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Abstract: The electronic nose system is widely used in tea aroma detecting, and the sensor array
plays a fundamental role for obtaining good results. Here, a sensor array optimization (SAO) method
based on correlation coefficient and cluster analysis (CA) is proposed. First, correlation coefficient
and distinguishing performance value (DPV) are calculated to eliminate redundant sensors. Then,
the sensor independence is obtained through cluster analysis and the number of sensors is confirmed.
Finally, the optimized sensor array is constructed. According to the results of the proposed method,
sensor array for green tea (LG), fried green tea (LF) and baked green tea (LB) are constructed,
and validation experiments are carried out. The classification accuracy using methods of linear
discriminant analysis (LDA) based on the average value (LDA-ave) combined with nearest-neighbor
classifier (NNC) can almost reach 94.44~100%. When the proposed method is used to discriminate
between various grades of West Lake Longjing tea, LF can show comparable performance to that
of the German PEN2 electronic nose. The electronic nose SAO method proposed in this paper can
effectively eliminate redundant sensors and improve the quality of original tea aroma data. With
fewer sensors, the optimized sensor array contributes to the miniaturization and cost reduction of
the electronic nose system.

Keywords: tea aroma detection; electronic nose; sensor array optimization; correlation analysis;
discriminating performance value; cluster analysis

1. Introduction

Tea is one of the most popular non-alcoholic beverages in the world. Aroma is
an important attribute of tea, which contains rich information such as quality and type.
There are approximately 600 aromatic compounds in tea aroma [1,2]. At present, tea
aroma detection depends primarily on the sensory evaluation of tea appraisers, which
is time-consuming, labor-intensive and not conducive to ensuring accuracy. In recent
years, electronic nose systems have played an increasingly important role in the field of gas
detection. Electronic nose can closely mimic the organization of human olfactory system for
obtaining the fingerprints of gas signals from samples through a sensor array, and pattern
recognition methods have the ability to identify ‘fingerprints’ in a given dataset [3]. The
sensor array composed of gas sensors is highly sensitive to the main volatile components in
the target aroma sample. Therefore, the mapping from aroma to semantic information such
as variety and grade can be constructed. Electronic nose has played an important role in
many fields of food engineering, including food classification [4,5], quality assessment [6,7],
freshness prediction [8] and identification authenticity [9]. Research objects include various
foods such as fruit [10], vegetables [11], meat [12], beverage [13—-15], herb [16] and especially
tea [17-22].
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The electronic nose system contains two main functional modules: sensor array and
signal processing tool [17]. Many scholars have conducted research on the data analysis
methods in the signal processing tool. Data processing is generally divided into two steps:
feature extraction and recognition decision. At present, there are various modes for ex-
tracting features from original sensor signals, such as the maximum value [23], average
value [24], integral value [25], differential value [26], maximum energy [27] and wavelet
packet decomposition [28]. Different pattern recognition technologies are introduced to
make recognition decisions, including multi-layer perceptron (MLP) [29], LDA [30], princi-
pal component analysis (PCA) [31], support vector machine (SVM) [32] and artificial neural
network (ANN) [33]. These methods have achieved excellent results in specific application
scenarios. It is worth noting that although a complex method can extract as much infor-
mation as possible and improve the accuracy, it will increase the discrimination time. The
simple method may sacrifice accuracy. If you want to achieve a win-win of efficiency and
performance, higher requirements are placed on the quality of the original signal.

Since the sensor array plays a fundamental role in acquiring good original data for
detection, some studies focus on sensor array optimization (SAO). In short, the purpose of
SAQ is to use the fewest sensors to extract the most distinguishable signals for subsequent
data processing [34]. This goal can be achieved by using dedicated sensors for given
volatile substances. Chen et al. [35] conducted cluster analysis of variance difference matrix
to identify several possible sensor subsets for Chinese medicine. Zhou et al. [36] applied
PCA and load factor analysis to select sensors with small inter-class dispersion and large
intra-class dispersion, respectively, of the sensor’s data or their eigenvalues. However,
they consider the inter- and the intra-class dispersion indices separately, which cannot
reflect the sensors” comprehensive identification performances. Bhattacharyya et al. [4] and
Xu et al. [7] perform sensor screening based on the response value of a specific chemical
signal. But this method can only guarantee sensitivity, not distinguishability. From the
above research, we can conclude that most of the SAO studies consider the selection and
construction of sensor arrays based on sensor sensitivity or correlation between sensors.
However, only considering the correlation index between sensors is not enough. Secondly,
the number of sensors included in the array will also have an important impact on the
performance and cost of the sensor array, but there are few studies in this area.

