scalability and high controllability [32,40–42]. This
method involves melting of the polymer to form a viscous liquid, then introducing the
reinforcing additives to the polymer feed [43]. Many different HDPE/CNT nanocomposites
have been successfully prepared using this method. Tang et al. (2003) was the first group to
combine HDPE and CNT to form a HDPE/CNT composite using as-synthesized multi-wall
CNTs (MWCNTs) without any further modification [31]. Kanagaraj et al. (2007) synthesized
HDPE/MWCNT composites using the injection molding technique, in which the HDPE
polymer was melted at 200 ◦C in the plasticized unit of the injection moulding to enhance
the mixing of the polymer with the CNTs, then the mixture was injected into a tensile
specimen. In this process, MWCNTs were first chemically treated with acids to achieve
better interfacial bonding between MWCNT and the HDPE polymer while enhancing the
load transfer properties [44].

While most HDPE/CNT studies focus on the mechanical or electrical properties [45–49],
a few studies have shown that the addition of CNTs to the HDPE polymer matrix increase
the crystallinity or thermal stability of the polymer. For instance, additions of 1% pristine
CNTs (P-CNTs) to the HDPE polymer matrix using mechanical agitation increased the
crystallinity of the polymer from 53.6% to 56.6% [45]. Furthermore, Salehi et al. (2019)
reported that additions of 5% functionalized MWCNT with steric acid to the HDPE polymer
matrix increased the onset crystallization temperature and crystallinity by 2.89 ◦C and 1.8%,
respectively [46]. In another study, adding 1% MWCNT to HDPE increased the melting
temperature by 2 ◦C and decreased the heat of crystallization by 16%, indicating imperfect
crystallization of the HDPE matrix upon addition of MWCNT [50].

Even though HDPE/single-wall CNTs (SWCNTs) and HDPE/MWCNTs composites
have been extensively investigated, the effects of different CNT sources (i.e., functionalized
CNTs, P-CNTs, O-CNTs, SWCNT, and WMCNT) on the thermal and structural properties
of HDPE/CNT composites has not been well studied. Examining thermal and structural
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changes of HDPE/CNT nanocomposites is crucial for synthesis, especially towards tuning
mechanical properties. This investigation compares functionalized, oxidized, and pristine
CNTs on the thermal and structural properties of HDPE/CNT nanocomposites prepared
by melt compounding. Different types of CNTs were used (pristine, oxidized, and amide
SWCNTS and MWCNTS). The nanocomposites were characterized using TGA, DSC, FTIR,
XRD, and SEM. By combining these characterizations, we have obtained a detailed picture
of the morphology and thermal properties of various HDPE/CNT nanocomposites, a
crucial step towards the implementation of these materials for lightweight, high strength
applications.

2. Materials and Methods
2.1. Materials

SWCNT (1.3–2.3 nm in diameter, >70% carbon as SWCNT) (Sigma Aldrich, Ban-
galore, India), MWCNT (outer diameter (O.D.) × (inner diameter (I.D.) × length (L)
(10 nm ± 1 nm) × (4.5 nm ± 0.5 nm) × (3~6 µm), d = 2.1 g/mL, 70–80% carbon content)
(Sigma Aldrich, Darmstadt, Germany), oxalyl chloride (≥99%) (Sigma Aldrich, Beijing,
China), sulfuric acid (98 wt.%) (Sigma Aldrich, Germany). N, N-dimethyl formamide,
ethylenediamine anhydrous (99.0%) (TEDIA, Fairfield, OH, USA), tetrahydrofuran anhy-
drous stabilized (99.8%) (TEDIA, USA), ethanol anhydrous (91%) (TEDIA, USA). Nitric acid
(70 wt.%) (SDFCL (s d fine-chem limited), Maharashtra, India). High density polyethylene
pellets (d = 0.954 g/cm3, Melt index (190 ◦C/2.16 kg): 0.35 g/10 min) (Sabic, Riyadh, Saudi
Arabia), these materials were used as received without any further purification.

