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Abstract: Nanohybrids comprising graphene loaded with perovskite nanocrystals have been demon-
strated as a potential option for sensing applications. Specifically, their combination presents an
interesting synergistic effect owing to greater sensitivity when bare graphene is decorated with
perovskites. In addition, since the main drawback of perovskites is their instability towards ambient
moisture, the hydrophobic properties of graphene can protect them, enabling their use for ambient
monitoring, as previously reported. However not limited to this, the present work provides a proof-
of-concept to likewise employ them in a potential application as breath analysis for the detection
of health-related biomarkers. There is a growing demand for sensitive, non-invasive, miniaturized,
and inexpensive devices able to detect specific gas molecules in human breath. Sensors gathering
these requirements may be employed as a screening tool for reliable and fast detection of potential
health issues. Moreover, perovskite@graphene nanohybrids present additional properties highly
desirable as the capability to be operated at room temperature (i.e., reduced power consumption),
reversible interaction with gases (i.e., reusability), and long-term stability. Within this perspective,
the combination of both nanomaterials, perovskite nanocrystals and graphene, possibly includes
the main requirements needed, being a promising option to be employed in the next generation of
sensing devices.

Keywords: perovskite; graphene; gas sensor; breath analysis; biomarkers

1. Introduction

Human breath is a complex matrix in which it is possible to find hundreds or even
thousands of gas compounds [1]. Among this wide variety of molecules, some of them
offer essential information about diseases or health disorders [2]. Noticeably, there are
available completely reliable techniques such as computed tomography scan or blood
analysis to detect some health issues, but they usually also are relatively expensive and
time-consuming [3]. For that reason, during recent years, great research efforts have
been focused on the development of non-invasive devices to perform fast and in situ
analyses [4,5]. It is worth noting that these new approaches are not designed to replace the
existing techniques; their conception is complementary, since these non-invasive techniques
can act as a screening tool for the early-stage detection of health problems. In other words,
new approaches such as the analysis of the human exhaled breath will enable point of
care testing [6]. For instance, the presence of some volatile organic compounds (VOCs)
such as benzene and toluene in breath can be indicative of lung cancer [7,8]. Even some
infectious diseases such as tuberculosis can be detected through breath analysis [9]. As a
consequence, there is a need for reliable devices able to analyze the exhaled breath, giving
a new insight towards the early detection of health problems.
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During recent years, chemical resistive (chemoresistive) sensors have been attracting a
growing interest in front of other techniques such as gas chromatography coupled to mass
spectrometry (GC–MS) and optical sensors. These techniques offer reliable results, being
also capable of detecting trace levels of gas species [10]. However, some drawbacks are
still a challenge, preventing their implementation in industrial applications for exhaled
breath analysis [11]. For instance, GC–MS and optical sensors are usually costly and require
trained personnel to operate, and further miniaturization is still-needed [12]. Conversely,
in-field applications of chemoresistive sensors out of the laboratory are feasible due to their
simplicity, easy miniaturization, and low-power consumption [13]. Moreover, chemore-
sistive devices offer outstanding properties as high sensitivity, straightforward readouts,
and inexpensiveness owing to simple driving circuitry and facile fabrication [14], enabling
a potential integration in commercial devices.

Nevertheless, the main issue that constitutes a significant barrier towards the com-
mercial exploitation of chemoresistive devices is their poor selectivity. In other words,
since very sensitive films can be developed to detect trace levels of a wide variety of gases,
the design of nanomaterials able to distinguish certain compounds in a matrix is still a
significant drawback. Some strategies have been proposed to overcome or at least mitigate
this challenge, such as the use of sensor arrays combining different types of nanomateri-
als [15]. For instance, Y. Zhang and collaborators reported a gas sensor array comprising
four devices based on LaFeO3 [16]. Moreover, these authors used silver as a cross-linker for
grafting different functional monomers that acted as receptors of several gases such as ben-
zene, ethanol, and acetone, among others. With that, despite the overlapped sensitivities
obtained, some monomers were significantly more sensitive than others for specific gas
molecules. This approach can pave the way to counteract the cross-selectivity of gas sensors
with poor specificity. Nevertheless, in this case, an additional multivariate data analysis
such as principal component analysis (PCA) is needed (Figure 1). Then, PCA outputs can
be used to point out similarities and differences within the experimental data and reveal
possible underlying patterns in high-dimensional sensing data [17]. However, the use of
an array of sensors involves more expensive and complex devices, as well as additional
data treatments and, therefore, more time-consuming analysis [18].
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cused on ambient monitoring of atmospheric pollutants such as NO2 [20], volatile organic 
compounds (VOCs) [21], H2S [22], SO2 [23], CO and CO2 [24,25], NH3 [26], and even chem-
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different sensitive layers of the sensor array. Response features are treated by a dimensionality reduction or clustering step
(e.g., principal component analysis, PCA) and a classification or regression step (e.g., partial least squares, PLS) may be used
for identifying the presence of certain gas compounds associated with health problems.