In this paper, a two-step down-selection SAO method is proposed. Three kinds of
sensor arrays for green tea, fired green tea and baked green tea are constructed. Combining
five pattern recognition methods, the effectiveness of the constructed sensor array in
identifying the types and grades of green tea was verified. Sensor arrays based on other
SAOQ strategies and the number of sensors were also constructed to prove the superiority of
the proposed method from different perspectives. The proposed method provides a more
effective idea and potential solution for the construction of gas sensor array.

2. Materials and Methods
2.1. Tea Samples Preparation

In China, there are 4 kinds of green tea: fried green tea, baked green tea, sunburned
green tea and steamed green tea. Among them, fried and baked green tea occupy the main
market share. Hence, we mainly focus on fried green tea and baked green tea.

The tea samples for SAO consist of 3 kinds of fried green tea, i.e., maoshanqgingfeng
(msqf), dinggudafang (dgdf) and queshe (gs), and 3 kinds of baked green tea, i.e., luan-
guapian (lagp), huangshanmaofeng (hsmf) and taipinhoukui (tphk).

Three other kinds of fried green tea, shangwushanhuibai (swshb), laoshanlvcha
(Islc) and biluochun (blc), and three other kinds of baked green tea, jingtinglvxue (jtlx),
hanzhongxianhao (hzxh) and emeishanmaofeng (emsmf), are used to validate the discrimi-
nating performance of the optimized sensor array for green tea. The tea samples are given
in Table 1.
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Table 1. Detailed information of green tea samples.

Processing Technology Fried Green Tea Baked Green Tea

Tea samples for training msqf dgdf qs lagp hsmf tphk
Place Changzhou Huangshan Hefei Huangshan Huangshan Huangshan
Date 03/2018 03/2018 04/2018 03/2018 03/2018 04/2018

Tea samples for validation swshb Islc blc jtlx hzxh emsmf

Place Shengzhou Qingdao Suzhou Xuancheng Xi'an Chengdu
Date 04/2020 04/2020 04/2020 04/2020 04/2020 04/2020

As one of the representative brands of fried green tea in China, the grades classification
of West Lake Longjing has also received great attention. Hence, 4 grades of West Lake
Longjing are also used to validate the discriminating performance of the optimized sensor
array for fried green tea.

The experimental parameters of the sample preparation and aroma collection can
affect the reaction speed, which subsequently affects the final detection effect. Hence, some
preliminary experiments were carried out to select the optimal experimental parameters
including sealing time, gas flow rate, temperature and data acquisition time. The tea aroma
sampling process is as follows:

The ambient temperature is maintained at 25 °C. In the 500 mL beaker, 5 g of tea
leaves is brewed with 250 mL of boiling water. The water is then poured out after 5 min
and leaves the tea at the bottom of the cup. The beaker is sealed for 30 min until the tea
aroma is volatile. Then, the air pump pumps the aroma evenly into the electronic nose
system at a flow rate of 15 mL/s, and flows through the sensor array. The stable response
value after 35 s is used for analysis, and the response values of each sensor are read every
second for approximately 60 s. There are 3 samples of each kind of tea, and each sample
is measured once. Since a drying tube was added before the aroma entered the reaction
chamber, indoor humidity had little effect on the experimental results. Hence, there are no
special considerations regarding humidity in this paper.

The response curve of a typical green tea (West Lake Longjing) is shown in Figure 1.
Each curve represents the variation in conductivity of each sensor with time when the
tea volatiles reached the reaction chamber. It can be seen that in the 35-60 s interval, the
response values of all sensors tend to be stable. In subsequent experiments, we observed
that all tea aroma samples used in this study have similar characteristics, so it is reasonable
to use the response value in the same interval for subsequent feature extraction and
pattern recognition.

2.2. Preliminary Sensor Array

First, we conduct a preliminary screening of common gas sensors on the market to
construct a candidate list. The sensors are selected according to the following three criteria:
(1) sensors sensitive to aroma components; (2) sensors used in other studies regarding odor
detection; and (3) sensors with stable performances and full ranges of models. Based on
the above 3 criteria, the gas sensors were finally selected. Those sensors have the operating
voltage (5 V) and external resistance necessary to facilitate the integrated circuit design of
the sensor. The preliminary sensors and their basic information are shown in Table 2; more
details are in Table S1 in the Supplementary Files.
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Figure 1. Response curves of sensors to West Lake Longjing tea. The dotted box contains stable data.

