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Abstract: Steroid hormones are active substances that are necessary in the normal functioning of all
physiological activities in the body, such as sexual characteristics, metabolism, and mood control.
They are also widely used as exogenous chemicals in medical and pharmaceutical applications
as treatments and at times growth promoters in animal farming. The vast application of steroid
hormones has resulted in them being found in different matrices, such as food, environmental, and
biological samples. The presence of hormones in such matrices means that they can easily come into
contact with humans and animals as exogenous compounds, resulting in abnormal concentrations
that can lead to endocrine disruption. This makes their determination in different matrices a vital
part of pollutant management and control. Although advances in analytical instruments are constant,
it has been determined that these instruments still require some sample preparation steps to be able
to determine the occurrence of pollutants in the complex matrices in which they occur. Advances are
still being made in sample preparation to ensure easier, selective, and sensitive analysis of complex
matrices. Molecularly imprinted polymers (MIPs) have been termed as advanced solid-phase (SPE)
materials for the selective extraction and preconcentration of hormones in complex matrices. This
review explores the preparation and application of MIPs for the determination of steroid hormones
in different sample types.

Keywords: sample preparation; endocrine disruptors; steroid hormones; chromatography; molecu-
larly imprinted polymers

1. Introduction

Exogenous chemicals with the ability to interfere with the normal function of hor-
mones are known as endocrine disrupting compounds (EDCs) [1]. The effects of EDCs
include reduced fertility and elevated chances of cancer [2]. One of the most active and
potent group of EDCs in the environment is hormones [3]. Hormones that are naturally
found in mammals are called endogenous hormones, while foreign hormones are classified
as exogenous hormones and can be either natural or synthetic [4]. Steroids are the most
active endocrine hormones found in the environment [1].

Animals produce hormones in endocrine glands, organs, and tissues. These hormones
control a vast amount of activities, including essential ones, such as the regulation of
cell activity and mood control [5]. Hormones can be broadly classified as steroids and
nonsteroids [6]. Structurally, all steroid hormones contain a characteristic arrangement
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of four cycloalkane rings [7]. Steroids are further classified into mineralocorticoids (e.g.,
aldosterone), glucocorticoids (e.g., hydrocortisone), androgens (e.g., testosterone (TST)),
estrogens (e.g., β-estradiol (E2)), and progesterone (PRO) [5]. Their chemical structures are
shown in Figure 1.
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Human and animal excretion often contain natural and exogenous variation of hor-
mones [8]. This is due to the fact that while steroids such as estrogens, mineralocorticoids
(aldosterone), glucocorticoids, androgens, and progesterones can be secreted in the adrenal
cortex [9], there are still exogenous hormones used as contraceptives [10], medicines [11],
and growth promoters [12]. As a result, hormones can end up in the environment via
wastewater treatment plant effluent discharge into receiving water bodies [13].

Hormonal compounds in the water can pose a health risk, such as reproductive
disorders, feminization, masculinization, infertility, and cancer [2]. Water is a good medium
for carrying and distributing polar and semipolar compounds [13]. As a result, incomplete
removal of hormone pollutants in wastewater treatment plants means effluent discharge
into nearby rivers will introduce hormonal pollution into water systems [14]. Table 1 shows
the concentration levels of hormones in water and other matrices in different countries. As
can be seen, while mostly prevalent in water, hormones can still be detected in soil, food,
and even humans. Unusual exposure to hormonal compounds can result in endocrine
disruption that can have negative effects, such as abnormal cell growth of hormone-
regulated tissues [15]. This can lead to neoplasia, hyperplasia, and even cancer [15].

The analysis and quantification of hormones in water matrices has predominantly
been done using chromatography, namely gas chromatography, due to efficient separation
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and successful identification [16]. However, the biggest limitation of gas chromatography
determination is the need for derivatization and conversion [17]. These manipulations can
result in loss of analyte [17]. This has driven a surge in liquid chromatography (LC) methods
that do not require chemical pretreatment for hormonal analysis and quantification [18].
LC methods often lack the GC specificity in complex matrices and thus require sample
preparation in order to ensure accurate quantification [19].

Sample preparation allows for the preconcentration/isolation of ultratrace pollu-
tants [20]. A vast number of sample preparation methods can be distinguished as being
either liquid–liquid or solid-phase extraction [20]. Liquid–liquid extraction uses an organic
solvent as the extracting phase [21,22]. In contrast, solid-phase extraction, as the name
suggests, uses a solid phase (adsorbent material) to extract substances [23]. Solid-phase
extraction (SPE) has been one of the most commonly used sample preparation techniques
since its development in the 1980s [23]. Its advantages are based on its simplicity, selectiv-
ity, high enrichment factors, ease of automation, and use of different adsorbents [24,25].
Molecularly imprinted polymers have been termed as advanced adsorbent materials for
SPE [20,24].

Molecular imprinting was first reported by [26] in a bid to generate artificial receptors.
The imprinting process is done by polymerizing a functional monomer in the presence
of a template molecule [27]. During polymerization, there is formation of a functional
monomer–template complex [28]. This results in a 3D polymer network where a template
is trapped. The template can then be removed by washing, thereby leaving cavities within
the polymer network that are complementary to the size, shape, and molecular interaction
of the template [27].

This review aims to investigate the use of molecularly imprinted polymers in the
determination of hormones in different matrices, namely water, food, and biological sam-
ples. In addition, the most commonly used MIP synthesis methods, such as precipitation
polymerization, and bulk and surface imprinting, are briefly discussed.

2. Global Concentration Levels of Hormones

The increasing concentrations of steroid hormone residues in various matrices in the
environment is proof that even with the bans that are currently in place, their increased
application is still predominant (Table 1).

Table 1. Global hormone concentration levels.

Country Sample Type Type of Hormone Conc. Level Ref.

