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Abstract: We constructed an imaging system to measure the concentration of acetone gas by ace-
tone reduction using secondary alcohol dehydrogenase (S-ADH). Reduced nicotinamide adenine
dinucleotide (NADH) was used as an electron donor, and acetone was imaged by fluorescence
detection of the decrease in the autofluorescence of NADH. In this system, S-ADH–immobilized
membranes wetted with buffer solution containing NADH were placed in a dark box, and UV-LED
excitation sheets and a high-sensitivity camera were installed on both sides of the optical axis to
enable loading of acetone gas. A hydrophilic polytetrafluoroethylene (H-PTFE) membrane with
low autofluorescence was used as a substrate, and honeycomb-like through-hole structures were
fabricated using a CO2 laser device. After loading the enzyme membrane with acetone gas standards,
a decrease in fluorescence intensity was observed in accordance with the concentration of acetone gas.
The degree of decrease in fluorescence intensity was calculated using image analysis software; it was
possible to quantify acetone gas at concentrations of 50–2000 ppb, a range that includes the exhaled
breath concentration of acetone in healthy subjects. We applied this imaging system to measure the
acetone gas in the air exhaled by a healthy individual during fasting.

Keywords: imaging system; acetone; secondary alcohol dehydrogenase; enzyme; gas; UV-LED;
lipid metabolism

1. Introduction

Human volatiles, such as exhaled breath and skin gas, contain hundreds of volatile or-
ganic compounds (VOCs), which can be collected noninvasively and easily [1–3]. Since the
concentration of VOCs changes with diseases and metabolic abnormalities, measurement
and analysis of VOCs in humans may assist in non-invasive evaluations of metabolism and
disease screening [4–9].

It has been reported, for example, that the air exhaled by patients with diabetes
contains higher concentrations of acetone gas than that exhaled by healthy individu-
als [8,10–12]. In addition, this concentration increases with fasting and exercise. The
production of acetone gas by humans can be explained as follows. When the energy
component of carbohydrates in the body is insufficient, fatty acids released from adipose
tissue into the bloodstream are produced as ketone bodies (e.g., acetone, acetoacetate,
and β-hydroxybutyrate) after undergoing ß-oxidation [10,13,14]. Acetone, which is highly
volatile, is carried through the body in the blood before being excreted as exhaled air or
urine. By measuring the concentration of acetone, it is possible to evaluate lipid metabolism
and the state of ketosis during exercise [15]. In addition, because of their insulin deficiency,
patients with diabetes tend to be in the same metabolic state as people who are fasting,
whereby fatty acids are preferentially used as an energy source. Therefore, measuring the
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concentration of acetone in exhaled air can be used to evaluate the lipid metabolism and
detect diabetes in its early stages [16,17].

Human breath and skin volatiles contain a mixture of more than 2000–3000 gaseous
compounds [18–20]. The concentrations of these compounds can fluctuate considerably
with time. The concentrations of the various gas components emanating from the human
skin are very low (i.e., at a parts-per-billion (ppb) level) compared with those of the VOCs
in breath and blood. Human skin volatiles are easier to collect than exhaled air since the
measurements require less restriction. Therefore, skin gas sensors can be used to evaluate
the biological condition of a subject without limiting their mobility. For instance, while the
concentration of acetone in the exhaled air of healthy individuals at rest is 200–900 ppb, the
concentration of acetone in skin gas is 77–97 ppb [21,22]. Similarly, the concentration of
ethanol in the air exhaled by healthy individuals at rest is 37–207 ppb, while the ethanol
concentration in the gas emitted from the skin is 3.6–79.2 ppb/min [23,24], even when
measuring the upper arm or the whole hand. As the concentrations of ethanol and acetone
released from the surface of the skin are extremely low, there is a demand for highly
sensitive gas sensors and measurement techniques [25–29].

In recent years, progress in the production of analytical devices has enabled the
measurement of minute amounts of odorous materials and volatile chemical components
related to various diseases [30–32]. Body-derived gases (transdermal vapor), such as
gases from halitosis and body odor, contain compounds produced by metabolic processes
and ailment-specific components [33]. Representative VOCs in exhaled breath have been
identified as possible diagnostic markers for various diseases. For example, acetone, am-
monia, isoprene, 2-propanol, cyclohexanone, hydrogen sulfide, nitric oxide, ethane, carbon
monoxide, acetaldehyde, and formaldehyde have been associated with disease [3,34–39].
High-sensitivity analysis or measurement of these volatile biological components are
employed for medical diagnostics and disease screening.