To date, graphene-based gas sensors have been attracting large research interest for
developing a new generation of nanoelectronics [19]. Many works have been mainly fo-
cused on ambient monitoring of atmospheric pollutants such as NO2 [20], volatile organic
compounds (VOCs) [21], H2S [22], SO2 [23], CO and CO2 [24,25], NH3 [26], and even
chemical warfare agents [27]. Nevertheless, fewer works have centered on the use of
graphene-based devices to detect biomarkers in exhaled breath [6] despite their outstand-
ing properties. Graphene shows the ideally highest surface area to volume ratio due to
its 2D configuration, in which all atoms can be exposed to their surroundings in atom-
ically thin graphene [28]. In addition, some properties, such as low level of noise and
high carrier density and mobility [29,30], make graphene an interesting candidate to be
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employed in commercial devices. Additionally, the graphene capability to be operated at
room temperature conditions for sensing applications leads to lower-consumption devices,
simpler circuitry, and, as a consequence, better cost-effective chemoresistors. This fact
is derived from the unnecessary implementation of heating elements that increase the
working conditions of the sensitive films well-above the ambient temperature.

Nevertheless, it is worth noting that pristine graphene, meaning the sp2 carbon config-
uration, exhibits several issues towards its use in sensing applications. The main drawback
is that pristine graphene presents chemical inertness [31], resulting in poor sensitivity
and selectivity due to the low adsorption energies and small charge transfers, especially
when is operated at room temperature [32]. It is worth noting that device configuration
also has an essential role in sensing performance. For instance, Q. Li and collaborators
demonstrated that the use of graphene contacting metallic electrodes (e.g., nickel) improves
the sensitivity and response times in comparison to the bare graphene sheet resistance [33].
Additionally, other parameters such as thermal annealing can significantly change the
graphene–metal contact resistance, resulting in different sensing performances [34]. Indeed,
these graphene–metal contacts can be engineered for favoring the detection of specific
gas species. For instance, C.L. Pereira and collaborators studied how H2 detection in-
duces a doping near the graphene–metal heterojunction. Therefore, by changing the metal
employed it is possible to control the electron transfer, resulting in significant resistance
variations [35].

However, further modifications or functionalizations are usually needed to enhance
the sensing properties of graphene-based devices. The most common strategies are graphene
decoration with metal or metal oxide nanoparticles [36], plasma functionalization to pro-
mote the creation of structural defects [37], and the creation of nanocomposites with
another type of material such as dichalcogenides [38] or polymers [39]. With those ap-
proaches, it is possible to some extent to improve sensing parameters such as sensitivity
and response/recovery times. However, selectivity is not usually ameliorated to a very
high extent, and additional problems can be derived from the use of these nanomaterials.
For instance, to activate the electronic and chemical sensitization roles of metal nanopar-
ticles or dichalcogenides, is often necessary to increase the operating temperature [30],
compromising their low-power consumption and possibly lowering the device lifetime.

For that reason, in recent years, many researchers have explored a wide variety of new
nanomaterials to complement graphene and improve the sensing performance. Among
them, different perovskite compositions, especially those that do not involve the use of
oxides, have emerged as attractive nanomaterials to be employed in sensing studies [40].
Indeed, their capability to operate at room temperature during the gas sensing has the
same advantage as graphene-based sensors, enabling the development of simple and easy-
to-use devices by their combination. In addition, perovskites show interesting properties
from the sensing point of view, such as high reactivity, tunable bandgap, and long carrier
lifetime [41]. The present work comprises the main strategies for functionalizing graphene
and their combination with perovskites to develop sensitive films for the detection of gas
compounds susceptible to be biomarkers in human exhaled breath.

2. Perovskites Compounds
2.1. Perovskite Structure

The main perovskite structure comprises the formula ABX3, where A and B are cations
of different sizes, while X corresponds to an anion. The crystalline structure is arranged
in octahedra, in which every cation B is enclosed at the center of the octahedron and
coordinated with 6 anions X that are located at the corners. Regarding cation A, this is
coordinated with 12 anions, resulting in a cation A located at the center and surrounded by
eight octahedra (Figure 2a). Thereby, this arrangement results in a cubic unit cell, where
the cations A and B are located at the center and the corners of the unit cell, respectively,
while the anion X occupies the edges of the unit cell (Figure 2b).
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This structure confers high versatility to anion and/or cation substitutions, enabling
the modulation of the physicochemical and sensing properties. Not limited to this, the
large size difference in both cations present in the perovskite leads to a wide variety of
dopant additions [42], allowing the modulation of key parameters, such as catalytic activity,
to optimize the gas sensor performance for specific applications [43].