2.2. Methodology
2.2.1. Oxidation and Amide Functionalization of CNTs

P-CNT (SWCNTs or MWCNTS) were oxidized by dispersing the CNTs in a mixture
of sulfuric (98 wt.%) and nitric acid (70 wt.%) with volume ratios of (1:3 sulfuric: nitric).
The resultant suspension was refluxed overnight at 70 ◦C. The dispersion was then diluted
with distilled water, filtered through a cellulose membrane (0.45 µm pore diameter), and
repeatedly washed with distilled water until reaching pH 7. Finally, the CNTs were peeled
from the membrane and dried in an oven at 50 ◦C for 24 h.

The synthesized oxidized CNT (O-CNT; O-SWCNT or O-MWCNT) were dispersed in
N, n-dimethyl formamide (DMF) in a sonication bath until a fully dispersed suspension
was formed. This dispersion was transferred to an ice bath with a magnetic stirrer, and
oxalyl chloride was added under nitrogen. These conditions were maintained for two
hours, followed by two hours of stirring at room temperature. After this step, stirring
overnight at 70 ◦C was performed to remove the excess oxalyl chloride. Afterwards,
ethylene diamine was added, and the suspension was stirred at 95 ◦C for three days. After
cooling to room temperature, the suspension was filtered through a cellulose membrane
(0.45 µm pore diameter) and subsequently washed with DMF, ethanol, and tetrahydrofuran.
The synthesized amide CNT (amide-CNT; amide-SWCNT or amide-MWCNT) were peeled
off from the membrane and dried in an oven at 50 ◦C for 24 h.

2.2.2. Preparation of HDPE/CNTs Nanocomposite Sheets

Nanocomposite sheets were prepared by using a melt compounding method. First,
CNTs were dispersed in water using a sonication bath for one hour, then mixed with HDPE
pellets. After that, the mixture was heated and continuously stirred using a magnetic stirrer
to achieve a uniform coating of CNTs on the HDPE pellets. Once the water was evaporated,
the CNT-coated HDPE pellets were dried in an oven at 100 ◦C for 24 h. to evaporate any
extra moisture.

The prepared CNT-coated HDPE pellets were extruded using a DSE-20B co-rotating
twin screw extruder (D = 20 mm, L: D = 40). The barrel temperature, from the entrance
to the exit (zone I, zone II, zone III, zone IV, zone V, die-head and melt temperature) were
154, 164, 175, 175, 160, 160, 160 ◦C, respectively. The feeding rate was fixed at 7 g/min. The
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extruded HDPE/CNTs nanocomposites strip was cooled to room temperature, then cut
to small pieces for compression molding using a CARVER bench top press. The hot press
plates were heated to 195 ◦C and manually compressed to a pressure of ~1 metric ton for
20 min.

Seven sheets were produced by using six types of CNTs: P-SWCNT, P-MWCNT,
O-SWCNT, O-MWCNT, amide-SWCNT, and amide-MWCNT. All prepared nanocomposite
sheets contained 1 wt.% of CNTs. In addition, pure HDPE was prepared and used as a
reference. The seven samples are named M1–M7, as shown in Table 1.

Table 1. Summary of the prepared HDPE/CNTs nanocomposite sheets.

Sample Name CNTs Type HDPE/CNTs Nanocomposite Sheet

M1 Reference sample HDPE
M2 Pristine-SWCNT HDPE/P-SWCNT
M3 Oxidized-SWCNT HDPE/O-SWCNT
M4 Amide-SWCNT HDPE/Amide-SWCNT
M5 Pristine-MWCNT HDPE/P-MWCNT
M6 Oxidized-MWCNT HDPE/O-MWCNT
M7 Amide-MWCNT HDPE/Amide-MWCNT

2.3. Characterization

Fourier transform-infrared spectroscopy (FTIR) was performed using a Thermo Nico-
let NEXUS 670 (Gaithersburg, MD, USA), using 32 scans over the range 4000–400 cm−1 with
4.0 cm−1 resolution. Samples were characterized using KBr. Thermal gravimetric analysis
(TGA) was performed using a STA 409 PG/PC TGA NETZSCH instrument (NETZSCH-
Geratebau GmbH, WittelsbacherstraBe, Berlin, Germany). Samples were analyzed in Al2O3
pans at a heating rate of 10 ◦C/min from 25 ◦C to 800 ◦C in a nitrogen atmosphere. Sample
masses ranged from 4–5 mg. Differential scanning calorimetry (DSC) was performed using
a DSC 204 F1 Phoenix NETZSCH instrument (NETZSCH-Geratebau GmbH, Wittelsbacher-
straBe, Germany). Five milligrams of the sample were encapsulated in standard aluminum
pans. The samples were heated from 25 ◦C to 220 ◦C at a rate of 10 ◦C/min, then kept
at 220 ◦C for three min, followed by cooling to 25 ◦C at 10◦C/min under nitrogen atmo-
sphere. X-ray diffraction (XRD) patterns were performed at 2θ scanning range of 2–60◦