Malaysia Wastewater 17-β-E2 and 17-α-EE2 0.02–93.9 ng/L [29]
South Africa Wastewater 17-β-E2 15–2000 ng/L [9]

Brazil River water 17-β-E2 14.9 µg/L [30]
China River and wastewater E1 and E3 2.1–360 ng/L [31]
France Butter Medroxyprogesterone 4.1 µg/kg [32]

Portugal Wastewater 17-β-E2 0.085 µg/L [33]
Romania Wastewater E3 and ethynylestradiol (EE) 2.6–4.7 µg/L [34]
Poland Ground water E1 309 ng/L [35]
China Soil PRO, androstenedione, TST, and 17α-E2 0.06–1/20 µg/kg [36]

Hungary River water E2, coprostanol, cholesterol, stigmasterol,
and β-stosterol 0.322–488 µg/L [37]

China River water PRO, boldenone, and norgestrel 8.22–66.2 ng/L [38]
China River and surface water E1, E3, and bisphenol A (BPA) 1.0–690 ng/L [39]

Switzerland Milk E1, PRO, hydroprogesterone, cortisone,
4-androstenedione, and E2 10–342 ng/kg [40]

Brazil Surface water E1, 17β-E2l, PRO, and 17α-EE2 0–5.84 µg/L [41]

South Africa Wastewater and
river water PRO, E1, E2, and E3 0–7133 ng/L [42]

Serbia Surface and wastewater Cholesterol, coprostanol, campesterol,
stigmasterol, β-sitosterol, and sitostanol 12–4808 ng/L [43]

Chile Human urine TST, PRO, and E2 0.20–21.23 ng/L [44]
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In general, global studies have shown that these hormones are frequently detected
in waste and surface waters [9,29,32–34,36–42]. The detection of steroid hormones in
the environment has been reported to differ from country to country (Table 1). In some
cases, their concentrations within the same country also differ depending on the regions
or provinces. For example, in South Africa, maximum concentrations for estradiol of
7133 ng/L were detected in wastewaters from Gauteng Province [42], while concentrations
of up to 2000 ng/L were reported in KwaZulu Natal Province for estrone (E1), 17-β-
estradiol (E2), estriol (E3), 17-α-ethinylestradiol (17-α-EE2), androgens, and progestogens
(PRO) [9]. Olatunji et al. [45] reported concentrations ranging from 600 to 45,500 ng/L
for E2 and E3 in surface water around animal farms in Western Cape. The presence
of steroid hormones in various environmental samples around the world are shown in
Table 1. Maximum concentrations of up to 14.1 µg/L for E1, E2, E3, 17α-EE2, PRO, and
testosterone (TST) were reported in Brazil [30,41], while Beldean-Galea et al. [34] reported
steroid hormone concentrations ranging from 2.6 to 47 µg/L in Romanian water matrices.
Other significantly high concentrations of steroid hormones were observed in Hungary
(0.33–488 µg/L) [37] and Serbia (12–4808 ng/L) [43]. From these studies, it can be noted that
wastewater treatment plants (WWTPs) are the main source of pollution of water by steroid
hormones. This is because effluent from wastewater plants is often released into nearby
rivers. Additionally, WWTPs are not able to completely remove most emerging pollutants,
including hormones, during the treatment process [46]. In other instances, such as the study
by Olatunji and coworkers [45], farm waste, wash water discharge, and incorrect disposal
of unused products were found to be responsible for steroid hormones in surface water
around farm lands. Table 2 also shows that steroid hormones have been detected in a variety
of sample types. These include surface [39], ground [35], and wastewater [29] as well a
food [32], soil [36], and human excreta [44]. This not only increases the chance of pollution
but also means that exposure of these potentially endocrine disruptors is increased.

Table 2. Summary of application of MIPs for the determination of hormones in water samples.

Hormones Matrix Analytical
Techniques

Polymerization
Method LOD (µg/L) %Recovery Reference

17β-E2 Lake, river water,
effluent HPLC One-spot

solvothermal reaction 0.04 88.3–99 [47]

E1, E3, 17β-E2, 17α-EE2,
trans-androsterone, TST, and

PRO
Wastewater GC × GC-TOFMS

and LC-MS Bulk polymerization - - [48]

Diethylstilbestrol (DES), E1,
and E3

River, lake and
tap water HPLC–UV Semicovalent

polymerization 10–16 96–98 [49]

E3 and 17β-E2 Wastewater LC–Q-TOFMS - - - [50]

E2, E3, and EE2 Tap, drinking,
river water HPLC–FLD Surface

polymerization 2.5–5.8 72–102 [51]

E2, E3, and DES Lake and river
water HPLC–UV

Surface
polymerization and

sol–gel method
0.08–0.27 85–95 [52]

E1, E2, E3, DES, and EE2 River water LC–MS - 0.0045–0.0098 47–104 [53]

E1, E2, and DES Lake and river
water HPLC–DAD - 0.3–1.5 75–93 [54]

E1, E2, E3, and EE2 Wastewater HPLC - 1.96–2.76 81–113 [55]
17α-E2, 17β-E2, E1, hexestrol

(HEX), 17α-EE2, DES,
dienestrol (DS), zearalenone

(ZEN), α-zearalanol (α-ZAL),
and β-zearalanol (β-ZAL)

Mineral water
and wastewater HPLC–DAD - 0.01–0.44 65–101 [56]

17β-E2, E1, and E3 Water HPLC–
DAD/ECD Bulk polymerization 0.07–10.99 74–82 [57]

E2, EE, DES, ethisterone (ES),
and E1 River water HPLC–UV Surface

polymerization
0.1 to

0.26 mmol/L 50–96 [58]

estrogen dienestrol (DIS) Seawater HPLC–DAD Surface
polymerization 0.16 87.3–96.4 [59]

