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Abstract: Drift compensation is an important issue in an electronic nose (E-nose) that hinders the
development of E-nose’s model robustness and recognition stability. The model-based drift com-
pensation is a typical and popular countermeasure solving the drift problem. However, traditional
model-based drift compensation methods have faced “label dilemma” owing to high costs of ob-
taining kinds of prepared drift-calibration samples. In this study, we have proposed a calibration
model for classification utilizing a single category of drift correction samples for more convenient
and feasible operations. We constructed a multi-task learning model to achieve a calibrated classifier
considering several demands. Accordingly, an associated solution process has been presented to gain
a closed-form classifier representation. Moreover, two E-nose drift datasets have been introduced for
method evaluation. From the experimental results, the proposed methodology reaches the highest
recognition rate in most cases. On the other hand, the proposed methodology demonstrates excellent
and steady performance in a wide range of adjustable parameters. Generally, the proposed method
can conduct drift compensation with limited one-class calibration samples, accessing the top accuracy
among all presented reference methods. It is a new choice for E-nose to counteract drift effect under
cost-sensitive conditions.

Keywords: electronic nose; drift compensation; domain adaptation; one-class calibration

1. Introduction

Over the past three decades, a bionic olfactory system named electronic nose (E-nose)
has been applied to sense and identify volatilized organic compounds with a customized
gas sensor array and associated intelligent algorithm models [1–4]. Behind the development
of E-noses, gas sensor drift caused by inherent characteristics of metal-oxide-semiconductor
sensors has played a negative role degrading the reproducibility of E-noses during long-
term detections [5]. In the view of intelligent algorithm models, the gas sensor drift leads
to a slowly random fluctuation of input signals, which can be seen as a data distribution
movement in a multi-dimensional vector space. To maintain recognition effectiveness, drift
compensation becomes an important issue, adjusting the models to adapt the time-varying
data.

A number of researchers have made efforts to solve the drift problem of E-noses. In
addition to straightforward attempts on gas sensor material, structure, and fabrication
improvements [6–8], the algorithm approach is a popular choice counteracting the nega-
tive effect of drift. Commonly, the algorithm approach can be divided into two manners
based on the usage of category information of drift correction samples. The first one is a
supervised manner, using both drift correction samples and associated class information
(labels) for drift compensation. The supervised manner provides complete drift informa-
tion, but acquires an independent collection process to obtain sufficient and full-category
drift correction samples [9–12], which leads to a costly, laborious, and time-consuming drift
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compensation. To overcome this issue, researchers have tried the second manner, a flexible
process allowing drift correction on fragmentary category information. Accordingly, semi-
supervised learning [13,14] and active learning [15,16] methods have been introduced to
use a relatively small size of full-category drift correction samples selected from massive
unlabeled drift data. Once the size of labeled drift correction samples reduces to zero, that
is, all drift correction samples become unlabeled data, some dimension reduction methods
can be used as long as the drift disturbance is regarded as an abnormal component [17–20].
Moreover, domain adaptation has been utilized, projecting the drift data and initial training
samples for a shorter distance. Following this approach, Zhang et al. enhanced the distribu-
tion consistency between drift and initial training samples in an obtained subspace to adapt
drift sensor responses [21]. Yi et al. conducted a further mathematical model by using
label information of the source data, distinguishing different sample classes [22]. Recently,
Liu et al. have achieved an optimized data space for drift compensation with maximum
label–feature correlation and minimum feature redundancy [23]. Although the second
manner decreases the cost of drift compensation by removing the independent collection
process of labeled drift correction samples, the movement of relative distributions between
different categories has been ignored. Therefore, we need to find a new drift compensation
approach overcoming the drawbacks of the above two manners.

We selected the preferred method of utilizing one-class (one-category) drift compensa-
tion instead of full-category or none drift correction samples in this study. Such one-class
drift compensation not only provides definite label information to determine the relative
distribution changes but also decreases the category demands of drift correction samples.
Accordingly, we have established a multi-task learning model [24,25] to obtain a class-label
predictor of drift data, considering the data and class label distributions of both initial
training and one-class correction samples comprehensively. Specifically, domain adap-
tation and linear predictor model inspired us to mine the unlabeled and labeled sample
information, respectively. Furthermore, we have presented an intact solution process,
gaining a closed-from solution of the proposed multi-task model. We used two long-term
experimental datasets from two E-nose systems as testing benchmarks. From the results
on the benchmarks, the proposed method has demonstrated an obvious superiority to the
other state-of-the-art methods on drift compensation.