Human volatiles are multicomponent mixtures, and their release kinetics and con-
centration distributions fluctuate over time. High gas selectivity, sensitivity, and re-
sponsiveness are important for measurements. Gas chromatography–mass spectrometry
(GC–MS) and semiconductor sensors have already been utilized for the measurement of
VOCs [8,18,40]. However, these methods have some limitations, such as complicated oper-
ation and gas selectivity, as well as an inability to accurately evaluate the spatio-temporal
information of the gaseous compounds. Nevertheless, an enzyme-based gas sensor (bio-
sniffer) can measure acetone in exhaled air with high sensitivity and selectivity [12,41].
Furthermore, by applying this technology, we were able to image ethanol and acetaldehyde
in the exhaled breath and skin gas after drinking [42–44].

The aim of this study was to image and measure the acetone contained in human
volatiles, which may be used for the evaluation of lipid metabolism. In this study, we
constructed an acetone gas imaging system for exhaled gas measurement as preliminary
research for future skin volatile measurement. After investigating the optimal conditions
for the enzyme reaction, we constructed an acetone gas imaging system with selectivity
and sensitivity and evaluated the characteristics of the sensor. In addition, this system
was applied to the imaging of acetone gas in the exhaled breath by a healthy individual to
investigate its usefulness in evaluating lipid metabolism.

2. Materials and Methods
2.1. Construction of the Acetone Gas Imaging System

In our system, acetone was reduced to isopropanol through a reaction catalyzed by sec-
ondary alcohol dehydrogenase (S-ADH) and producing oxidized NAD (NAD+); reduced
nicotinamide adenine dinucleotide (NADH) was used as an electron donor. Equation (1)
shows the principle of visualization and measurement of acetone gas based on the fluo-
rescence of coenzyme NADH. NADH has auto-fluorescent properties (excitation: 340 nm,
fluorescence: 490 nm). By combining an excitation light source and a high-sensitivity cam-
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era, we detected and visualized the NADH consumed in the enzymatic reaction following
gas loading.

acetone + NADH + H+ S-ADH−−−−→2− propanol + NAD+ (1)

Imaging of the distribution of acetone gas was performed using a high-sensitivity
complementary metal-oxide semiconductor (CMOS) camera to capture decreases in fluo-
rescence intensity as a result of NADH consumption due to the reduction of acetone gas
using S-ADH. Figure 1a–c shows the imaging system for acetone gas and direct breath
gas supplying system. In this system, an ultraviolet-light-emitting diode (UV-LED) sheet
(340 nm, 9 × 9 LED array, 340 × 081 SFN; Dowa, Tokyo, Japan) and a CMOS camera (α7S
II; Sony, Tokyo, Japan) were placed in a dark box facing each other across the immobilized
S-ADH mesh to provide uniform light irradiation to a two-dimensional surface. A band-
pass filter (λ = 340 ± 42.5 nm; Edmond Optics, Barrington, NJ, USA) for excitation light
was placed in front of the LED sheet, and a band-pass filter for fluorescence (λ = 490 ± 10 nm;
Asahi Spectra, Tokyo, Japan) was placed in front of the camera lens.
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Figure 1. (a) Schematic illustration of the acetone gas imaging system using an UV-LED sheet, S-ADH immobilized mesh,
and CMOS camera. (b) Schematic image of the direct breath gas imaging system using a flow sensor and flow regulator.
(c) Photograph of the imaging system.

2.2. Enzyme Immobilization Method

For the visualization of acetone gas, we first prepared an S-ADH enzyme immobiliza-
tion mesh that recognized acetone gas. The enzyme mesh was immobilized using enzyme
immobilization materials. Since the autofluorescence of these materials interferes with
imaging, we selected suitable materials and methods for immobilizing the enzyme with
low autofluorescence. We chose cotton (Orange Care, Tokyo, Japan), hydrophilic polyte-
trafluoroethylene (H-PTFE; Merck Millipore Ltd., Burlington, MA, USA), and a cellulose
dialysis membrane (UC-36-32-100; EIDIA Co., Ltd., Tokyo, Japan). Each substrate was cut
into 20 × 20 mm pieces, and autofluorescence was measured using an optical system for
comparison.
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Next, we examined the materials used for immobilization of the enzyme. As immobi-
lization materials, we evaluated copolymers of 2-methacryloyloxyethyl phosphorylcholine
and 2-ethylhexyl methacrylate (PMEH) [45] and glutaraldehyde (GA; 25% aqueous solu-
tion; Fujifilm Wako Chemical Co., Ltd., Tokyo, Japan). A cotton mesh substrate was loaded
with 2.0 units of S-ADH (1 unit/mg; Daicel Corporation, Tokyo, Japan) immobilized using
PMEH or GA. The S-ADH in the H-PTFE membrane was immobilized with PMEH. Each
mesh substrate was soaked with an NADH solution in potassium phosphate buffer. The
membranes with immobilized enzyme were placed in the imaging system to measure the
decrease in fluorescence intensity with 1 ppm acetone gas. For comparison, S-ADH was
physically adsorbed onto a cotton mesh without using any immobilizing material.