According to this, perovskites can be classified into two main categories: perovskite
oxides (ABO3) when the anion X is oxygen, and halide perovskites (ABX3) where the anion
X is usually a halogen, the most studied being bromine, iodine, and chlorine. Thereby,
halide perovskites offer different electronic and physicochemical properties than their oxide
counterparts. In addition, the cation A in halide perovskites can present both an inorganic
(e.g., cesium and rubidium) or organic (e.g., methylammonium: CH3NH3

+ and formami-
dinium: (NH2)CH+) nature. Moreover, the metal cation B is usually lead or tin [44,45],
but very recently new lead-free perovskites could be synthesized to decrease toxicity and
open new possibilities to modulate the electronic and physicochemical properties [46].
Nevertheless, considering the different ionic radii of A, B, and X sites, the cubic structure
can be distorted. According to Goldschmidt’s tolerance factor (t) [47], the undistorted cubic
structure has values of 0.8 < t < 1. However, values of t below 0.8 induce the distortion
of the cubic structure because of octahedra tilting. As a result, different symmetries like
orthorhombic, tetragonal, and monocyclic can be obtained. Conversely, values of t above
1 lead to hexagonal symmetries [48].

Despite this wide range of feasible perovskite compositions, they can also be syn-
thesized in a variety of forms. Specifically, from zero- to three-dimensional perovskite
nanostructures have been obtained (Figure 3). This is mainly possible by changing the size
of the cation A located at the center of the unit cell (enclosed between the octahedra), lead-
ing to a modulation of the perovskite dimensionality [48]. In other words, a larger radius
of cation A leads to greater distances between octahedra, resulting in lower dimensions.
Thereby, their intrinsic properties and in consequence their sensing performance can be
also modulated by changing the morphologies used [49,50]. Indeed, different perovskite
nanostructures can be employed for the creation of hybrids with other nanomaterials,
such as dichalcogenides, graphene, or metal oxides [51]. This outstanding versatility and
these properties seem to fulfill the demanding requirements for the next generation of
electronics, opening new perspectives to use perovskites in gas sensing devices.
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2.2. Perovskite Oxides

To date, inorganic perovskite oxides have been extensively used in gas sensing appli-
cations to detect a wide variety of compounds [52–55]. This configuration enables a rather
good variability in perovskite compositions, SrTiO3, LaFeO3, and ZnSnO3 [56–58], to cite
some, being the most usually employed. As mentioned before, the change in the elements
used and their nanostructure form can lead to different sensing properties. Moreover, these
oxides can be used for the creation of hybrids with other nanomaterials. For instance,
H. Zhang and J. Yi used LaMnO3 nanoparticles to decorate ZnO nanoflowers [59]. As a
result, the detection of ethanol in the range of 10–200 ppm was enhanced 74% when the
perovskite oxide was present in the sensitive film. However, as will be discussed later,
the use of oxides shows a significant drawback, which is the high operating temperature
needed. In this case, LaMnO3@ZnO samples require 300 ◦C. Regarding the nanohybrids
comprising perovskite oxides and graphene, few works reported feasible applications,
such as gas sensors [60] or solar cells [61], probably owing to the poor alignment between
these two nanomaterials, since the operating temperatures are significantly different.

Perovskite oxides show interesting properties such as high ferroelectricity [62],
and structural and morphological stability [63], extending their potential operational
life and therefore their reliability in sensing devices. This type of nanomaterial also shows
high catalytic activity due to the large concentration of oxygen vacancies, chemisorbed
oxygen from the air, and defective sites on the surface [64]. However, this high sensi-
tivity due to their catalytic activity results in poor specificity (i.e., selectivity) towards
gas molecules. In addition, to activate their catalytic properties, rather high operating
temperatures are usually needed [65]. It is worth noting that one of the main advantages
of the perovskite oxides is their thermal stability, requiring high temperatures for their
melting and decomposition. However, these operating conditions at hundreds of degrees
centigrade [66,67] result in high device power-consumption, a more complex circuitry due
to the presence of heating elements, and therefore higher costs. This fact can constitute an
important barrier to their adoption in commercial devices.

Regarding the lack of selectivity, this is an unsolved issue despite the great research
efforts done. Overall, the sensing mechanism of bare perovskite oxides is based on the
interaction of gas molecules with chemisorbed atmospheric oxygen adsorbed on the per-
ovskite oxide surface. Thus, adsorbed oxygen species capture electrons from the nanoma-
terial, increasing the hole concentration. Hence, when gas compounds interact with the
chemisorbed oxygen, the electrons are released and recombined with holes. Additionally,
it is worth noting that gas compounds can interact with oxygen vacancies and defective
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sites on the perovskite oxide surface. However, these mechanisms are rather general,
offering poor specificity towards gas molecules.