The objectives of this study were to: (1) simplify sample preparation by using a single
class of drift correction samples, (2) establish a specific mathematical model for one-class
drift compensation, and (3) provide a fast solution process for the mathematical model.

The rest of this article is arranged as follows: Section 2 introduces the used drift
datasets, the E-nose systems, and the details of the proposed methodology. Section 3
provides related settings, experimental results, and related discussions. Finally, the last
part summarizes this study.

2. Materials and Methods
2.1. Experimental Data

In this study, we have employed two E-nose drift datasets from previous studies as the
drift observations. Dataset A is a public benchmark from [26] while Dataset B is collected
from an E-nose system we have designed [15].

2.1.1. Dataset A

This dataset was generated from an E-nose system consisting of 16 sensors of four
different types (TGS2600, TGS2602, TGS2610, and TGS2620, four sensors of each type),
aiming to distinguish several simple volatile organic substances in a long-term period.
Eight geometric features, including two steady state features, three transient features from
the rising phase, and three transient features from the declining phase, have been extracted
from each gas sensor response curve. Thus, one experiment can be represented as a sample
vector with 128 (16 sensors × 8 features) dimensions. In total, 13,910 samples have been
collected and recorded in a 36-month long period. The testing objects include six categories,
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namely, ethanol, ethylene, ammonia, acetaldehyde, acetone, and toluene. According to the
time of experiments, these samples have been divided into 10 batches (shown in Table 1).
The sample distributions of the 10 batches are visualized by 2-dimensional principal
component analysis (PCA) plots in Figure 1.

Table 1. Sample information of Dataset A.

Batch ID Month ID
Number of Samples Total

NumberAcetone Acetaldehyde Ethanol Ethylene Ammonia Toluene

Batch 1 Month 1–2 90 98 83 30 70 74 544
Batch 2 Month 3–10 164 334 100 109 532 5 1244
Batch 3 Month 11–13 365 490 216 240 275 0 1586
Batch 4 Month 14–15 64 43 12 30 12 0 161
Batch 5 Month 16 28 40 20 46 63 0 197
Batch 6 Month 17–19 514 574 110 29 606 467 2300
Batch 7 Month 21 649 662 360 744 630 568 3613
Batch 8 Month 22–23 30 30 40 33 143 18 294
Batch 9 Month 24–30 61 55 100 75 78 101 470
Batch 10 Month 36 600 600 600 600 600 600 3600
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2.1.2. Dataset B

Dataset B was obtained from a self-designed E-nose system composed of 32 gas
sensors [15]. The gas sensor array information is recorded in Table 2. We used this E-nose
system to analyze complex aroma compounds from different beverages. Each experiment
has been conducted including three phases: baseline, testing, and clean. Both baseline and
testing phases lasted 3 min, maintaining the flow rate at 100 mL/min. The clean phase
lasts 10 minutes with 3 L/min, the maximum flow rate of the E-nose system. Clean air
was injected in both baseline and clean phases, while the headspace vapors of beverages
were sampled in the testing phase. We abstracted one feature s in an experiment from each
sensor response curve as follows:

s = (Rs − R0)/R0 (1)
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where Rs and R0, respectively, denote the stable response and baseline value of a testing
object. Hence, the data of one experiment were refined to a 32-dimensional sample vector
considering 32 sensors in a gas sensor array. We sampled the headspace volatile compounds
of seven beverages, including beer, liquor, wine, pu’erh tea, oolong tea, green tea, and
black tea. With regard to each type of tea, 2 g of solid tea leaves was soaked with 200 mL
of distilled water for 5 min. Afterwards, the original solution of tea can be attained by
filtering out the liquid, while the original solutions of beer, liquor, and wine were bought
directly from the manufacturers. Then, we formulated samples at different concentrations
with both original solution and distilled water, which maintained the temperature around
25 ◦C. Accordingly, low, medium, and high concentration samples were formulated for
each beverage according to the ratio of original solution at 14%, 25%, and 100%. Dataset
B covers a 4-month experimental period, collecting 63, 189, and 189 samples in Month 1,
3, and 4, respectively. For each month, we tested seven beverages in three concentrations
(14%, 25%, and 100%) created by different dilution rates. The experiments on a certain
concentration were repeated one, three, and three times in Month 1, 3, and 4, respectively.
Accordingly, 441 samples have been recorded in Dataset B, and we gathered these samples
into Batch S1–S3 by month. Figure 2 has demonstrated the sample distributions of Batch
S1–S3 in 2-dimensional PCA plots.