Two types of mesh patterns, namely a square pattern and a honeycomb pattern
(Figure S1), were prepared and fabricated by a CO2 laser cutting machine (ML-G 9300;
KEYENCE). The laser intensity and scan speed were optimized, and the H-PTFE membrane
was processed into a mesh. The H-PTFE mesh was cut into a 20× 20 mm2 piece and S-ADH
was immobilized using PMEH. The pore size and thickness of the H-PTFE membrane
(Merck Millipore Ltd., Burlington, MA, USA) were evaluated using a pore size of 10 µm
and a thickness of 85 µm.

2.3. Characterization and Analysis Method of the Imaging System

The amount of enzyme on the S-ADH-immobilized mesh was optimized. The enzyme
meshes were produced by adding a mixture of S-ADH (20 µL) and 10% PMEH (20 µL)
adjusted to each concentration (0.1, 0.25, 0.5, 1.0, 1.5, and 2.0 units/cm2) onto the H-PTFE
meshes processed into a honeycomb structure. The mixture was spread on the substrate
and dried at 4 ◦C for 3 h. Next, the enzyme mesh was soaked with 500 µM NADH
solution (40 µL) and placed in a dark box. Acetone gas (1 ppm, 60 mL/min) was loaded
from the back side of the mesh, and the decrease in fluorescence induced by the enzyme
reaction was captured by a high-sensitivity CMOS camera. Exposure time length was
33 ms. We used image processing to quantify the effect of enzyme levels on output and
responsiveness. The optimal pH for enzyme activity was also investigated. NADH solution
(500 µM) prepared in buffers of various pH (acetate: 3.0–5.0; potassium phosphate: 5.0–8.5;
carbonate bicarbonate: 9.0–11.0) was added to the S-ADH solution. The NADH solution
(500 mM; potassium phosphate: 5.0–8.5; carbonate bicarbonate: 9.0–11.0) was used to soak
the immobilized S-ADH mesh and the output was compared after the loading of acetone
gas standards. Subsequently, the fluorescence image was subjected to differential analysis
using an image analysis software based on Equation (2) to improve the output response to
acetone gas.

dI
dt

=
g(t + ∆t)− g(t)

∆t
(2)

where I represents the intensity (a.u.), t represents the time (s), and g. (t):t (s) represents
fluorescence intensity.

Next, various concentrations of acetone gas standards (50, 100, 200, 500, 1000, 1500,
2000 ppb) were loaded, and the fluorescence intensity and change in fluorescence due to
the enzymatic reaction were determined to evaluate the quantitative characteristics of this
system, such as selectivity. The fluorescence intensities were compared by loading the
immobilized S-ADH mesh with an acetone gas standard prepared at 1 ppm using represen-
tative components (i.e., acetone, 2-butanone, 2-pentanone, acetaldehyde, formaldehyde,
methanol, 2-propanol, 1-propanol, ethanol, and 1-butanol).

2.4. Imaging of Acetone Gas in Exhaled Air during Fasting

The imaging system was used to measure acetone gas contained in exhaled air of
individuals in a fasting state (Tokyo Medical and Dental University Ethics Committee
Approval Number: M2018-160). After measuring body temperature, blood pressure, and
pulse rate, as well as confirming the physical condition of the subjects, we assessed their
diet and lifestyle using a questionnaire. For exhalation measurements, exhaled air was
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directly loaded into the imaging system using an exhalation flow control device every
1 h from 1 h before to 6 h after meals, and images were captured using a high-sensitivity
camera. For the exhalation loading method, we first had the individual take a large breath
in through the nose, hold it for 10 s, and slowly exhale for 3 s to remove the exhalation air
that had accumulated in the dead cavity. The exhaled air at each time point was collected
in a Tedlar gas sampling bag (3 L; AS ONE Co., Ltd., Osaka, Japan) and maintained in an
incubation cover (I-cover; AS ONE) at 36 ◦C. The human subject was one healthy adult
male. The concentration of acetone was measured through the solid phase microextraction
method using GC–MS (JMS-Q1500GC; JEOL Co., Ltd., Tokyo, Japan).