GC × GC–TOFMS = comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry, LC–MS = liquid chromatography–mass
spectroscopy, HPLC–PDA = high-performance liquid chromatography–photodiode array, UV = ultraviolet spectrophotometry, LC–Q-TOFMS =
liquid chromatography–quad time-of-flight mass spectroscopy, HPLC–DAD = high-performance liquid chromatography–diode array detector, ECD =
electrochemical detector, HPLC–FLD = high-performance chromatography–fluorescence detection.
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3. Molecularly Imprinted Polymer Synthesis Methods

Molecularly imprinted polymers (MIPs) offer a synthetic route to developing tai-
lorable stationary phases, which are particularly useful in solid-phase extraction [60]. MIPs
are synthetic polymers that can rebind a target molecule even in the presence of interfer-
ences [61], and they are made by copolymerizing functional monomers in the presence of a
template molecule or substitute and a cross-linker [62]. The general preparative method
for molecularly imprinted polymers is presented in Figure 2. The functional monomer is
chosen based on its affinity for the template, which may be based on chemical properties
as well as molecular modelling routines [63]; subsequent polymerization produces a three-
dimensional polymer network with binding sites that are ideally complementary to the
template in scale, shape, and functionalities [61].
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The type of functional monomer has a significant impact on the properties of the
MIP being synthesized. The relationship between the functional monomer and the pro-
totype should be either covalent or noncovalent [65]. In 2016, Figueiredo and coworkers
identified methylacrylic acid, acrylic acid, and 4 vinylpyridine as the most common func-
tional monomers used in imprinting [65]. The use of methylacrylic acid, acrylic acid, and
4 vinylpyridine, particularly for hormone application, could be due to high favorability of
the resulting MIPs [63]. The stability of the functional monomer–template complex, the
ability to form hydrogen bonds, and the absence of polymerizable groups are all important
factors in MIP synthesis. The crosslinker, which influences MIP morphology, is the final
component required for MIP synthesis. It also helps to keep the binding cavities of MIPs
stable. The reviews by Spivak and Vasapollo and coworkers [66,67] highlight cross-linkers
that are compliant with MIPs.

In general, three separate MIP synthesis approaches have been reported in the lit-
erature: covalent, semicovalent, and noncovalent synthesis [61]. The covalent method
involves forming prepolymerization complexes in which the template is covalently bound
to the monomers and then removing the template through chemical cleavage [68]. The co-
valent synthesis results in a homogeneous binding site population and limited nonspecific
binding sites due to the high stability of the monomer–template interaction [67]. However,
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reversible cleavage of the complex under mild conditions is difficult to achieve because of
covalent monomer–template interactions [69].

The semicovalent approach is an immediate solution to the covalent approach restric-
tion. In this approach, the monomer–template complex rebinding is based on noncovalent
interactions, thereby making reversible cleavage simple [40].

Noncovalent imprinting allows the use of weak interactions and is regarded as a
more versatile option [69]. The interactions responsible for the self-assembly between the
template and monomer include hydrogen bonding, π–π bonding, and electrostatic and
hydrophobic interactions [70]. The success of imprinting is characterized by high-affinity
binding sites and is said to be dependent on the choice of the functional monomer [71].
Chen and colleagues [71] discussed in detail the different synthesis methods for MIPs.
Hence, only precipitation, bulk, and surface imprinted polymerization will be covered in
this review.

3.1. Precipitation Polymerization

One preparative phase is needed for precipitation polymerization. This method
of polymerization yields uniform and spherical particles (diameters usually less than
1 µm), but it necessitates a significant amount of template [72]. Precipitation polymeriza-
tion is a surfactant-free process that involves polymerizing monomers in dilute solutions
(without overlap or coalescence) and removing the resulting polymer particles from the
solution [73]. Entropic precipitation of nanogel (seed) particles, followed by continuous
capture of oligomers from solution, is the most common way for particles to develop.
The general scheme for precipitation polymerization in shown in Figure 3. In contrast
to bulk polymerization, this form of polymerization necessitates a significant amount of
solvent [74]. It should also be noted that many variables, such as the polarity of the solvent,
reaction temperature, and stirring speed, affect the size of the particles obtained, so reaction
conditions should be carefully regulated [75].
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3.2. Bulk Imprinting

Bulk imprinting involves imprinting a template molecule in its entirety in a polymer
matrix and then fully removing it from the molecularly imprinted substance after poly-
merization [76]. The bulk polymer is mechanically crushed, and the particles formed are
then fractionated in the next step to form small particles from these bulk polymers. For
relatively smaller molecules, bulk imprinting is preferred. Due to the ease of adsorption
and release of the template molecule, reversible binding can be carried out, which provides
the potential for several rounds of reuse [77].

In sensor applications, using a whole polymer as a prototype has certain advantages
over other methods [73]. Because the template protein (and the target at the same time)
is fully imprinted, the template structure would be very similar to the target structure.
However, the approach has certain disadvantages when dealing with larger structures,
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such as proteins, living cells, and microorganisms. Maintaining the conformational sta-
bility of a protein during the polymerization process is difficult [4,78,79]. Furthermore,
because of the size of the template, large imprinted sites may be attractive to smaller
polypeptides, resulting in cross-reactivity and decreased selectivity [78]. Because of the
thick morphology of bulk imprints, large template molecules are embedded too deeply
in the matrices, limiting or preventing target molecules from binding to the sites. Low
accessibility causes significantly longer response times, drift issues, and poor regeneration
A more drastic situation is that removing the target molecule from the MIP is difficult. This
will result in hindered binding or, in the worst-case scenario, no binding at all. Alternative
imprinting methods, such as surface imprinting, have been designed to address these
limitations [79,80].