with a step size of 0.02◦ using a 7000 Shimadzu (2 kW) model X-ray spectrophotometer
instrument (Shimadzu, Kyoto, Japan) with a nickel filtered copper radiation (CuKα) with
λ = 1.5456 Å. Sample morphology was investigated using scanning electronic microscope
(SEM), the analysis was performed using a SEM QUANTA FEG 450 instruments, (FEI,
Eindhoven, Netherland). Samples were placed on aluminum stubs and sputtered with
gold (5 nm thickness).

3. Results and Discussion

FTIR analysis was used to qualitatively detect the presence of oxygenated functional
groups at the O-CNTs surface and amide functional groups at the amide-CNTs surface.
Figure 1 shows the FTIR spectra of the treated (oxidized and amide) and untreated (pristine)
CNTs.
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Figure 1. FTIR spectra for the pristine, oxidized and amide CNTs. Figure 1. FTIR spectra for the pristine, oxidized and amide CNTs.
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The CNTs were functionalized using different functional groups (hydroxyl (OH),
carbonyl (C=O), ether (C-O), and amine (NH2)). A distinct 1730 cm−1 peak, 3429 cm−1

broad band, and 1380–1430 cm−1 are attributed to the presence of carbonyl, OH-stretching
vibration, and OH bending vibrations, respectively. In the amide spectrum, a new, strong
broad band at 3200–3500 cm−1 can be assigned to the N-H, NH2, and OH stretching
modes. The carbonyl band in the amide spectrum is shifted to 1600 cm−1 compared with
1700 cm−1 in the oxidized spectrum because of amide linkage formation. The other peak
at approximately 1510 cm−1 is due to the NH2 scissoring mode. These observations are
strong evidence for the introduction of a functional group on the CNTs [45,51,52].

Digital images, taken by a digital camera of the prepared nanocomposite sheets are
shown in Figure 2. All these nanocomposite sheets are appearing nearly identical as black
color sheets due to the presence of the CNTs.
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Figure 2. Digital images of the prepared nanocomposites sheets of HDPE/CNTs samples (M1–M7).

The TGA and the DTG degradation graphs for the prepared sheets are shown in
Figures 3 and 4, respectively. The onset decomposition temperature (T95); the temperature
at which 5% weight loss of the sample occurs, the degradation temperature (Ton); the
first derivative of the TG curve, and the residue content (Summarized in Table 2), were
taken to describe the thermal stability of the prepared nanocomposites. The T95 and
Ton for all nanocomposites sheets were higher than that of pure HDPE, indicating an
improvement in the nanocomposites’ thermal stability by 4–12 ◦C and 2.8–6.7 ◦C for T95
and Ton, respectively. The T95 for the pure HDPE sheet was approximately 444 ◦C. This
thermal stability improvement can be attributed to the addition of CNTs, as they exfoliate
between the polymer chains and retard their mobility, making them more thermally stable
with a higher T95 [44,53]. The residue content was in the range 1.13–1.77% which is
acceptable values and close to the added % of the CNT (1%).

Table 2. Summary of the TGA results of the prepared HDPE/CNTs nanocomposite sheets under air
atmosphere, at a heating rate of 10 ◦C/min.