3. Results and Discussions
3.1. Evaluation of Enzyme Immobilization Methods and Substrates

We investigated the autofluorescence of three types of substrates (H-PTFE, cotton, and
cellulose membrane) for enzyme immobilization in the imaging system of acetone gas. In
the comparison of fluorescence intensities, H-PTFE showed lower autofluorescence than
cotton and cellulose membranes (Figure 2a). The autofluorescence of cotton and cellulose
can be attributed to the high content of conjugated compounds, such as lignin, in naturally
occurring fibers.

Next, S-ADH was immobilized on the H-PTFE membrane and cotton mesh by GA
cross-linking or PMEH polymer, and changes in fluorescence upon loading of acetone
gas standards were compared. The highest output was obtained following S-ADH im-
mobilization on H-PTFE membranes with PMEH (Figure 2b). Therefore, H-PTFE was
used as substrate for the comprehensive immobilization of S-ADH with PMEH. The GA
immobilization method can exert a significant inhibitory effect on S-ADH.

In the enzymatic membranes using PMEH on the H-PTFE membrane, a decrease in
NADH fluorescence induced by acetone gas loading was confirmed; however, variation in
fluorescence distribution was observed. Therefore, we examined through-hole structures
in the H-PTFE membrane to determine a way to reduce this variation.
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Figure 2. Evaluation and selection of enzyme immobilization substrates and immobilization materials.
(a) Comparison of intrinsic fluorescence of the H-PTFE membrane, cotton mesh substrate, and
cellulose membrane. (b) Comparison of the average intensity of combinations of substrates (cotton,
PMEH) and immobilization methods (glutaraldehyde, PMEH polymer) to 1.0 ppm acetone gas.
(a.u., arbitrary unit; GA, glutaraldehyde; H-PTFE, hydrophilic polytetrafluoroethylene; PMEH,
2-methacryloyloxyethyl phosphorylcholine and 2-ethylhexyl methacrylate).
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Imaging of acetone was carried out using H-PTFE meshes processed into square or
honeycomb shapes (Figure 3). The variation in fluorescence distribution was reduced
compared with that noted in cases without a through-hole structure. In particular, with the
honeycomb shape, changes in fluorescence were observed around the gas loading point.
Therefore, H-PTFE mesh processed into honeycomb shapes was used for the subsequent
imaging of acetone gas.

The S-ADH mesh, an H-PTFE membrane immobilized with PMEH, has some short-
comings in fluorescence stability and drying during the acetone gas loading. We investi-
gated the effect of pore size and thickness of H-PTFE membranes on the retention capacity
of NADH solution and the drying of the membranes under gas loading. The results showed
that the H-PTFE membranes with a pore size of 10 µm and a thickness of 85 µm produced
by Millipore could be used for a relatively stable measurement of acetone gas.
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3.2. Characteristics of the Acetone Gas Imaging System

The optimum pH of the imaging system was investigated. NADH solution (500 µM,
40 µL) adjusted using various pH buffer solutions was applied to the immobilized S-ADH
mesh, and the output response after loading of acetone gas (1.0 ppm) was compared. The
maximum output was obtained with the pH 6.5 potassium phosphate buffer solution.
Enzyme meshes were fabricated with different amounts of enzyme (0.25–2.0 units/cm2)
and loaded with acetone gas standards. Based on these results, we decided to fabricate
the enzyme-immobilized mesh using 0.5 units of S-ADH per cm2 and use an NADH
solution adjusted to pH 6.5 with potassium phosphate buffer solution for the subsequent
measurements of acetone gas (Figure 4). We optimized the enzyme concentration. We
examined the 90% output response time at 0.1–2.0 units/cm2 of enzyme volume. As shown
in the Figure S2, the response time became shorter at 0.5 units.
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(black): acetate 3.0, 4.0, 5.0; � (red): potassium phosphate 5.0, 6.0, 6.5, 7.0, 7.5, 8.5; • (blue): carbonate
bicarbonate 9.0, 10.0, 11.0).

Acetone gas standards were loaded on the enzyme mesh produced under the afore-
mentioned conditions. A decrease in fluorescence around the loading point and a rapid
stabilization of the fluorescence intensity after loading were observed. The fluorescence
intensity was determined by analyzing the captured moving images, and the change over
time is shown in Figure 5. However, since NADH is oxidized by acetone loading and NAD+
is generated and remains on the mesh, the change in distribution could not be evaluated.
Therefore, differential analysis was used to determine the rate of change in fluorescence
intensity per unit of time and display it as a moving image. Initially, we determined the
∆t value to evaluate the maximum value of the change rate in the differential analysis. By
setting ∆t to 2 s after the moving average, it was possible to calculate the differential value
with a peak.