3.3. Surface Imprinting

Surface imprinting is a useful technique for depositing a thin layer of polymeric
material on a variety of substrates, including carbon nanotubes (CNTs), Fe3O4, TiO2, and
SiO2. More accessible adsorption sites, rapid mass transfer, fast binding kinetics, and high
selectivity are all provided by this layer of MIPs with imprinted cavities on the surface of
the particles [72,81]. A general scheme of the synthesis of surface imprinting on a silica
nanoparticle core is presented in Figure 4. Although bulk imprinting with these methods is
the most popular synthesis technique, more recently, so-called surface imprinting methods
have revealed distinct advantages. Such advantages include minimal material waste, en-
hanced access to binding sites exclusively on the particle’s surface, tailorability of bead size
from micro to nanoscale, access to sophisticated core–shell configurations (e.g., inorganic
silica core particle with nanothin MIP shell), and reduced mass transfer limitations, leading
to rapid binding kinetics [79,81,82].

Chemosensors 2021, 9, x FOR PEER REVIEW 8 of 20 
 

 

methods, such as surface imprinting, have been designed to address these limitations 
[79,80]. 

3.3. Surface Imprinting 
Surface imprinting is a useful technique for depositing a thin layer of polymeric ma-

terial on a variety of substrates, including carbon nanotubes (CNTs), Fe3O4, TiO2, and SiO2. 
More accessible adsorption sites, rapid mass transfer, fast binding kinetics, and high se-
lectivity are all provided by this layer of MIPs with imprinted cavities on the surface of 
the particles [72,81]. A general scheme of the synthesis of surface imprinting on a silica 
nanoparticle core is presented in Figure 4. Although bulk imprinting with these methods 
is the most popular synthesis technique, more recently, so-called surface imprinting meth-
ods have revealed distinct advantages. Such advantages include minimal material waste, 
enhanced access to binding sites exclusively on the particle’s surface, tailorability of bead 
size from micro to nanoscale, access to sophisticated core–shell configurations (e.g., inor-
ganic silica core particle with nanothin MIP shell), and reduced mass transfer limitations, 
leading to rapid binding kinetics [79,81,82].  

 
Figure 4. General preparation scheme for surface imprinting on a nanoparticle (adopted from 
Riedel and Mizaikoff 2019 [79] with permission). 

By establishing binding sites near to and/or at the substrate level, surface imprinting 
improves the interaction between the template molecule and MIP, ensuring effective mass 
transfer. For imprinting larger molecules, surface imprinting is an especially promising 
technique [79]. Surface imprinting also has the advantage of requiring less template dur-
ing the polymerization process than traditional bulk imprinting. Several imprinting meth-
ods have been investigated, including lithographic imprinting [83], dispersed-phase 
polymerization [84], and grafting via core–shell imprinting [85]. Additionally, electro-
chemical imprinting is another form of surface imprinting. 

In electrochemical polymerization, the solution used contains the template, solvent, 
functional monomer, and supporting electrolyte [86,87]. There is no use of a core nano-
particle as in traditional surface imprinting polymerization. Electropolymerization is di-
vided into potentiodynamic, potentiostatic, and galvanostatic electropolymerization. The 
resulting polymers may be neutral or charged due to the movement of solvated counter 
ion into or out of the film upcharging and discharging during film growth [86]. MIPs pre-
pared using electropolymerization can easily adhere to transducer surfaces, the prepara-
tion is rapid, and the film thickness can be controlled [87,88]. This makes them good can-
didates for sensor applications. The most attractive feature of molecular imprinting using 
electropolymerization is the complete removal of the template molecule by overoxidation 
[64,89,90]. 

  

Figure 4. General preparation scheme for surface imprinting on a nanoparticle (adopted from Riedel
and Mizaikoff 2019 [79] with permission).

By establishing binding sites near to and/or at the substrate level, surface imprinting
improves the interaction between the template molecule and MIP, ensuring effective mass
transfer. For imprinting larger molecules, surface imprinting is an especially promising
technique [79]. Surface imprinting also has the advantage of requiring less template during
the polymerization process than traditional bulk imprinting. Several imprinting methods
have been investigated, including lithographic imprinting [83], dispersed-phase polymer-
ization [84], and grafting via core–shell imprinting [85]. Additionally, electrochemical
imprinting is another form of surface imprinting.

In electrochemical polymerization, the solution used contains the template, solvent,
functional monomer, and supporting electrolyte [86,87]. There is no use of a core nanopar-
ticle as in traditional surface imprinting polymerization. Electropolymerization is divided
into potentiodynamic, potentiostatic, and galvanostatic electropolymerization. The result-
ing polymers may be neutral or charged due to the movement of solvated counter ion into
or out of the film upcharging and discharging during film growth [86]. MIPs prepared us-
ing electropolymerization can easily adhere to transducer surfaces, the preparation is rapid,
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and the film thickness can be controlled [87,88]. This makes them good candidates for
sensor applications. The most attractive feature of molecular imprinting using electropoly-
merization is the complete removal of the template molecule by overoxidation [64,89,90].

4. Sorbent-Based MIP Applications
4.1. Water Samples

Lu and Xu [89] conducted a study investigating the concentrations of E1, 17β-estradiol
(E2), and estriol (E3) in tap, river, and lake water samples. In their work, they explored the
use of E1-imprinted Fe3O4@SiO2@mSiO2 (MM–MIPs) as an adsorbent DSPE for selective
preconcentration and specific recognition of E1, E2, and E3. The MM–MIPs sorbent pre-
sented high adsorption capacity, high extraction efficiency, and fast mass transfer for the
target analytes. The MM–MIP–SPE combined with HPLC–PDA showed relatively good
analytical characteristics. The recoveries ranged from 85 to 95%, and the precision of the
method was less than 6%. Low detection limits ranging from 0.09 to 0.4 µg L−1 and high en-
richment factor of 1700 were obtained. The use of magnetic MIP was also recently reported
by Guc and Schroeder [64], MIPs and magnetic MIPs prepared using bulk polymerization
and core–shell method procedures, respectively, were used as adsorbents for selective
extraction and preconcentration of E1 and E2 from water samples. The quantification of
the analytes in environmental samples was achieved using electrospray ionization mass
spectrometry (ESI–MS) and flowing atmospheric pressure after glow mass spectrome-
try (FAPA–MS). The results obtained revealed that FAPA–MS (LODs = 0.135 µg L−1) was
more sensitive that ESI–MS (LODs ranging from 13.6 to 27 µg L−1). The combination
of MIP/magnetic MIP–SPE method (methodology scheme in Figure 5) with FAPA–MS
resulted in accurate quantification of trace amounts of E1 and E2 in water, and the con-
centrations were found to be 0.271–0.273 µg L−1. These methods combine the features of
MIPs, which ensures the production of selective cavities on the surface of the iron oxide
core. This provides magnetic properties to the MIPs, thus facilitating easy removal and
reuse. The recognition sites located on the surface of each magnetic MIP particle result in
increased selectivity and sensitivity.
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In another study, the MIP–SPE method was coupled with high-performance liquid
chromatography coupled with diode array detection (HPLC–PDA) for selective determina-
tion of E1, E2, E3, 17-α-EE2, PRO, and TST in water [91]. The method proved to be suitable
for quantification of steroid hormones in water because it had relatively low LODs in the
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range of 0.0182–0.0898 µg/mL. In addition, high recoveries (79–101%) and low matrix
effects (<20%) suggested that the developed MIP–SPE method could be used for selective
identification and quantification of the target analytes [91].