One strategy designed to ameliorate to some extent the selectivity of perovskite oxide-
based gas sensors is their doping with other elements [68–70]. For instance, E. Cao and
collaborators developed a chemoresistor based on Cl-doped LaFeO3 for ethanol sens-
ing [71]. The sensing response was significantly enhanced when the perovskite oxide was
doped with chlorine. This better sensing performance is attributed to the replacement of
adsorbed oxygen by chlorine dopant, increasing the charge transfer between gas molecules
and doping elements. However, not limited to this, a few years later, Cl-doped LaFeO3
perovskites were further modified with Au atoms [72], increasing even more the sensitivity
to ethanol. Since this strategy is perfectly reasonable to improve the sensing performance,
each additional step for modifying the perovskite oxides increases the complexity of
their synthesis and their cost of production. Despite these better sensing responses, it is
worth noting that the selectivity issue is still a challenge, preventing their use in commerc-
ial applications.

Another common element used for doping perovskite oxides is silver. Several works
reported their use for obtaining Ag@ZnSnO3 [73] and Ag@LaFeO3 [74] for acetone and
formaldehyde gas sensing, respectively. In both cases, the silver-doped perovskites show
higher sensing responses (up to 3-fold) than their bare perovskite oxides. Nevertheless,
cross-sensitivity should be further improved to be able to discriminate certain gas com-
pounds, and the operating temperatures should be lowered even in the presence of these
doping elements. In this regard, Y. Tie and collaborators demonstrated that by doping
BiFeO3 hollow nanofibers with Pr, the optimum operating temperature for detecting some
gases such as formaldehyde can be lowered to some extent [75].

An additional issue related to the use of perovskite oxides is their dependence of the
water vapor levels. This phenomenon can be an opportunity for the ambient monitoring ap-
plications, in which doped perovskite oxides like Mg@LaFeO3 [76] and Sm@LaMnO3 [77]
were employed as humidity sensors, taking advantage of this dependence. However,
considering the high content of water vapor in exhaled breath, this probably prevented
the ability to detect biomarker molecules in the same matrix due to the significant cross-
sensitivity [78]. For that reason, the approach proposed by Q. Chen, in which gold nanopar-
ticles inhibit the moisture influence [79], can have a large impact on the next generation of
sensing devices for exhaled breath applications. Specifically, these authors decorated In-
doped ZnSnO3 perovskites with Au nanoparticles. As a result, the sensor responses to ace-
tone were kept almost changeless against different levels of ambient moisture. Even more,
the response and recovery times were further lowered, but as usual in this type of nanoma-
terial, relatively high operating temperatures (200 ◦C) were still required.

2.3. Halide Perovskites

Halide perovskites, classified as inorganic and organic in nature, depending on the
cation A employed in the ABX3 structure, offer an extreme variety of potential compositions.
During recent years, this type of nanomaterial has emerged as a thriving research field,
attracting the attention of many works centered on studying their different properties
according to the anions and cations used. In fact, their effective use in solar cells [80]
and photocatalytic [81,82] applications has been extensively studied and demonstrated.
However, despite their interesting properties from the sensing point of view such as
tunable bandgap, high electron/hole mobility, long carrier lifetimes, and large adsorption
coefficients [41], fewer works use them as gas sensors.

Halide perovskites show some intrinsic properties that make them ideal candidates
for the next generation of gas sensing devices. For instance, this nanomaterial is usually
able to operate at room temperature [83], leading to reduced power consumption and inex-
pensive devices owing to their simpler circuitry. Moreover, many halide perovskites can be
synthesized via solution processing methods, involving facile and low-cost synthesis [84].
Some works reported the use of halide perovskite thin films as gas sensors for different
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target analytes such as NO2 [85], NH3, [86], H2 [87], ozone [88], and acetone [89], to cite
some. In this regard, halide perovskites can also be employed to detect gas compounds sus-
ceptible to be biomarkers, but several parameters should be further improved. For instance,
A. Nuraini and I. Oh reported a thin film of MAPbI3 for detecting ethanol [90], but the
concentration tested was 10,000 ppm, showing an LOD of 1300 ppm, far from those levels
needed in practical uses. Another example is the work done by W. Jiao [91], in which a thin
film of lead halide perovskite was used for detecting ammonia gas, but this compound
showed an irreversible reaction with the sensitivity film, resulting in the lowering of the
sensing performance and the degradation of the nanomaterial.