The lower image in Figure 5 shows the color image of the differentiated moving
image at each time point (0, 20, 120 s). The peak curve obtained by the analysis shows
an increase induced by gas loading and a decrease due to the cessation of gas loading;
the spatio-temporal distribution could be expressed (90%: 37 s [fluorescence intensity]→
20 s). The differential analysis of the fluorescence moving images obtained by the imaging
system enabled us to capture information regarding the spatio-temporal distribution of
acetone gas.
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The output power increased with gas loading. The fluorescence intensity (Figure 6a)
and peak value (fluorescence variation) (Figure 6b) was observed at different concentrations.
Based on the above results, the quantitative response to the concentration of acetone gas
was evaluated from the steady-state value of fluorescence intensity and the peak value
obtained from the differential analysis. It was possible to measure acetone gas at low
concentrations using both fluorescence intensity and differential analysis. The quantitative
Equations (3) and (4) (R = 0.999) used to determine the concentration of acetone in this
system are as follows:

∆ average intensity = 0.81 + 6.75 [acetone (ppm)] (3)

Peak slope of ∆ average intensity = 0.072 + 0.14 [acetone (ppm)] (4)

The quantitative range obtained from each calibration equation was 0.05–2.00 ppm,
which includes the acetone concentration (200–900 ppb) in the air exhaled by healthy
individuals (Figure 6c).
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2.0 ppm. (b) Differential analysis of each acetone concentration, which is calculated using a slope of
the average fluorescence intensity. (c) Comparison of calibration formulae based on the results of
fluorescence intensity (•) and differential analysis (�) against acetone vapor in the system.

We also evaluated the selectivity by loading representative components of exhaled
air into the visualization system and comparing the outputs. Figure 7 shows the output
for acetone gas as 100% and the output for other gases (at 1 ppm). The enzyme showed
the highest output for acetone and high outputs for other ketones (2-butanone and 2-
pentanone). These results indicated gas selectivity based on the substrate specificity of the
enzyme. Since the concentration of 2-butanone and 2-pentanone in exhaled air was lower
than that of acetone (at 200–900 ppb), the effect on the measurement of acetone gas in vivo
was minimal [46].
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3.3. Imaging of Breath Acetone Gas

The imaging system for acetone was used for breath measurement while a human
subject was in a fasting state. Following the loading of a sample of air exhaled by a healthy
individual onto this system, a decrease in fluorescence derived from the acetone in the
exhaled air was observed. We were able to calculate the concentration of acetone gas in the
exhaled air based on the output values. Figure 8 and movie S1 shows the change in the
concentration of acetone in exhaled breath over time due to meals.
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The concentrations of acetone before and immediately after the meal were identical.
The concentration of acetone decreased with time, reaching its lowest value 2 h after the
meal. Subsequently, it increased, reaching its highest value 6 h after the meal. This was
attributed to the decrease in acetone concentration caused by the transition between lipid
and glucose metabolism caused by the meal, as well as the increase in exhaled acetone
concentration caused by lipid metabolism in the fasting state after the meal. For comparison,
the concentration of acetone in the same exhaled air sample was measured using GC–MS.
The somewhat low GC–MS value was attributed to the decrease in acetone concentration
due to dissolution in the water condensed in the sample bag.

4. Conclusions

We developed an imaging and measurement system that can image acetone gas as
an NADH fluorescent image using the reduction reaction of S-ADH. The system consists
of an enzyme mesh with immobilized S-ADH, UV-LED sheets, and a high-sensitivity
camera. It is capable of quantifying acetone gas in a concentration range from 0.05 to
2.00 ppm, a range that includes the concentration of acetone in the air exhaled by healthy
individuals. The system was also able to display the spatio-temporal distribution of
acetone gas by differential analysis of the obtained moving images. We applied this system
to the air exhaled by a healthy individual, and were able to visualize and measure the
exhaled acetone gas. The concentration of acetone gas increased and decreased, with the
minimum value observed 2 h after a meal. This finding suggests that this system can be
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used to evaluate lipid metabolism. In the future, the imaging of volatile components of
diverse biological origins may be applied to disease screening and the exploration of sites
generating human volatiles.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemosensors9090258/s1, Figure S1: Designs of a square pattern and a honeycomb pattern
were prepared and fabricated on a CO2 laser cutting machine. Figure S2: Comparison of fluorescence
intensity (red plots) and 90% output response time (black plots) versus enzyme amount for imaging
system. Movie S1: Video of changes in the concentration of acetone in exhaled breath.
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