Guedes-Alonso et al. [90] reported the synthesis and application of MIP as an ad-
sorbent for SPE of estrogens from wastewater collected from a veterinary hospital and
a wastewater treatment plant. The developed method demonstrated adequate LOD
(0.180.45 ng/mL), acceptable recoveries (>60%), and high precision (<RSD 10%). The
coupling of MIP–SPE with UPLC enabled accurate quantification of the analytes at concen-
trations ranging from 1.35 to 2.57 ng/mL.

The consolidated summary of the application of MIPs as adsorbent for the extraction
and preconcentration of different types of steroid hormones is presented in Table 2. As can
be seen, the use of MIPs as selective adsorbents allows the use of conventional techniques
such as HPLC–UV (DAD) or HPLC–FLD for simultaneous determination of hormones in
environmental matrices. Furthermore, it can be noted that acceptable to low detection limits
(0.04–1.5 µg/L) were obtained using HPLC–DAD/FLD [47,49,50,52–56]. The introduction
of MIPs to various analytical techniques has brought much improvement in terms of selec-
tivity and sensitivity. This can be attributed to the properties of MIPs such as the cavities
formed, which are complementary to the template’s structural signature (size, shape, and
functional group positioning) [64]. The studies conducted by [55,56,58,59,92] examined
different steroid hormones, such as E2, beta, and alpha-zearalonol. The application of MIPs
as a sorbent in SPE (Table 2) shows that low limits of detection for instruments such as
HLPC can be achieved using MIPs.

4.2. Food Samples

Residues of steroid hormones have been detected in various food matrices, especially
in milk samples (Table 3). This might be due to the use of steroid hormones as growth
promoters. For instance, Tang and colleagues [93] reported the dummy molecularly im-
printed polymer microspheres (DMIPMS) as adsorbent for extraction and preconcentration
of natural and synthetic estrogens E1, 17β-E2, E3, EE2, DS, DES, and HEX in milk samples.
The microspheres were synthesized via Pickering emulsion polymerization, and genistein
(GEN) was employed as a dummy template molecule. The FTIR analysis confirmed that the
DMIPMS were successfully prepared as all the expected functional groups were observed.
The developed method was found to be selective toward the selected seven estrogens, and
their quantification was conducted using HPLC–MS/MS. The DMIP–SPE coupled with
HPLC–MS/MS displayed excellent linearity with LODs in the range of 0.10–0.35 µg L−1.
The recoveries after spiking the milk samples at three levels were between 88.9 and 102.3%.
These results suggested that DMIPMS-based SPE could be used for monitoring of trace
estrogens in food samples such as milk.

Table 3. Summary of application of MIPs for the determination of hormones in food samples.

Hormones Food Type Analytical
Technique

Polymerization
Method LOD µg/L %Recovery Refs

E2 Goat milk HPLC–PDA Bulk
polymerization 4.81 76–90 [94]

PRO, TST, β-sitosterol,
cholesterol, and

campesterol

White meat,
egg yolks, and

vegetables
HPLC - 0.003–0.005 97–101 [95]

E2 Milk powder UV Surface
polymerization 9.533 84 [96]

E2 Milk HPLC–UV Surface
polymerization 0.01 89–92 [97]

E2 Beef HPLC–PDA

Surface initiated
atom transfer

radical
polymerization

0.25 97–99 [98]
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Table 3. Cont.

Hormones Food Type Analytical
Technique

Polymerization
Method LOD µg/L %Recovery Refs

E1, E2, and E3 Milk HPLC Surface
polymerization - 81.6–91.6 [99]

E1, E3, and EE2 Fish and
shrimp HPLC–UV Multiple

copolymerization 0.98–2.39 80–94 [92]

E1, E2, E3. and DES Milk powder HPLC–UV surface
polymerization 1.5–5.5 ng/g 81–95 [100]

E2 and E3 Milk tablets HPLC–UV Surface
polymerization 1.49–1.83 89.1–93.5 [101]

DES Pork and
chicken HPLC–UV Surface

polymerization 0.28–0.47 83–99 [102]

E2 Milk HPLC–FLD - 0.006 95–107 [103]

HPLC–PDA = high-performance liquid chromatography–photodiode array, UV = ultraviolet spectrophotometry, HPLC–FLD = high-
performance chromatography–fluorescence detection.