Therefore, in combination with further optimization of halide perovskite gas sensors,
probably more research efforts are needed to couple them with other nanomaterials. To date,
few works have engineered this type of perovskite to create nanocomposites, such as their
doping with atoms of other natures [92] or the introduction of organic molecules into the
halide perovskite lattice [93]. Another interesting alternative for optimizing gas sensor
properties can be the use of UV or visible light activation to take advantage of the outstand-
ing absorption coefficient properties of halide perovskites. With that, it would be possible
to enhance the sensing performance because the light activation induces the formation
of electron–hole pairs in halide perovskites, increasing their reactivity (i.e., sensitivity)
towards gas molecules located in their surroundings.

Nevertheless, halide perovskite-based gas sensors present significant drawbacks
that are still unsolved. The main one is related to their fast degradation in the presence
of ambient moisture [94]. Water molecules considerably reduce their stability, limiting
their potential implementation in commercial applications. Moreover, some changes in
the temperature or pressure can disrupt the halide perovskite crystallinity [95], being a
challenge that still has to be overcome.

3. Perovskite@Graphene Nanohybrids
3.1. Graphene Functionalization

The reported properties of graphene provide a myriad of possibilities for applications
in different technological areas such as electronics, energy storage and conversion, and par-
ticularly property enhancement in hybrid materials. However, its low dispersibility in
both organic and inorganic solvents prevents its optimal combination with different nano-
materials, which is a key problem for graphene technologies. Therefore, the modification
of graphene to tailor its solubility is critical for varied applications. Basically, graphene
can be modified with covalent and noncovalent methods. Non-covalent methods include
π–π stacking interactions, electrostatic interaction, hydrogen bonding, coordination bonds,
and van der Waals force [96–98]. These methods are considered to preserve most of the
graphene properties, though the interaction between the added functional groups and the
graphene surface are relatively weak; hence, it is not appropriate for applications where
strong interactions are required. Conversely, in the covalent modification methods, strong
interactions between graphene and the added functional groups are present; therefore,
the graphene pristine structure is normally disrupted, leading to inferior electrical conduc-
tivity and mechanical properties, however promoting a better quality hybrid material due
to better dispersion and improved interaction among different materials that compose the
hybrid material [99,100].

Covalent modifications are obtained via disruption of the conjugation of graphene
sheets [96]; depending on the amount of defects created, the graphene natural conductivity
can be strongly negatively affected. This type of modification is applicable when total preser-
vation of graphene’s natural conductivity is not necessary, such as in tuning of graphene’s
solubility, anti-bacterial activity, or surface chemical reactivity. Covalent modifications can
also be obtained via doping heteroatoms onto the graphene lattice [101–103]. Furthermore,
for graphene produced via the oxidation–reduction method, the partial reduction results
in oxygen-containing functionalities grafted at the graphene surface, also permitting co-
valent modifications [104]. Oxidation and reduction processing is a facile method to tune
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graphene properties by controlling the number of grafted oxo-groups and lattice defects.
Therefore, methods that allow the reduction degree of GO to be tuned have attracted ex-
tensive attention, as controlled reduction removes the excess of oxygen-containing groups
and different atomic-scale lattice defects and also recovers the conjugated network of the
graphitic lattice [105].

Different methods can be used for GO reduction such as thermal annealing [106],
microwave and photo irradiation [107–109], chemical reduction [110,111], and electrochem-
ical [112] and solvothermal reduction [113,114]. Among these methods, thermal annealing,
chemical reduction, and microwave irradiation are the most commonly used. For example,
N.J. Song and collaborators [115] prepared thin films of GO with tailored conductivity
and mechanical performance by changing thermal annealing temperatures. These authors
showed that for increasing temperature, the removal of oxygen-containing functional
groups increases with simultaneous conversion from sp3 to sp2 carbon bonding in the
hexagonal carbon lattice. At the end of the thermal annealing near 1000 ◦C, the material
exhibits high thermal conductivity of ca. 1043.5 Wm−1K−1, and excellent mechanical
stiffness and flexibility with a high tensile strength (13.62 MPa) and Young’s modulus
(2.31 GPa). M. Feng and collaborators [116] reported on the effect of different reducing
agents on the de-oxygenation and restoration of π–π conjugation of graphene oxides (GO).
These authors compared the reduction using basic (sodium hydroxide (NaOH), sodium
borohydride (NaBH4), hydrazine hydrate, and NaBH4 and hydrazine hydrate) and neu-
tral (superheated H2O) reducing agents. The treatment with hydrazine hydrate was the
most effective for the reduction of GO. NaBH4 and superheated H2O were the next best
performing reducing agents, and NaOH was the least efficient. However, by treating GO
powders in a commercial microwave-assisted oven, reduced GO can be readily obtained
within 1 min in ambient conditions, which greatly improved the graphene preparation
efficiency [117].