Table 2. Gas sensor information of our E-nose system.

Model Type Test Objects Model Type Test Objects

TGS800

Metal
oxide

Smog MQ-7B

Metal oxide

Carbon monoxide
TGS813 Methane, ethane, propane MQ131 Ozone
TGS816 Inflammable gas MQ135 Ammonia, sulfide, benzene
TGS822 Ethanol MQ136 Sulfuretted hydrogen
TGS2600 Hydrogen, methane MP-3B Ethanol
TGS2602 Methylbenzene, ammonia MP-4 Methane
TGS2610 Inflammable gas MP-5 Propane
TGS2612 Methane MP-135 Air pollutant
TGS2620 Ethanol MP-901 Cigarettes, ethanol

TGS2201A Gasoline exhaust WSP2110 Formaldehyde, benzene
TGS2201B Carbon monoxide WSP5110 Freon

GSBT11 Formaldehyde, benzene SP3-AQ2-01 Organic compounds
MQ-2 Ammonia, sulfide ME2-CO

Electrochemical
Carbon monoxide

MQ-3B Ethanol ME2-CH2O Formaldehyde
MQ-4 Methane ME2-O2 Oxygen
MQ-6 Liquefied petroleum gas TGS4161 Solid electrolyte Carbon monoxide



Chemosensors 2021, 9, 208 5 of 13
Chemosensors 2021, 9, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 2. Data distribution of Batch S1–S3 of Dataset B. 

2.2. Notations for Methods 
Some specific notations should be determined for better understanding and intro-

duction of the following models and methodologies. Primarily, the initial and following 
drift samples can be assumed to be two-domain data with discrepant but correlated data 
distribution. The domain adaptation is a kind of transfer learning paradigm, aiming to 
explore a common data space that makes these two-domain data be identically distrib-
uted. In this paper, we, respectively, set initial training samples 

1 2; ; ; S SN N D
S s s sx x x R × = ∈ X   and drift samples 1 2 ; T TN N D

T t t tx x x R × = ∈ X ; ;  as the source 
domain and target domain data, where D is the data dimension, SN  and TN  represent 
the numbers of the source domain and target domain samples. 

1 2, , , S SN N C
S s s sy y y R × = ∈ Y   is a label matrix that contains all the class-label vectors of the 

source domain data, where one-hot coding (mainly uses n-bit status to encode N states. 
Each state is independent and only one bit is effective at any time) was used for each label 
vector, and C is the number of classes. In order to reduce the task complexity, time, and 
material expenditures, we tried to minimize the sizes of both calibration samples and as-
sociated sample categories. Here, we set the category size of the calibration samples to 
one, the minimum value we can access. We defined ( )n D

S S
× ⊂T X  and ( )n D

T T
× ⊂T X  as the 

calibration samples with a unique class label in the source and target domains, respec-
tively, where n is a preset number of the drift correction samples (transfer samples). 
Moreover, we selected a first-order linear decision function to conduct classification in 
terms of its simple structure and low computational loads. , D C

S T
×∈P P   were two 

weight matrices should be solved in decision functions for the source and target domains, 
respectively. Additionally, we have adopted T( )⋅ , F

⋅ , and ∗
⋅  to represent the trans-

pose operator, frobenius, and nuclear norms, respectively. 

2.3. Transfer-Sample-Based Coupled Task Learning 
Transfer-sample-based coupled task learning (TCTL) [27] aims to learn a prediction 

model for E-nose drift samples through a small number of transfer samples (drift correc-
tion samples). It is a typical cost-saving drift compensation method, and its objective func-
tion can be represented as a loss function as follows: 

2 2
1 2,

2 2 2 2
2 , ,

1

min ( , ) min

( )

X T T
S T

S T S S S S S T TF

m

S T j S j T jF
j

Loss y

w

β β
β β β λ β β

λ β β λ β β
=

= − + −

+ − + +
 (2)

Figure 2. Data distribution of Batch S1–S3 of Dataset B.