A restricted access media–MIP (RAM–MIP) was reported by Wang and coworkers [93]
for selective extraction of 17β-E2 from milk samples. RAM–MIP was prepared via the
surface imprinting method whereby monodisperse crosslinked poly(glycidyl methacrylate-
co-ethylene glycol dimethacrylate) microspheres were used as the carrier and acryloyl
chloride-modified β-cyclodextrin as the hydrophilic functional monomer. The resultant
adsorbent was found to have high adsorption affinity toward E2. The RAM–MIP–DSPE
coupled with HPLC–PDA was used for analysis of E2 in milk samples. The method
showed promising analytical performance, such as high recoveries (up to 95%), high
precision (<4%), and relatively high sensitivity (LOD = 2.1 µg/L). In another study, Zhu
and colleagues [104] reported the synthesis of zipper-like on/off switchable magnetic
molecularly imprinted microspheres (SM–MIMs) as an adsorbent for the analysis of E2
in milk samples (methodology of the scheme is presented in Figure 6). The SM–MIMs
was prepared by surface polymerization of acrylamide (AAm) and 2-acrylamide-2-methyl
propanesulfonic acid (AMPS). It was observed that the adsorption of E2 to the adsorbent
was temperature dependent. The authors reported that this phenomenon was due to
the interactions between two polymers (poly(AAm) (PAAm) and poly(AMPS) (PAMPS)),
which had on/off switchable property to temperature. The SM–MIM–SPE combined with
HPLC–PDA displayed attractive analytical performance, such as high selectivity, low
LOD (2.5 µg/L), and high recoveries (79–90%), of E2 in complex matrices. Table 3 also
shows that the use of MIPs allows researchers to use simple and inexpensive detection
techniques, such as ultraviolet spectrophotometry (UV) [96] and high-performance liquid
chromatography with UV detectors [95,97,100,103] and achieve low limits of detection.
This demonstrates that the use of MIPs can reduce the dependency on GC analysis.
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Figure 6. Zipper-like on/off switchable magnetic molecularly imprinted microspheres used by Zhu
and colleagues [104] for the solid-phase extraction of steroid hormones in milk samples. (A) Repre-
sent the preparation of molecularly imprinted microspheres and (B) on/off-switchable recognition
mechanisms of molecularly imprinted microspheres.

4.3. Biological and Other Complex Samples

Qiu et al. [105] investigated the levels of anabolic steroids, such as androsterone,
stanolone, androstenedione and methyltestosterone, in human urine. This was achieved
using MIP-coated SPME fibers combined with GC–MS. In their study, a testosterone
MIP was prepared using thermal radical copolymerization of MAA and trimethylol-
propanetrimethacrylate (TRIM). The developed method presented promising analytical
figures of merit. The LOQs, precision, linearity, and recoveries were in the range of
0.01–0.08 ng/mL, 4–15%, 0.02–1 ng/mL, and 87–108%, respectively. The authors reported
enrichment factors, i.e., the enrichment of the chromatographic peaks between these results
suggested that the developed MIP-coated SPME/GC–MS was suitable for rapid extraction
and determination of trace anabolic steroids in biological matrices.

A selective extraction and determination of PRO hormones from biological matrices
such as urine and blood samples were reported by Nezhadali et al. [106]. The extraction and
preconcentration of target analytes were achieved using a polypyrrole MIP (prepared via
bulk polymerization) as adsorbent followed by GC–FID quantification. Under optimized
conditions, the LOD, LOQ, and recoveries were 0.63, 1.9 ng/mL, and 86–101%, respectively.
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The method was successfully applied for the determination of the target analyte in urine
and blood.

Du et al. [107] reported the preparation of dexamethasone-imprinted polymers (DEXA-
MIP) via surface molecular imprinting. The synthesis and application summary can be
seen in Figure 7. The surface molecular imprinting was achieved using a method called
reversible addition–fragmentation chain transfer polymerization on the surface of magnetic
nanoparticles. The prepared MIP was used as a magnetic adsorbent for SPE of DEXA from
skincare cosmetic samples prior to HPLC–PDA determination. The developed method
displayed relatively good accuracy (93–97.6%), high precision (RSD < 3%), and low LODs
(0.05 µg/mL). Furthermore, the developed MIP–SPE/HPLC method possessed attractive
features, such as specific molecular recognition, high adsorption affinity and selectivity, and
simplicity, and it was considered as a good candidate for monitoring trace concentration of
DEXA in various complex matrices.
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and determination of dexamethasone.

A study by Xu et al. [54] reported the application of dual-template MIP–SBSE com-
bined with HPLC–DAD for analysis of E1, E2, and DES in plastic samples. The developed
methods were found to be suitable for selective determination of steroid hormones in
complex matrices with recoveries ranging from 78 to 97%. In cases where analytes are
different structurally, MIPs are not suitable for analysis of target analytes in complex real
samples, such as cosmetics [108]. To overcome these shortcomings, dual-template MIPs
are used. For instance, Liu et al. [108] conducted a study investigating the presence of
glucocorticoids in cosmetics samples. In their study, they explored the use of novel dual-
template magnetic MIP as an adsorbent for SPE. The magnetic MIP was synthesized using
the surface polymerization method, and hydrocortisone and DEXA were used as templates.
The prepared dual-template magnetic MIP had high affinity toward target analytes, and it
was used for extraction and enrichment of hydrocortisone and DEXA in cosmetic prod-
ucts. The magnetic MIP–SPE/HPLC method displayed satisfactory recoveries ranging
86.8–107.5% as well as good precision (RSD <3%). Other applications of MIP based SPE for
preconcentration and extraction of hormones prior HPLC analysis are presented in Table 4.
As seen in this Table, SPE based MIP enabled accurate quantification of various steroid
hormones from urine and serum us-ing less sensitive such as HPLC-UV. In comparison
with UHPLC-MS/MS, HPLC-UV had high detection limits (25-92µg/L).
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Table 4. Summary of application of MIPs for the determination of hormones in biological samples.