3.2. Development and Characterization of Perovskite@Graphene Nanohybrids

In recent years, the resurgence of graphene-related materials in chemical sensing
and photovoltaics followed the emergence of metal halide perovskite solar cells [118,119].
The use of graphene oxide, reduced graphene oxide, or functionalized graphene within
metal halide perovskite solar cells has been reported as an optimal approach to tackle the
main challenges, such as enhancement of photovoltaic performance and stability, control-
lable thin film growth and deposition, scalability, and cost [118,120,121]. For instance, M. Li
and collaborators [121] reported that addition of oxo-functionalized graphene/dodecylamine
suppressed the ion migration in perovskite solar cells. These authors showed that the chem-
ically functionalized graphene flakes wrapped the perovskite crystal, isolating them and
thus reducing ion migration inside the active layer [121–123]. Within the perspective of
using halide perovskite as an active material in gas sensing, J. Casanova-Chafer and collab-
orators showed that graphene has a decisive role in the stability of the sensing layer and its
performance towards the fast detection of volatile organic compounds [119].

Regarding the perovskite metal oxides, the ambient moisture tends to form hydroxyl
ions at the nanomaterial surface [124]. In the case of halide perovskites, water molecules
induce the distortion of the perovskite lattice, resulting in a probable degradation [125].
For instance, it was reported that CH3NH3PbI3 perovskite is degraded into CH3NH3I
and PbI2 in the presence of ambient moisture [126]. It is worth noting that raising the
temperature may partially revert these changes and enable the crystalline halide perovskite
to be obtained upon removal of water molecules [127]. Nevertheless, this strategy does not
seem reliable in industrial uses, and considering the presence of variable moisture levels in
the atmosphere, the use of perovskites in commercial applications is in truth challenging.

To date, despite the significant research efforts done to improve perovskite stabil-
ity against ambient moisture, there are not many feasible alternatives yet. However,
a breakthrough has consisted of using lead halide perovskites nanocrystals to decorate
graphene [119,128], avoiding perovskite degradation even in the long-term. The reason
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behind the graphene loading with halide perovskite is based on the high graphene hy-
drophobicity, protecting perovskite degradation against the effect of ambient moisture.
In this regard, the main goal is to obtain gas sensors using perovskites that are reliable for
ambient monitoring and exhaled breath analysis, in which significant and variable water
contents are present. Few works already reported the feasibility and benefits of develop-
ing perovskite–graphene nanocomposites in solar cell applications [129,130]. However,
their implementation in the gas sensing research field is still exploitable.

Moreover, halide perovskites usually show deficient temperature stability, resulting in
their degradation or at least changes in the phase transitions (e.g., from cubic to tetragonal
or orthorhombic) that are lowering their properties [131]. This fact constitutes a significant
problem, since even moderate temperatures near 150 ◦C may degrade the perovskites [132].
Therefore, room temperature working conditions are desirable from the sensing point of
view, being translated into lower power-consumption and simpler circuitry. Moreover,
it is interesting for the stability of the perovskites, resulting in a longer operation life.
Considering this, the graphene capability to be operated at ambient temperature creates
a synergy effect, in which the poor sensitivity of graphene can be ameliorated by the
perovskites, while the instability of perovskites against ambient moisture can be tackled
thanks to the hydrophobicity of graphene.

Specifically, we synthesized several metal halide perovskite nanocrystals for decorat-
ing graphene nanoplatelets. For better comparison, all graphene samples were decorated by
using the same experimental conditions, and similar procedures were followed to synthe-
size the different perovskite compositions. In that way, the comparison of several samples
with some changes in their compositions was feasible. Figure 4a depicts a high-resolution
transmission electron microscopy (HR-TEM) image of the bare graphene. Overall, it can be
appreciated that graphene layers presented lengths of a few hundred nanometers, while
several layers were stacked, showing distances of about 2.4 Angstrom. Figure 4b shows a
field emission scanning microscope (FESEM) image of the deposited bare graphene onto
the substrates. A porous surface can be observed, which usually confers interesting sensing
performance. The easy and inexpensive methods followed for synthesizing the halide per-
ovskite nanocrystals result in highly crystalline samples with an average diameter ranging
from 6 to 8 nm (Figure 4c). Finally, Figure 4d shows the resulting hybrid nanomaterial,
where graphene (black background) is quite homogeneous, decorated with the perovskite
nanocrystals (bright spots). In brief, lead halide perovskite nanocrystals were supported
on liquid-phase exfoliated (LPE) graphene, which is an interesting preparation method
given its low cost [133].