2.2. Notations for Methods

Some specific notations should be determined for better understanding and intro-
duction of the following models and methodologies. Primarily, the initial and following
drift samples can be assumed to be two-domain data with discrepant but correlated data
distribution. The domain adaptation is a kind of transfer learning paradigm, aiming to
explore a common data space that makes these two-domain data be identically distributed.
In this paper, we, respectively, set initial training samples XS =

[
x1

s ; x2
s ; · · · ; xNS

s

]
∈ RNS×D

and drift samples XT =
[

x1
t ; x2

t ; · · · ; xNT
t

]
∈ RNT×D as the source domain and target do-

main data, where D is the data dimension, NS and NT represent the numbers of the source
domain and target domain samples. YS =

[
y1

s , y2
s , · · · , yNS

s

]
∈ RNS×C is a label matrix

that contains all the class-label vectors of the source domain data, where one-hot coding
(mainly uses n-bit status to encode N states. Each state is independent and only one bit
is effective at any time) was used for each label vector, and C is the number of classes. In
order to reduce the task complexity, time, and material expenditures, we tried to minimize
the sizes of both calibration samples and associated sample categories. Here, we set the
category size of the calibration samples to one, the minimum value we can access. We
defined TS

(n×D) ⊂ XS and TT
(n×D) ⊂ XT as the calibration samples with a unique class

label in the source and target domains, respectively, where n is a preset number of the drift
correction samples (transfer samples). Moreover, we selected a first-order linear decision
function to conduct classification in terms of its simple structure and low computational
loads. PS, PT ∈ RD×C were two weight matrices should be solved in decision functions
for the source and target domains, respectively. Additionally, we have adopted (·)T , ‖ · ‖F,
and ‖ · ‖∗ to represent the transpose operator, frobenius, and nuclear norms, respectively.

2.3. Transfer-Sample-Based Coupled Task Learning

Transfer-sample-based coupled task learning (TCTL) [27] aims to learn a prediction
model for E-nose drift samples through a small number of transfer samples (drift correction
samples). It is a typical cost-saving drift compensation method, and its objective function
can be represented as a loss function as follows:

minLoss(βS, βT) = min
βS ,βT
‖XSβS − yS‖2

F + λ1‖TSβS − TT βT‖2
2

+λ2‖βS − βT‖2
F + λ

m
∑

j=1
w2

j (β2
S,j + β2

T,j)
(2)
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where βS, βT ∈ RD are the source domain and target domain prediction models, respec-
tively. wj is the deviation of j-th sample between the source and target domains. λ, λ1, and
λ2 are term coefficients. In Formula (2), the first term is used to guarantee the correctness
of βS; the second and third items try to keep the similarity between two domains via
recognition results and prediction models; the last one is a Tikhonov regularization term,
which restores predictor information of source domain to the one of target domain. As a
result, βT can be solved from Formula (2) as a linear predictor for drift data.

2.4. Transfer-Sample-Based Multiple Task Learning

In Zhang et al. [28], an improved model named transfer-sample-based multiple task
learning (TMTL) was proposed by slacking the third term in TCTL’s objective function.
Then, the objective function of TMTL can be represented as

minLoss(βS, βT) = min
βS ,βT
‖XSβS − yS‖2

F +
λ1

2NT
‖TSβS − TT βT‖2

2

+ λ2
2n‖XSβS − XSβT‖2

2 +
λ
2

m
∑

j=1
w2

j (β2
S,j + β2

T,j)
(3)

where NT and n are numbers of transfer samples and source domain samples, respectively.
Afterwards, a standard analytical solving process can be performed, obtaining a closed-
form expression of βT as a calibrated classifier.

2.5. Proposed Methodology

Both TCTL and TMTL demand multiple categories of drift correction samples, which
causes extra payment of experimental materials and workloads. Therefore, we have
attempted to use one-category drift correction samples for E-nose predictor updating.