Table 2. Detailed information of preliminary sensors.

Scheme Sensitivity to Gases Heating Resistance/()
TGS813 Isobutane, propane, ethanol, methane, etc. 30.0 £ 3.0
TGS822 Acetone, ethanol, benzene, ethane, etc. 38.0 £3.0
TGS2600 Hydrogen sulfide gas ~83.0
TGS2620 Organic solvents ~83.0
MQ-6 Olefins, 2 to 4 carbon alkanes 26.0 £ 3.0
MQ-5 Combustible gas 31.0£3.0
TGS832 Halogenated hydrocarbons, alcohols 30.0 £ 3.0
TGS826 Ammonia 30.0 £3.0
TGS2610 Hydrogen sulfide gas ~59.0
2MO009 Toluene and benzene gas 33.0 £ 3.0
MQ-8 Diethyl ether 31.0+3.0
MQK2 Methanol, ethanol gas 31.0 £ 3.0
2M012 Hydrogen 33.0£3.0
MQ-3 Ethanol vapor 29.04+3.0
TGS800 Methane, isobutane, hydrogen, etc. 38.0 £ 3.0

All sensors listed in Table 2 are metal oxide sensors (MOSs). As an example, the circuit
schematic of sensor TGS826 is shown in Figure 2. It requires two voltage sources: heating
voltage (Vi) and loop voltage (V¢). Vi can keep the sensor at a certain temperature, and
V¢ can monitor the voltage (Vry,) across the load resistance (Ry). When the sensors detect
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sensitive gases, the resistance of the sensor decreases, and the voltage across the load
resistance increases.

Ve

—cVRL

Vi R 3

GND o0

Figure 2. Circuit schematic of TGS826 referred from product manual of Figaro Ltd.

2.3. Electronic Nose System Set-Up

The self-made electronic nose system used was primarily composed of a gas path and
a signal acquisition circuit. The internal structure and airflow of the device are shown in
Figure 3. An introduction of all of the components of the e-nose system can be seen in
Table S2 in the Supplementary Files. The workflow of the device is as follows:

Reaction Gas path

Chamber N N
b Tea aroma from intake pipe

Suction pump

Dryinf tube

Signal acquisition system
Data transfer port

Pattern recognition in PC

Voltage

Regulator Acquisition circuit :
Module

Figure 3. The internal structure and airflow of electronic nose system.

(1) After the samples are ready, the aroma is pulled out by the suction pump and then
flowed into the drying tube. The drying tube is filled with sufficient amount of granular
silica gel desiccant (produced by Longhui Desiccant Co., Ltd., Suzhou, Jiangsu Province,
China). Hence, the water vapor in the tea aroma is removed to prevent it from affecting the
measurement result.

(2) The aroma enters the reaction chamber and reacts with the sensors to generate a
response signal. The reaction chamber is made of acrylonitrile butadiene styrene (ABS)
and is 3D printed, which has high strength and good heat insulation. The reaction chamber
is especially designed to ensure that the aroma environment of each sensor in the sensor
array is uniform and consistent.

(3) The signal acquisition circuit can obtain the response signal and send it to the host
analysis system in a personal computer (PC) through the serial port. The post-processing
and pattern recognition of the signal are completed in the PC.

The schematic and an image of the sensor array are shown in Figure 4. In the schematic,
s1-s15 indicates the 15 sensors; p2 and p3 indicate the sensors’ signal extraction pins. The
overall appearance of the electronic nose system is shown in Figure 5. The overall size of
the e-nose system is 300 mm x 200 mm x 110 mm. All function modules are integrated
in the gray box. There are some function buttons on the operation panel, which provide
functions such as power switch, flow adjustment, pre-heating and purging.
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33vi

Figure 4. Sensor array schematic and appearance.

Figure 5. The overall appearance of the electronic nose system.

2.4. Data Analysis Methods

Two kinds of features, average value and value on the maximum variance moment,
are extracted from the original sensor response curve. The calculation of the average value
is shown in Equation (1):

k
Y. MuT

my == M)
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where k is the number of sampling, # is the number of sensors and m, 7 is the response
value of the nth sensor at time T. m), is the average value of the nth sensor for the sample,
which will eventually form a feature vector of 1 x n dimension.