3.3. Gas Detection

Casanova-Cháfer et al.’s first approach [128] was loading graphene with methylam-
monium (MA) bromide perovskite (MAPbBr3) nanocrystals for the detection of pollutants
in the atmosphere. The short- or long-term exposition to these gases may have a haz-
ardous effect on human health. In this regard, toxic gases such as NO2 and NH3 were
detected at ppb and ppm levels, respectively. Indeed, the limits of detection (LOD) were
situated below the threshold limit values (TLV), offering higher sensitivities (up to 3-fold)
when graphene was decorated with perovskite nanocrystals than their bare graphene
counterparts (Figure 5a). The nanohybrid developed showed higher sensing responses
than perovskite thin films-based sensors [85,89], demonstrating the outstanding sensing
performance of this perovskite–graphene implementation. Not limited to this, a second
approach [119] was conducted by loading graphene with different perovskite nanocrystals.
In particular, the role of different anions and cations was elucidated by preparing six
compositions. Considering the ABX3 perovskite structure, three cations A (methylam-
monium, MA (CH3NH3

+); formamidinium, FA ((NH2)2CH+); cesium (Cs+)), and three
halide anions X (Cl−, Br−, and I−) were studied. Trace levels of aromatic VOCs such
as benzene and toluene gases were measured (Figure 5b), offering stable, reproducible,
and sensitive sensing readouts. These compounds are associated with several health issues,



Chemosensors 2021, 9, 215 10 of 20

such as sub-clinical lung cancer, when present in exhaled breath [7]; therefore, the use of
perovskites opens new possibilities to develop sensing devices for biomarker detection.
It is worth noting that when bare graphene was exposed to VOCs it was not possible to
distinguish the resistance variation from the noise level. As a consequence, the sensing
responses obtained could be attributed to the effect of the halide perovskites. In other
words, perovskite nanocrystals act as chemical receptors, while graphene mainly acts as a
charge conductor. Furthermore, significant differences in the sensing performance can be
observed by changing the perovskite composition. Experimental results showed that MA
cation presents higher sensitivities than FA and Cs (Figure 5c), while Br− anions also offer
better sensing responses than Cl− and I− (Figure 5d).
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It is understandable that graphene loaded with perovskite nanocrystals tends to show
higher gas sensing responses than the bare carbon nanomaterial. Overall, the graphene
employed shows a relatively small concentration of oxygen-containing groups (<10%).
Nevertheless, these functional groups, such as carbonyl, hydroxyl, or ether, increase
the hole transport capacity due to the shifting of the Fermi level towards the valence
band and also by increasing the work function [134]. In this regard, for a well-known
p-type semiconductor such as graphene, exposure to electron-withdrawing (e.g., NO2) or
electron-donating (e.g., NH3) gases leads to a decrease and increase of the sensor resistance,
respectively. This is because adsorbed gas compounds at the surface induce changes in the
local carrier concentration with carbonaceous defects and oxygenated-functional groups
grafted on the graphene layers [96]. However, the sensing responses for bare graphene
samples are rather poor, especially if gas measurements are conducted at room temperature.

For that reason, considering the high reactivity of halide perovskites, their mere pres-
ence decorating graphene tends to show better sensing performance for a wide variety
of gases at room temperature. It is worth noting that perovskites are ambipolar charge
transporters [83], which means that they can act as an p- or n-type semiconductor depend-
ing on the interaction between the nanohybrids and the nature of the analyte. Indeed,
the halide perovskites developed present surface trap sites acting as reactive sites for the
target gas compounds. Specifically, a net positive charge is formed at the perovskite surface
due to the loss of the halide and the undercoordination of the lead atom, promoting their
sensitivity to gases. Thereby, once the sensitive films are exposed to the gases (Figure 6),
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perovskites tend to separate electron–hole pairs, in which an interface is created between
graphene and perovskite. As a result, an excess of positive (holes) and negative (electrons)
charges are generated at the nanocrystals for electron-withdrawing and electron-donating
gases, respectively. The excess of charge generated at the perovskite is transferred to
the graphene [135], which is the dominant carrier transport nanomaterial, explaining the
p-type behavior of the sensitive film. As a consequence, the sensing response to both types
of gases can be improved when perovskite nanocrystals are decorating graphene sheets.
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Nevertheless, it is important to point out that different ABX3 compositions offer differ-
entiated sensing performances. According to Figure 5c,d, the perovskite MAPbBr3 shows
better results than other anions and cations. This is probably derived from the relative
energy level positions (band structure) and trap defect concentrations at the nanocrys-
tal surfaces. According to the cation-substituted compositions, MA, which offered the
higher gas sensing responses, leads to a better energy-level alignment with the graphene
work function than do FA and Cs cations (Figure 7a). As a result, more effective hole
extraction when detecting electron-donor gases like benzene and toluene can occur. In ad-
dition, the density of surface trap sites from under-coordinated Pb ions may also have
a key role in the interaction with gas compounds. Thereby, since aromatic compounds
can passivate the surface of the nanocrystals [136], it might be foreseen that MAPbBr3
presents a higher density of trap sites than FAPbBr3 and CsPbBr3, especially considering
that MAPbBr3 shows lower photoluminescence quantum yield than other perovskites
tested [137]. Indeed, structural defects and vacancies may act as carrier traps quenching the
photoluminescence [138], denoting a larger density of trap sites in MAPBBr3, and therefore
a higher number of available sites to react with gas compounds.
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Regarding the halide anion influence on the sensing performance, experimentally
the perovskite MAPBBr3 led to better sensing results than Cl− and I−. However, the sam-
ple containing iodine (MAPbBr2.5I0.5) presents better energy-alignment with graphene
(Figure 7b). This means that probably more parameters have an essential role to detect
VOCs. For instance, it was reported that different halides show significant variations in
carrier mobility, demonstrating that MAPbBr3 and MAPbI3 preferentially exhibit unipolar
and ambipolar behavior, respectively. As a consequence, the excess of positive charges
generated at MAPbBr3 upon their interaction with benzene and toluene is more efficiently
transferred to a p-type nanomaterial such as graphene due to better hole mobility. Con-
versely, MAPbI3 presents similar mobilities for positive and negative charges, lowering
their efficiency.