2.5.1. Loss Function Formulation

We aim to establish a comprehensive loss function by multi-task learning, which helps
us to gain optimized PS and PT that projecting initial training and drift samples to a label
space. Several essential demands have been considered in the modeling with one-class
correction samples.

Demand 1: empirical prediction error. The class labels of the source domain samples
can be predicted by the first-order linear model ŶS = XSPS, where ŶS is the estimated form
of YS. Accordingly, we can minimize the empirical prediction error by

min
PS
‖ŶS − YS‖

2
F = min

PS
‖XSPS − YS‖2

F (4)

Demand 2: rank of one-class transfer samples’ labels. The computed labels of the
transfer samples in the source and target domains can be, respectively, expressed as
ŶTS = TSPS and ŶTT = TTPT , where ŶTS , ŶTT ∈ Rn×C. Reasonably, both ŶTS and ŶTT
should be low-rank matrices since the transfer samples are all belonging to a single class
(one-hot encoding was used for classification outputs). Lower rank indicates a much
purer category of the transfer samples. To maintain the class uniformity, we presented the
formulation as follows:

min
PS ,PT

(rank(ŶTS) + rank(ŶTT ))

= min
PS ,PT

(‖ŶTS‖∗ + ‖ŶTT‖∗) = min
PS ,PT

(‖TSPS‖∗ + ‖TTPT‖∗)
(5)

Demand 3: prediction error of one-class transfer samples between source and tar-
get domains. We should guarantee the prediction correctness of the one-class transfer
samples in both source and target domains via PS and PT. In other words, ideally, the
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predicted labels of the transfer samples should be equal on all two domains. To achieve
this goal, we minimized the prediction error of the transfer samples as follows:

min
PS ,PT

(‖TSPS − TTPT‖2
F) (6)

Demand 4: dependency between samples and their class labels. In theory, identical
distributions in label space lead to similar data locations in feature space, that is, sample
distributions are correlated with associate class labels. Therefore, we introduced the
maximum dependency criterion (MDDM) [29] maximizing the dependency between the
one-class transfer samples (TS and TT) and their class labels (LS and LT) by

max
PS ,PT

tr(HTSTS
THLS) + tr(HTTTT

THLT)

= max
PS ,PT

tr(HTSTS
TH(TSPS)(TSPS)

T) + tr(HTTTT
TH(TTPT)(TTPT)

T)

= max
PS ,PT

tr(HTSTS
THTSPSPS

TTS
T
) + tr(HTTTT

THTTPTPT
TTT

T
)

= max
PS ,PT

tr(PS
TTS

THTSTS
THTSPS + PT

TTT
THTTTT

THTTPT)

(7)

where H = I− 1
N eeT , e is an all-one column vector.

Demand 5: correlation between the decision functions of different domains. The
task of the decision functions PS and PT is to recognize discrepancy and correlation data
from the source and target domains. It is bound to generate similar PS and PT. Thus, a
certain degree of similarity between PS and PT must be reserved as follows:

min
PS ,PT
‖PS − PT‖2

F (8)

Total loss function: combining Demand 1–5 (represented by Formulas (4)–(8)), we
can obtain a loss function named one-class drift compensation model (ODCM) as follows:

minLoss(PS, PT) = min
PS ,PT

(‖XSPS − YS‖2
F + λ(‖TSPS‖∗ + ‖TTPT‖∗) + λ1‖TSPS − TTPT‖2

F

−λ2tr(PS
TTS

THTSTS
THTSPS + PT

TTT
THTTTT

THTTPT)

+λ3‖PS − PT‖2
F + λ4(‖PS‖2

F + ‖PT‖2
F))

(9)

where λ, λ1, λ2, λ3, λ4 > 0 are adjustable coefficients for the terms of the ODCM model,‖PS‖F
and ‖PT‖F are two regular terms used to prevent overfitting. Based on Formula (9), both
PS and PT can be determined. Finally, PT is the decision function to be solved, classifying
drift samples XT by XTPT .