For the second method, the variance of all sensors at the same time is calculated firstly;
the calculation method is shown in Equation (2). Then, the response value of each sensor at
the time when the variance value is maximum is found out, forming a 1 X n dimensional
feature vector.

(mig — r)”

2 1
5= n—1 @

s

where 7 is the number of sensors, S? is the variance and m; represents the response value
of the i-th sensor at time T.

Two simple and widely-used pattern recognition methods, principal component
analysis (PCA) and linear discriminant analysis (LDA), are introduced for data processing
after feature extraction. PCA could deduct dimensions and observe a primary evaluation of
the between-class similarity. PCA is a projection method that allows an easy visualization of
all the information contained in a dataset. LDA is a statistical method that could determine
to which group the samples belong. The method maximizes the variance between categories
and minimizes the variance within categories. With the help of dimensionality reduction
and visualization of PCA and LDA, we can directly observe the distribution of samples of
different categories.

In order to quantitatively compare the accuracy of different pattern recognition meth-
ods in discriminating unknown samples, the nearest neighbor classifier (NNC) is intro-
duced for category discrimination. For each category participating in the discrimination,
3 additional aroma samples were collected as a test set. The original 3 samples are used as
labeled data for training to build the model.

In a previous work, the authors introduced the random forest machine learning
(RFML) algorithm to analyze aroma data and achieved excellent performance [15], and it
is also introduced for comparative research. Taking the random sampling of RFML into
account, we repeated the same unknown sample discrimination experiment 10 times, and
took the average value as the final accuracy result.

2.5. Sensor Array Optimization Methods

The two-step down-selection methodology of SAO involves the analysis of the follow-
ing factors (the flow chart of the method is shown in Figure 6):

Correlation
analysis
Candidate climinate CA Optimal
sensor liSt redundant sensors sensor array
> DPV

Figure 6. The flow chart of the sensor array optimization method.

(1) Correlation analysis. The correlation coefficient between the two sensors is cal-
culated. The large value of the correlation coefficient means that the two sensors have a
strong correlation, and the obtained signals have high similarity. Thus, the two sensors can
replace each other. The correlation coefficient can be calculated using Equation (3):

(xi = X)(yi —¥) 3)

[Rey| = | pom D
VI (- 22— )
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where x and y represent two different models of sensors; X and ¥ are the mean value of the
first 60 s of the two sensors, respectively; x; is the i-th data value of the x sensor, y; is the
i-th data value of the y sensor, and |ny| is the absolute value of the correlation coefficient
between sensor x and sensor y.

(2) Distinguishing performance value (DPV) calculation. Only one of the replaceable
sensors can be kept. It is difficult to make this decision based solely on the sensitivity of
the sensor. Therefore, the ability of the sensor to discriminate among different tea classes
can be determined by calculating the inter- and intra-class dispersion, that is, the DPV.
Sensors with smaller DPVs should be eliminated. The DPV of each sensor was evaluated
by calculating the inter- and the intra-class dispersion, as shown in Equation (4):

E — Sp _ Ly —u)(u; — u)T "
L= 20—
Swo L x Xy Ty (= x) (u — x0T

where S; and Sy, are the inter- and intra-class dispersions of the sample, respectively. A
larger F; value represents better distinguishing performance. n denotes the number of tea
varieties, m is the number of samples for detecting of each tea variety, u denotes the average
detected value of total tea samples, u; denotes the average detected value of total samples
of tea variety 7, and x; denotes the detected value of the k-th sample of tea variety i.

(3) Cluster analysis (CA). In the process of constructing the sensor array, the inde-
pendence between the sensors should be considered. Through CA, the distance between
different sensors can be calculated to determine the independence between the sensors.

(4) Sensor number determination. If the number of sensors N in the array is not
specified, the effect of tea aroma detection is tested with a different number N of sensor
arrays, and N is determined based on the effect.