Hormones Matrix Analytical
Techniques

Polymerization
Method LOD µg/L %Recovery Refs

E1 and E3 Urine HPLC–UV - 25–32 70–80 [109]
EE2 and E2 Urine HPLC–UV - 76–92 96–99 [110]

E1, 17α- α-E2, β-E2, E3,
EE2, DES, BPA, bisphenol
S (BPS), 4-n-octylphenol

(OP), 4-n-coumestrol
(COU), genistein (GEN),
and enterolactone (ENT)

Maternal
serum, cord
serum, and

urine

UHPLC–
MS/MS - 0.01–0.7 >100 [111]

PRO and TST Human urine HPLC–DAD Bulk
polymerization 0.47 >80 [111]

HPLC–UV = high-performance liquid chromatography with ultraviolet, UHPLC–MS/MS = ultrahigh-performance liquid chromatography
coupled with tandem mass spectroscopy, DAD = diode array detector.

The benefits of using MIPs in solid-phase extraction include improvement of the
recognition selectivity, simplicity, flexibility, and detection sensitivity of the extraction
process and the solventless nature associated with solid-phase extraction [112,113] MIPs in
solid-phase extraction provides an important tool for chemo/bioanalysis in complex matri-
ces and benefits from distinguished advantages, such as easy operation, high throughput,
low cost, high selectivity, and durability [114]. However, there are also disadvantages, such
as the lack of compatibility between the solvent needed to desorb analytes from the MIP
and the mobile phase used (typical drawback of online MISPE protocols) [115].

5. MIP Challenges

Though inexpensive and easy to scale up after calibration of a particular setup, MIP
synthesis needs to be highly customized to the desired target(s). This can be a challeng-
ing task as there is no universal preparation protocol that ensures adequate selectivity
and the MIP technology is not easily transferable among different applications [116,117].
The removal of the template after successful imprinting is important for the steps follow-
ing it, such as assessing binding capability and nonspecific adsorption on nonimprinted
polymers [118]. Because different templates and complementary functional monomers
interact differently, techniques for template removal and assessment of binding capability
and nonspecific adsorption on nonimprinted polymers are often inconsistent [116]. For
example, different polymers necessitate different solvent strength for template removal.
Acrylic acid polymers are more resistant than self-polymerizing PDA MIPs [119]. Although
their stability is also advantageous in bioapplications because they can be sterilized and
reused, the verification of template elimination in is often inconsistent [116]. While some
studies have evaluated template removal using separation methods such as HPLC, which is
evaluated indirectly as a residual of analyte in the sample that is not bound by MIP, others
have not found any precise technique for confirming template removal [117]. Additionally,
MIPs do not produce any signal to show analyte binding onto the polymer, so they must be
used in conjunction with a suitable detection method [73]. MIP surfaces are often formed
over a functional NP, such as one with optical properties. Even though fluorescence and
luminescence methods are becoming more common, the problem of determining the opti-
mal penetration depth of light emission for in vivo applications has yet to be solved. When
used for whole-body optical imaging, however, the signal may be insufficient [73,120].

6. Conclusions

Growing interest in the use of selective adsorbents for extraction of environmental
pollutants, especially those with endocrine-disrupting properties, has resulted in the
development of MIP-based SPE methods. The number of publications reporting the use
of MIP-based SPE in environmental analysis suggest that MIP-based sorbents remain
one of the main factors in the field of sample preparation. This review summarized the
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recent application of MIP-based methods for selective extraction and preconcentration
of steroid hormones as well as sample clean-up of complex matrices, such as soil, food,
and biological samples. Previous studies have revealed that the use of MIP-based SPE
methods enable accurate quantification of steroid hormones in water, food, biological,
and other complex samples. Furthermore, the literature shows that precipitation, bulk,
and surface imprinting are the most frequently used methods for the preparation of MIPs.
However, the absence of universal synthesis protocols that do not require method tuning
and do not have inconsistent template molecule removal after synthesis or nonspecific
adsorption on the polymer has become a major challenge associated with the preparation
and application of MIPs. Researchers have developed novel hybrid MIP-based sorbents
to address these challenges. More recently, the use of sensors is likely to be part of the
next generation of analysis methods, especially MIP-based sensors. This is because the
synthesis methods used for the preparation of MIP sensors, such as electropolymerization,
also addresses one of the most important challenges of MIP synthesis, which is related to
the removal of the template. Finally, the use of sensors would reduce costs associated with
analysis as they eliminate the need for sophisticated instrumentation. The use of MIPs as
selective adsorbents for steroid hormone detection could still be the driver of the next set
of innovations.
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24. Żwir-Ferenc, A.; Biziuk, M. Solid Phase Extraction Technique–Trends, Opportunities and Applications. Polish J. Environ. Stud.
2006, 15, 677–690.

25. Sosa-Ferrera, Z.; Mahugo-Santana, C.; Santana-Rodríguez, J.J. Analytical Methodologies for the Determination of Endocrine
Disrupting Compounds in Biological and Environmental Samples. Biomed Res. Int. 2013, 2013, 1–23. [CrossRef]

26. Wulf, G.; Sarhan, A. Macromolecular colloquim, Angevv. Chem. Int. Ed. Engl. 1972, 11, 341.
27. Wackerlig, J.; Schirhagl, R. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial

use: A review. Anal. Chem. 2016, 88, 250–261. [CrossRef]
28. Cheong, W.J.; Yang, S.H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36,

609–628. [CrossRef] [PubMed]
29. Fang, T.Y.; Praveena, S.M.; Aris, A.Z.; Ismail, S.N.S.; Rasdi, I. Quantification of selected steroid hormones (17β-Estradiol and

17α-Ethynylestradiol) in wastewater treatment plants in Klang Valley (Malaysia). Chemosphere 2019, 215, 153–162. [CrossRef]
30. Moraes, F.C.; Rossi, B.; Donatoni, M.C.; de Oliveira, K.T.; Pereira, E.C. Sensitive determination of 17β-estradiol in river water

using a graphene based electrochemical sensor. Anal. Chim. Acta 2015, 881, 37–43. [CrossRef]
31. Guo, F.; Liu, Q.; Qu, G.; Song, S.; Sun, J.; Shi, J.; Jiang, G. Simultaneous determination of five estrogens and four androgens in water

samples by online solid-phase extraction coupled with high-performance liquid chromatography–tandem mass spectrometry. J.
Chromatogr. A 2013, 1281, 9–18. [CrossRef]