2.5.2. Solution

In order to gain a closed-form solution of PT, we primarily converted Formula (9) to
the following formation:

minLoss(PS, PT) = min
PS ,PT
‖XSPS − YS‖2

F + λ(‖TSPS‖∗ + ‖TTPT‖∗) + λ1‖TSPS − TTPT‖2
F

−λ2tr(PS
TTS

THTSTS
THTSPS + PT

TTT
THTTTT

THTTPT) + λ3‖PS − PT‖2
F + λ4(‖PS‖2

F + ‖PT‖2
F)

= min
PS ,PT

tr(XSPS − YS)
T(XSPS − YS) + λtr((TSPS)

T(TSPS)+(TTPT)
T(TTPT))

+λ1tr(TSPS − TTPT)
T(TSPS − TTPT)− λ2tr(PS

TTS
THTSTS

THTSPS + PT
TTT

THTTTT
THTTPT)

+λ3tr((PS − PT)
T(PS − PT)) + λ4tr((PS)

T(PS) + (PT)
T(PT))

(10)

Then, we made partial derivatives of Formula (10) with respect to PS and PT . Letting
the derivatives be 0, we can achieve:

∂J
∂PS

= XS
TXSXSPS + (λ1 − λ2)TSTS

TPS + (λ3 + λ4)PS − λTS
THSTSTS

THSTSPS

−λ1TS
TTTPT − λ3PT − XS

TYS
= APS + BPT − XS

TYS = 0
(11)
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∂J
∂PT

= (λ1 − λ2)TTTT
TPT + (λ3 + λ4)PT − λTT

THTTTTT
THTTTPT

−λ1TT
TTSPS − λ3PS = CPS + DPT = 0

(12)

where

A = XS
TXS + (λ1 − λ2)TSTS

T + (λ3 + λ4)I− λTS
THSTSTS

THSTS
B = −λ1TS

TTT − λ3I
C = −λ1TT

TTS − λ3I
D = (λ1 − λ2)TTTT

T + (λ3 + λ4)I− λTT
THTTTTT

THTTT

(13)

Therefore, we can consider Formulas (12) and (13) as a pair of equations with PS and
PT. The closed-form solution of the ODCM model can be obtained by(

PS
PT

)
=

(
A B
C D

)−1( XS
TYS
0

)
(14)

3. Results and Discussions
3.1. Validation Settings
3.1.1. Data Arrangement

We defined two settings (shown in Table 3) to restructure the drift datasets for various
validation scenarios. In Table 3, K is the total number of batches, Setting 1 represents a
short-term drift scenario with varied initial training samples and following drift samples in
a relatively short period of time, while Setting 2 simulates a long-term scenario with fixed
initial training samples and durative drift samples. Finally, we use “X-Y” to represent a
certain scenario, in which X and Y are batch serial numbers corresponding to the initial
training and drift samples, respectively.

Table 3. Scenario setting.

Scenario Source Domain Target Domain

Setting 1 Batch i (i = 1, 2, . . . , K − 1) Batch (i + 1)
Setting 2 Batch 1 Batch i (i = 2, . . . , K)

3.1.2. Parameter Optimization

Before validation, a number of the pre-settable parameter should be optimized. For
the proposed ODCM methodology, three types of parameters should be preset before
usage: adjustable coefficient, number, and category of the one-class transfer samples. We
used the grid search method to optimize the adjustable coefficients in the range [10−4, 104].
The grid size is flexible and selected from

{
10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103} according

to parameter scales. We chose ethylene (the fourth category) as the one-class transfer
samples for Dataset A, because it appeared in all batches with relatively small quantities.
For Dataset B, considering all categories are equal in quantity, we chose pu’erh tea (the
fourth category) as the one-class transfer samples arbitrarily. In terms of Dataset A, Batch
6 contained 29 transfer samples (the least number among all batches), which limited the
transfer sample size up to 29 in following validation. Considering that more transfer
samples provide more accurate drift information, we set n = 29 for Dataset A. For Dataset
B, we set n = 9 due to the fact that nine transfer samples existed in all batches.