Sample Name T95 (◦C) Ton (◦C)
First Derivative T Residue Content (%)

M1 444 459.9 1.61
M2 448 463.6 1.77
M3 448 465.2 1.29
M4 448 462.7 1.55
M5 451 464.8 1.13
M6 456 466.8 1.21
M7 453 466.5 1.21
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In most cases the increase in the T95 and Ton, is an indication of the improvement of
the thermal stability. Ferreira et al. reported some enhancement of the thermal stability of
HDPE polymer when the T95 increased in the range of 2.8–13.1 ◦C, after addition of CNT
(2.8 ◦C), carboxylic acid functionalized CNT (9.5 ◦C) and Dodecylamine functionalized
CNT (13.1 ◦C) [37]. Additions of any type of MWCNT resulted in a greater increase in
the T95 compared with additions of any type of SWCNTs. This can be attributed to the
size difference between the SWCNT (smallest size 1.3–2.3 nm) and MWCNT (largest size
10 nm ± 1 nm). The larger MWCNT limits the diffusion of volatile decomposition products,
improving the thermal stability of the nanocomposite. As described by Kodjie et al. (2006),
the thermal degradation of HDPE occurs by random chain scission to form radicals of
alkyl and alkyl peroxyl that are susceptible to inhibition reagents capable of trapping
the radicals [54]. Shi et al. reported that the structural difference between the composite
prepared with modified CNT and unmodified CNT showed different thermal stability [55].
The best thermal enhancement was produced by O-MWCNT. This might hold the key for
radical scavenging and, therefore, more thermal stability. As the O-CNTs have the highest
electron affinities compared with P-CNTs and Amide-CNTs, and O-CNTs have the highest
ability to hydrogen bond with the HDPE molecular chain. Although amide-CNTs could
form hydrogen bonds with HDPE molecular chains as well, their size difference compared
with O-CNTs limited their positive impact on thermal stability [53,56].
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Figure 3. TGA degradation graphs for the nanocomposite sheets M1–M7 performed with heating
rate of 10 ◦C/min from 25 ◦C to 800 ◦C in nitrogen atmosphere.
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Figure 4. DTG degradation graphs for the nanocomposite sheets M1–M7 performed with heating
rate of 10 ◦C/min from 25 ◦C to 800 ◦C in nitrogen atmosphere.

DSC was used to measure the melting and crystallization behavior of the prepared
sheets. The heating and cooling thermograms are presented in Figures 5 and 6, respectively.
Table 3 lists the DSC data (the peak melting temperature Tm, heat of fusion and the percent
crystallinity for all the prepared nanocomposites sheets.
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Figure 5. The DSC heating thermograms for the nanocomposite sheets M1–M7 measured with
heating rate of 10 ◦C/ min from 25 ◦C to 220 ◦C, under nitrogen atmosphere.
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Figure 6. The DSC cooling thermograms for the nanocomposite sheets M1–M7 measured with
heating rate of 10 ◦C/ min from 25 ◦C to 220 ◦C under nitrogen atmosphere.

Table 3. Summary of the DSC results of the prepared HDPE/CNTs nanocomposite sheets under
nitrogen atmosphere, at a heating rate of 10 ◦C/min. 25 ◦C to 220 ◦C.

Sample Name Tm (◦C) Tc (◦C) ∆Hm (J/g) %Crystallinity *

M1 124.8 109.6 90 31
M2 125.4 115.3 87 30
M3 126.1 115.1 86 30
M4 125.7 115.4 82 28
M5 125.0 114.4 84 28
M6 124.3 115.1 89 31
M7 125.3 114.4 83 29

* The crystallinity was calculated based on the heat of fusion of pure HDPE as 293.6 J/g (Kodjie et al., 2006) with
100% crystallinity, and the mass fraction of the HDPE polymer.

The CNTs have negligible effects on the melting temperature (Tm) of all prepared
nanocomposites sheets with Tm changes being maintained within the range of (1–2 ◦C). The
crystallization temperature (Tc) of the nanocomposites was shifted to a higher temperature
in the range of (4.8–5.8 ◦C). The increase in crystallization temperature indicates that
there is an interaction between the CNT and the HDPE, while the CNTs act as nucleating
agents as reported previously in Ferreira et al. study [37]. The crystallinity was calculated
based on heat of fusion for pure HDPE (∆Hm = 293.6 J/g) [54]. The addition of CNTs
minimally affected the crystallinity of the polymer matrix, as the decrease in crystallinity
was limited to 1–3%. This is expected since melt compounding methods expose the
polymer to much higher shear forces that break down CNTs to a small enough size to limit
crystal growth. The decrease in crystallinity by additions of MWCNTs was larger than
the decrease measured by SWCNT additions. This can be attributed to the fact that the
aspect ratio of the SWCNTs is higher than that of MWCNTs. As a result, MWCNTs deform
the molecular chain orientation of the polymer, decreasing intermolecular interactions
and subsequently decreasing the crystallinity [57,58]. This also causes SWCNTs to be
more evenly dispersed in the polymer matrix, resulting in a higher impact on the polymer
properties. Similar results were obtained by other researchers [59,60], although some
reports measure increased crystallinity value by CNT additions [45,46].