32. Su, R.; Wang, X.; Xu, X.; Wang, Z.; Li, D.; Zhao, X.; Li, X.; Zhang, H.; Yu, A. Application of multiwall carbon nanotubes-based
matrix solid phase dispersion extraction for determination of hormones in butter by gas chromatography mass spectrometry. J.
Chromatogr. A 2011, 1218, 5047–5054. [CrossRef]

33. Silva, C.P.; Lima, D.L.D.; Schneider, R.J.; Otero, M.; Esteves, V.I. Development of ELISA methodologies for the direct determination
of 17β-estradiol and 17α-ethinylestradiol in complex aqueous matrices. J. Environ. Manag. 2013, 124, 121–127. [CrossRef]
[PubMed]

http://doi.org/10.1039/c0em00597e
http://www.ncbi.nlm.nih.gov/pubmed/21390396
http://doi.org/10.1039/c2em30258f
http://www.ncbi.nlm.nih.gov/pubmed/22695474
http://doi.org/10.1016/j.jchromb.2014.10.002
http://doi.org/10.1016/j.jpba.2016.01.016
http://www.ncbi.nlm.nih.gov/pubmed/26818066
http://doi.org/10.1016/j.chroma.2014.08.061
http://doi.org/10.1016/j.watres.2012.08.002
http://www.ncbi.nlm.nih.gov/pubmed/22939851
http://doi.org/10.1016/j.envpol.2015.11.024
http://www.ncbi.nlm.nih.gov/pubmed/26650083
http://doi.org/10.1186/s13065-016-0174-z
http://doi.org/10.1016/j.trac.2011.11.008
http://doi.org/10.1016/j.scitotenv.2012.09.043
http://doi.org/10.1080/07373937.2011.645413
http://doi.org/10.1016/j.aca.2012.02.004
http://doi.org/10.1016/j.chroma.2010.10.040
http://doi.org/10.1016/j.trac.2016.05.023
http://doi.org/10.1155/2013/674838
http://doi.org/10.1021/acs.analchem.5b03804
http://doi.org/10.1002/jssc.201200784
http://www.ncbi.nlm.nih.gov/pubmed/23281278
http://doi.org/10.1016/j.chemosphere.2018.10.032
http://doi.org/10.1016/j.aca.2015.04.043
http://doi.org/10.1016/j.chroma.2013.01.044
http://doi.org/10.1016/j.chroma.2011.05.088
http://doi.org/10.1016/j.jenvman.2013.03.041
http://www.ncbi.nlm.nih.gov/pubmed/23660506


Chemosensors 2021, 9, 151 16 of 19

34. Beldean-Galea, M.S.; Klein, R.; Coman, M.-V. Simultaneous Determination of Four Nonsteroidal Anti-Inflammatory Drugs and
Three Estrogen Steroid Hormones in Wastewater Samples by Dispersive Liquid–Liquid Microextraction Based on Solidification
of Floating Organic Droplet and HPLC. J. AOAC Int. 2020, 103, 392–398. [CrossRef] [PubMed]

35. Kotowska, U.; Kapelewska, J.; Kotowski, A.; Pietuszewska, E. Rapid and sensitive analysis of hormones and other emerging
contaminants in groundwater using ultrasound-assisted emulsification microextraction with solidification of floating organic
droplet followed by GC-MS Detection. Water 2019, 11, 1638. [CrossRef]

36. Zhang, F.-S.; Xie, Y.-F.; Li, X.-W.; Wang, D.-Y.; Yang, L.-S.; Nie, Z.-Q. Accumulation of steroid hormones in soil and its adjacent
aquatic environment from a typical intensive vegetable cultivation of North China. Sci. Total Environ. 2015, 538, 423–430.
[CrossRef] [PubMed]

37. Andrási, N.; Molnár, B.; Dobos, B.; Vasanits-Zsigrai, A.; Záray, G.; Molnár-Perl, I. Determination of steroids in the dissolved and
in the suspended phases of wastewater and Danube River samples by gas chromatography, tandem mass spectrometry. Talanta
2013, 115, 367–373. [CrossRef] [PubMed]

38. Zhao, Y.-G.; Zhang, Y.; Zhan, P.-P.; Chen, X.-H.; Pan, S.-D.; Jin, M.-C. Fast determination of 24 steroid hormones in river water
using magnetic dispersive solid phase extraction followed by liquid chromatography–tandem mass spectrometry. Environ. Sci.
Pollut. Res. 2016, 23, 1529–1539. [CrossRef] [PubMed]

39. Wang, H.-X.; Zhou, Y.; Jiang, Q.-W. Simultaneous screening of estrogens, progestogens, and phenols and their metabolites
in potable water and river water by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass
spectrometry. Microchem. J. 2012, 100, 83–94. [CrossRef]

40. Goyon, A.; Cai, J.Z.; Kraehenbuehl, K.; Hartmann, C.; Shao, B.; Mottier, P. Determination of steroid hormones in bovine milk by
LC-MS/MS and their levels in Swiss Holstein cow milk. Food Addit. Contam. Part A 2016, 33, 804–816. [CrossRef] [PubMed]

41. MFM Sampaio, N.; DB Castilhos, N.; C da Silva, B.; C Riegel-Vidotti, I.; JG Silva, B. Evaluation of Polyvinyl Alcohol/Pectin-Based
Hydrogel Disks as Extraction Phase for Determination of Steroidal Hormones in Aqueous Samples by GC-MS/MS. Molecules
2019, 24, 40. [CrossRef]

42. Mhuka, V.; Dube, S.; Nindi, M.M. Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving
waters in South Africa using LC-OrbitrapTM MS. Emerg. Contam. 2020, 6, 250–258. [CrossRef]
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