3.4. Potential Use for Breath Analysis

Detection of gases susceptible to be biomarkers of health issues in exhaled breath
should overcome a key challenge as was mentioned before. Water vapor is probably the
highest cross-interferent molecule present in breath. Moreover, this problem is magnified
when using halide perovskites, which experience fast degradation. However, promising
results were obtained in a humid atmosphere using graphene loaded with perovskite
nanocrystals. Contact angle measurements revealed the highly hydrophobic surface ob-
tained from graphene (Figure 8a) and therefore minimizing the impact of the water
molecules on perovskite nanocrystals. Actually, bare graphene tends to show higher sen-
sitivities in humid conditions when electron-withdrawing gases are being detected [139].
The reason is that water molecules are also electron-withdrawing when interacting with
the oxygen-containing groups of graphene. As a result, water-mediated adsorption is
promoted, inducing larger resistance changes [140]. Conversely, perovskite@graphene
nanohybrids show similar responses in dry and humid conditions (Figure 8b). A slight de-
crease in the sensitivity in the presence of ambient moisture is even observed. The possible
reason beyond this sensing mechanism is the partial passivation of perovskite in humid
conditions. As a result, the charge transport and the formation of electron–hole pairs are
lowered at the perovskite nanocrystals [141].
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Figure 8. (a) Contact angle measurement for graphene loaded with MAPbBr3 perovskite nanocrystals. Adapted from
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Sensors MDPI 2019, 19 (20), 4563.

These results show an innovative approach to employ perovskites in gas sensing
devices operated at room temperature. Thanks to graphene’s hydrophobicity, lead halide
perovskites are more stable against ambient moisture, thus increasing their stability at
least for months. However, further improvements are required to improve the selectivity
and optimize the concentrations detected to achieve the trace levels needed for exhaled
breath analysis.

4. Conclusions and Outlook

The graphene loading with perovskite nanocrystals has been shown to be a feasible
nanomaterial for sensing applications, in which a synergistic effect between both materials
is created. The presence of perovskite nanocrystals can easily enhance the reactivity of
the sensing layer and therefore ameliorate the poor sensing performance of the bare
graphene. The high hydrophobicity that can be achieved via graphene functionalization
may protect the perovskites against ambient moisture, which is their main drawback that
is preventing their effective use in commercial devices. Moreover, their capability to detect
gas molecules at room temperature can pave the way towards low-power consumption
and inexpensive devices.

Nevertheless, since few works have reported this approach, more research efforts are
needed for elucidating the role and sensing performance of different perovskite compo-
sitions. In that way, further optimizations might be performed to improve some sensing
parameters, such as reducing the cross-sensitivity or the limit of detection for sensing de-
vices based on perovskite@graphene nanohybrids. In addition, most of the previous works
reporting the use of halide perovskites for different applications such as photovoltaics and
sensors are based on lead as cation B. However, the use and manipulation of this toxic
element can constitute a potential threat to the environment.

Therefore, the recently reported lead-free halide perovskites are a promising nano-
material for being implemented in gas sensors, opening a potential new research avenue
for achieving materials with reduced footprint and toxicity, while outstanding properties
can be even further improved in comparison to their lead halide counterparts. In that way,
regarding the sensing of gas molecules, perovskite@graphene nanohybrids may be em-
ployed in a wide range of applications, such as monitoring ambient pollutants or detecting
biomarkers in breath analysis, to cite some.
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