SEM imaging for the prepared nanocomposites sheets is shown in Figure 7. The
prepared nanocomposites sheets were characterized using SEM to evaluate the embedding
of CNTs in the HDPE matrix. As shown in Figure 7, the CNTs embedded in the polymer
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matrix appear evenly dispersed between the polymer chains and enhance the connection
between the polymer chains. This is expected due to the high force CNTs are exposed to
during extrusion, which works to effectively disperse CNTs within the polymer matrix [61].
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Figure 7. Scanning electron microscope images of (M1–M7) showing the embedding of CNTs in the polymeric matrix.

The embedding of CNTs in the polymer matrix increased in the following order:
amide-CNTs > O-CNTs > P-CNTs. The increase in embedding may be related to the
presence of the functional groups (oxygenated and amide), which are confirmed by the
FTIR analysis. SWCNTs show greater embedding compared with MWCNT, which can be
related to the difference in the aspect ratios; the higher aspect ratio of SWCNTs provides
easier embedding in the polymer matrix [46].

Prepared sheets were characterized using XRD to qualify the effect CNT additions on
the crystal structure of the polymer matrix. Figure 8 shows the measured XRD patterns
for all prepared sheets. Pure HDPE mainly exhibits a strong reflection peak at 2θ = 21◦,
followed by a less intensive peak at 2θ = 23◦, which correspond to the typical orthorhombic
unit cell structure of (110) and (200) reflection planes, respectively. Additionally, these 2θ
values are in good agreement with the reported values of polyethylene. Additionally, there
are three weak peaks at 2θ = 30◦, 36◦, and 39◦ of the reflection planes (210), (020), and (011)
were distinguished, respectively [62,63]. Figure 8 shows the normalized X-ray diffraction
measurements performed on the prepared sheets M1–M7 at 2θ scanning range of 2–60◦

with a step size of 0.02◦.
The crystallinity and lattice constants (a, b, and c, were calculated based on an or-

thorhombic structure) are summarized in Table 4. These were calculated using Origin Pro
software by measuring the area under the peaks (crystal) divided by the total peak area
(crystal + amorphous), grain size (using Scherrer’s equation [64]).

The crystal size was calculated using Scherrer’s equation.

D =
Kλ

βcosθ

where D: the crystallite size(Å)
K: Scherrer shape factor
λ: Wavelength
β: The full-width-half-maximum (FWHM) value of the peak in radians
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θ: The Bragg angle of the (hkl) reflection plane.
The space between atomic lattices was calculated using Bragg’s equation.

[2dsinθ = nλ]

where θ: the angle of diffraction
d: the space between atomic lattices
n: positive integer

The lattice constant was calculated based on an orthorhombic structure as follows:

1
d2 =

h2

a2 +
k2

b2 +
l2

c2 .

where d: the space between atomic lattices
(h, k, l): The orientation of the orthorhombic plane
(a, b, and c): The lattice constant.

The (200) plane was used to calculate the value of a, (020) plane was used to calculate
the value of b, and the (011) plane was used to calculate the value of d [64].

Table 4. Crystallinity, Crystal size and lattice constant (a, b, and c) for the HDPE/CNTs nanocompos-
ite sheets.

Sample % Crystallinity Grain Size (Å) Lattice Constant (Å)

M1 63.4 155.5 a = 7.533, b = 5.000, c = 2.542
M2 67.2 139.0 a = 7.431, b = 4.934, c = 2.477
M3 68.0 152.4 a = 7.517, b = 4.988, c = 2.493
M4 65.4 164.9 a = 7.552, b = 5.018, c = 2.496
M5 60.5 152.0 a = 7.533, b = 5.003, c = 2.548
M6 75.3 128.0 a = 7.355, b = 4.867, c = 2.529
M7 63.8 140.7 a = 7.422, b = 4.930, c = 2.527