3.1.3. Reference Methods

We have employed three representative drift compensation methods as reference
methods: common component PCA (CCPCA) [30], TCTL, and TMTL. All the three methods
can be conducted with one-class transfer samples according to their principles, which
ensures the fairness of the following evaluation. Among them, CCPCA is a classic measure
to abstract signals from the drift background without any labeled drift correction samples.
Considering CCPCA is a preprocessing method, we adopted a popular classification model
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named support vector machine (SVM) for recognition. We used the linear kernel for the
adopted SVM due to the fast speed and satisfying performance. The penalty coefficient of
SVM was set to 10−4 after grid optimization. On the other hand, TCTL and TMTL are two
state-of-the-art algorithm approaches based on transfer samples. Traditionally, CCPCA,
TCTL, and TMTL adopt multi-class transfer samples during a drift compensation process.
To adapt the one-class acquirement, we had to restrict the transfer samples of CCPCA,
TCTL, and TMTL to one class with identical settings (category and quantity) to the proposed
methodologies and name these methods CCPCA+, TCTL+, TMTL+. Specifically, all the
algorithm parameters of one-class type methods were optimized as Section 3.1.2 illustrated.
In addition, all the mentioned methodologies have been realized and implemented on
Matlab 2018.

3.2. Recognition Results and Analysis

We assess the drift compensation performance of ODCM and other reference methods
by drift sample recognition rate. Here, a higher recognition rate means a greater drift
compensation effect. We have gathered all the recognition rates under different scenario
settings and datasets in Tables 4–6.

Table 4. Recognition rate on Dataset A with short-term settings (%).

Method 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Average

CCPCA 89.95 98.68 90.68 97.97 72.91 88.54 90.48 85.96 30.69 82.87
TCTL 96.95 99.05 99.34 99.47 78.78 78.43 88.38 97.39 78.42 90.69
TMTL 97.35 98.98 99.34 99.47 78.95 97.17 95.42 96.30 71.76 92.75

CCPCA+ 34.11 70.73 48.13 71.43 72.68 52.85 66.79 54.16 42.34 57.02
TCTL+ 98.15 99.05 100.00 99.34 76.22 99.44 96.55 84.30 71.87 91.66
TMTL+ 98.94 99.63 100.00 99.34 96.00 99.37 95.40 98.99 62.21 94.43
ODCM 98.41 99.48 100.00 99.34 78.42 99.72 96.93 100.00 90.99 95.92

Table 5. Recognition rate on Dataset A with long-term settings (%).

Method 1–2 1–3 1–4 1–5 1–6 1–7 1–8 1–9 1–10 Average

CCPCA 89.55 82.28 59.01 60.91 63.70 38.64 22.45 45.96 35.86 55.37
TCTL 96.95 96.85 91.30 98.98 86.78 82.51 86.05 83.19 65.75 87.60
TMTL 97.35 98.80 90.06 98.48 95.35 91.50 91.84 96.38 71.56 92.37

CCPCA+ 34.11 61.07 55.63 46.94 58.20 46.95 22.18 24.73 38.20 43.11
TCTL+ 98.15 98.22 98.47 94.70 69.97 75.18 78.93 67.34 80.14 84.57
TMTL+ 98.94 99.11 98.47 93.38 78.47 71.07 80.84 77.47 75.85 85.96
ODCM 98.41 99.26 100.00 98.68 97.21 79.16 84.67 89.37 91.33 93.12

Table 6. Recognition rate on Dataset B (%).

Method
Setting 1 Setting 2

S1–S2 S2-S3 Average S1–S2 S1–S3 Average

CCPCA+ 30.36 22.87 26.62 30.36 14.36 22.36
TCTL+ 35.19 59.26 47.23 35.19 41.98 38.59
TMTL+ 33.33 62.96 48.15 33.33 40.12 36.73
ODCM 49.38 61.11 55.25 49.38 58.64 54.01

The ODCM method achieves the highest average recognition rate in both scenario
settings on Dataset A. It infers that the ODCM is stronger in robustness than all the reference
methods. From Table 4, the recognition rate of ODCM reaches 90.99% in Scenario “9–10”.
It is 12.57% higher than the runner-up method, TCTL. As well, in Scenario “1–10”, ODCM
gain a recognition score 91.33%, 11.19% higher than the second one (as shown in Table 5).
Upon reference methods, the results demonstrate rare discrepancy between multi-class and
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one-class type methods, which is reasonable because these reference methods are designed
for universal usages.

The recognition rate of each method on Dataset B is demonstrated in Table 6. Similarly,
the recognition rate of the ODCM method is the favorite one under both scenario settings,
7.10% and 15.42% higher than the second-place methods at average recognition rate. It is
clearly confirmed that the learned model by the proposed ODCM can reduce the negative
effect of drift on recognition results.