The calculated lattice parameters are a = 7.355–7.552 Å, b = 4.867–5.018 Å and
c = 2.493–2.548 Å. These values are in good agreement with the reported values for the or-
thorhombic unit cell structure of polyethylene [65]. The order of the grain size is as follows:
HDPE/O-MWCNT < HDPE/P-SWCNT < HDPE/Amide-MWCNT < HDPE/P-NWCNT,
HDPE/O-SWCNT < HDPE < HDPE/Amide-SWCNT. The order of crystallinity is as
follows: HDPE/ P-MWCNT < HDPE < HDPE/ Amide-MWCNT < HDPE/ HDPE/Amide-
SWCNT < HDPE/P-SWCNT < HDPE/O-SWCNT < HDPE/O-MWCNT. The highest
crystallinity was for the smallest grain size which can indicate the formation of more
crystallinity with a decrease in the grain size.

The two crystalline characteristic peaks (110) and (200) remain unchanged after the
incorporation of the CNTs. However, for the prepared nanocomposites sheets, there are
distinct changes in the intensities (Figure 8) of the two crystalline characteristic peaks (110)
and (200), with O-MWCNTs producing the highest effect and amide-MWCNNT showing
the lowest effect. These results are in good agreement with the DSC results. There were no
characteristic peaks for CNTs, indicating that the CNTs are exfoliated in the HDPE polymer
matrix, confirming the SEM results [66].

The increase (11.9%) in HDPE crystallinity upon the addition of O-MWCNT resulted
from changing the nucleation type of HDPE from the homogeneous to the heterogeneous
nucleating, which led to accelerating the nucleation process and the formation of more
crystalline grains [57]. This acceleration in the grain growth explained the decrease in grain
size (128 Å) due to the transform structure from coarse grains to fine grains, thus creating
more grain boundary. This can be attributed to the fact that the pore size of the melted
polymer matrix is determined as the CNTs are embedded in the polymer matrix [57].
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The presence of an oxygenated functional group at the O-CNTs surface can possess
the capability to form a hydrogen bond with the polymer matrix. The increase (4.5%) in
HDPE crystallinity upon addition of O-SWCNT compared with O-MWCNT (11.9%) can be
attributed to the size difference between O-SWCNT and O-MWCNT, which significantly
impacts the crystallinity of the HDPE. The larger size of the O-MWCNT makes the O-
MWCNT achieved high interfacial adhesion within the HDPE matrix, which led to the
acceleration of the nucleation process and increased crystallization, which is consonant
with the DSC results [57,67].

The calculated % crystallinity from the XRD data were in the range 60.5–75.3% which
is consistent with the values found in the literature [68]. Although the calculated values of
% crystallinity from the DSC data and the XRD values should show the same trend, the
calculated values from the DSC data were in the range 28–31%, lower than the calculated
values from the XRD, this can be attributed to the previous processing thermal history of
the nanocomposite as was explained by Unge et al. [68].

4. Conclusions

Nanocomposite sheets of HDPE and CNTs were prepared by melt compounding
methods. Different types of CNTs were used (P-SWCNT, O-SWCNT, amide-SWCNT, P-
MWCNT, O-MWCNT, amide-MWCNT) to determine the effects of treatment and type on
CNT compatibility with the HDPE polymer. FTIR confirmed the oxidation and functional-
ization of the prepared CNTs. The thermal stability, crystallinity and crystal structure of
the prepared nanocomposites sheets were characterized using TGA, DSC, SEM and X-ray.
Additions of MWCNT (pristine and functionalized) to the HDPE matrix showed greater
enhancement in thermal stability compared with SWCNT (pristine and functionalized).
The maximum enhancement (12 ◦C) was produced by O-MWCNT. This might be explained
by the potential for oxidized CNTs to act as radical scavengers, offering improved ther-
mal stability. The addition of pristine or functionalized CNTs to HDPE did not change
the crystal structure of the HDPE, but decreased the crystallinity of the polymer, with a
maximum decrease caused by the addition of O-SWCNT. Using the melt compounding
method to reinforce the HDPE polymer matrix with functionalized MWCNTs, a modified
nanocomposite material has been produced which is a candidate for many lightweight,
thermally stable applications, and there is a potential to be used as chemical or bio sen-
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sors material. Of the produced composites, O-MWCNT showed the best enhancement of
thermal properties (12 ◦C) without affecting the crystallinity or the crystal structure of the
HDPE polymer.
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