3.3. Parameter Sensitivity Analysis

We intend to assess the suitability and robustness of the proposed methodology
through the sensitivity analysis of the settable parameters. For the ODCM model, the
adjustable coefficients {λ, λ1, λ2, λ3, λ4} and the number of transferred samples n are
variable parameters of the model. In order to observe the performance impact of these two
coefficients, we optimized them in the range: λ, λ1, λ2, λ3, λ4 ∈

{
10k, k = −4,−3, . . . , 3, 4

}
,

n = {0, 2, 4, . . . , 20} (Dataset A) and n = {0, 1, 2, . . . , 9} (Dataset B). If one coefficient varied,
the others were fixed at the optimal value. We selected two representative scenarios, “3–4”
of Dataset A and “S1–S3” of Dataset B, to observe the performance movement along with
{λ, λ1, λ2, λ3, λ4} and n. The influences on the recognition rate of the adjustable coefficients
{λ, λ1, λ2, λ3, λ4} are shown in Figure 3. It can be seen that the performance keeps stable
in a wind range according to λ and λ1–λ3. But for λ4, the recognition accuracy fluctuates
drastically, which shows that the corresponding regularization term (‖PS‖F + ‖PT‖F) plays
a vital role in this model. Additionally, parameter λ has the least impact on recognition
accuracy. Figure 4 demonstrates the average recognition accuracy with the number of
transfer samples n. The proposed ODCM methodology has the highest average accuracy
in the settable range of n. If n increases, the average accuracy is also improved. When n
reaches a certain degree, the recognition rate just shows a slight change. As a result, 8 and 4
were the most suitable choices for the number transfer samples considering computational
cost and recognition performance for Dataset A and B, respectively.
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3.4. Time Complex Analysis

Implementation efficiency is an important factor that needs to be evaluated. Primarily,
we have compared the theoretical time complexity between the proposed ODCM and the
reference methods. For CCPCA, we should perform PCA and classifier training processes
simultaneously. Therefore, we can gain the computational complexity of CCPCA as follows:

OCCPCA = OPCA

(
d2n + d3

)
+ OSVM

(
nsv

3 + n · nsv
2 + d · n · nsv

)
(15)

where d, n, and nsv are sample dimension, quantity, and support vector quantity. According
to the principle of ODCM, its computational complexity is equivalent to the ones of TCTL
and TMTL. Thus, we can achieve the computational complex relation as follows:

OODCM = OTCTL = OTMTL = O
(

d2n
)

(16)

Based on Formulas (15) and (16), we have OCCPCA > OODCM = OTCTL = OTMTL.
The computational time per sample on Dataset B have been recorded to validate above

theoretical analysis in Table 7. We conducted all the methods on a computational platform
with the following configuration:

CPU: Intel I5-8400
RAM: 8 GB
Hard disk: 256 GB solid-state drive
Operation system: Windows 10.

It can be seen from Table 7 that the execution time of CCPCA is much longer than
other methods. This is because CCPCA requires the participation of SVM during training
and testing, which is very time-consuming. However, the other three methods can give the
predictor directly, so the execution time is greatly reduced. Through the average statistics,
it can be known that the time complexity of TCTL, TMTL, and ODCM are at the same level,
which is completely consistent with the deduction of Formulas (15) and (16).
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Table 7. Execution time per sample of dataset B (millisecond).

Method S1–S2 S1–S3 S2–S3 Average

CCPCA + SVM 5.063 5.345 10.05 6.972
TCTL 0.688 0.732 0.819 0.746
TMTL 0.706 0.681 0.651 0.679
ODCM 0.704 0.750 0.814 0.756

4. Conclusions

In this study, a novel drift compensation manner named one-class calibration has been
presented to simplify the category acquirement of drift correction sample. Based on the
one-category assumption, we have proposed a specific machine learning model to learn a
calibrated classifier. Moreover, we provided a closed-form solution acquisition method for
the proposed model, which avoids the time-consuming iterative calculation. In addition,
we used two drift datasets to validate the advantages of the proposed methodology, achiev-
ing the highest average recognition rate on one-class drift correction samples. Satisfied
suitability and computational efficiency have been proven in parameter sensitivity and
time complex analysis, respectively.
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