3. Results and Discussions
3.1. Sensor Array Optimization Results
3.1.1. Optimization of Sensor Array LG for Green Tea

(1) Sensor array optimization based on correlation analysis and the DPV

Correlation analysis is used to calculate the correlation coefficient between two sensors.
The correlation coefficient Ryy ranges from —1 to 1, and Ry, > 0 means positive correlation
and vice versa. The degree of correlation of the sensor increases as |ny] increases. When
|Rxy| > 0.9, we can believe that the two sensors have strong similarity and can replace each
other. If there is no |Ry,| > 0.9 in detecting a certain tea variety, we also take three sensor
pairs with the largest |ny} as the candidates to be removed. Table 3 shows a list of sensor
pairs with |Ry,| > 0.9 or maximum three values of |Ry,| in different tea aromas.

Table 3. Sensors with high correlation coefficient in detecting a certain tea.

msqf dgdf qs
Sensor model | Ryy ‘ Sensor model ‘ Ryy | Sensor model | Ryy ‘
TGS826/TGS822 0.96 TGS832/TGS2620 0.98 MQK2/TGS822 0.95
MQK2/TGS822 0.97 TGS822/TGS813 0.96 TGS822/MQ-8 0.92
TGS2620/TGS822 0.95 MQ-8/TGS822 0.93 MQ-6/MQK2 091
TGS822/2M009 0.96 TGS813/MQ-8 0.90 MQ-6/TGS822 0.91
TGS2620/MQK2 0.95 TGS826/TGS813 0.93 MQ-8/MQK2 0.93
lagp hsmf tphk
Sensor model | Ryy ‘ Sensor model ‘ Ryy | Sensor model | Ryy ‘
MQ-6/2M012 0.88 MQ-6/TGS822 0.96 MQ-3/TGS832 0.92
MQ-3/2M012 0.88 MQ-6/MQ-5 0.90 MQ-6/TGS832 0.86
MQ-3/MQ-6 0.88 TGS822/MQ-5 0.87 MQ-6/MQ-3 0.86

Since the selected sensors are sensitive to tea aroma, it is not easy to decide which
to eliminate based on the sensitivity of the sensors. Thus, the DPV of each sensor was



Chemosensors 2021, 9, 266

9 of 20

evaluated by calculating the inter- and the intra-class dispersion. Table 4 shows the
sensors’ DPVs for 6 kinds of green tea, including 3 kinds of fried green tea and 3 kinds
of baked green teas. Significant differences in the DPVs occur when different sensors
detect tea aroma within identical varieties. When ]ny‘ of two sensors is high, as listed in
Table 3, a redundant sensor can be eliminated. For example, the high correlated sensors
TGS826/TGS822 for msqf and their DPVs for 6 general green teas are 4.59 and 13.74,
respectively. Therefore, TGS826 needs to be eliminated due to its small DPV. Similarly, for
detecting msqf, TGS822, TGS2620, 2M009 and TGS2620 should be respectively eliminated
in the corresponding high correlated sensor pairs of MQK2 /TGS822, TGS2620/TGS822,
TGS822/2M009 and TGS2620/MQK?2.

Table 4. Sensors” DPVs for different kinds of green tea.

DPVs for 6 General DPVs for 3 Fried DPVs for 3 Baked

Sensors Green Teas Ranking Green Teas Ranking Green Teas Ranking
TGS826 4.59 9 0.32 9 0.25 9
TGS800 0.17 15 0.15 14 0.16 12
TGS2600 3.89 11 0.27 10 0.12 13
TGS813 65.21 6 0.5965 6 0.67 6
2M012 218.39 4 22.37 2 0.186 11
MQ-6 189.95 5 40.51 1 1.21 5
TGS832 6.56 8 0.26 11 5.87 2
TGS2620 1.64 13 0.14 15 0.65 7
TGS822 13.74 7 0.1896 12 1.94 4
MQ-8 1279.00 1 0.58 8 12.73 1
MQ-3 401.99 3 2.16 3 0.30 8
MQ-5 2.06 12 0.82 5 0.05 14
TGS2610 1.28 14 0.5964 7 0.195 10
2MO009 4.32 10 0.1891 13 0.01 15
MQK2 1278.08 2 1.16 4 3.56 3

Due to the contingency of the detection, only sensors that are rejected by two or
more kinds of green tea should be eliminated from sensor array LG for general green tea.
Therefore, TGS826 and TGS2620 are eliminated since they are rejected in the detection of
msqf and dgdf; TGS822 is eliminated since it is rejected in the detection of msqf, dgdf, gs
and hsmf; MQ-6 is eliminated since it is rejected in the detection of gs, lagp and tphk. Hence,
11 sensors of 2M009, TGS813, TGS832, MQ-8, MQ-5, MQ-3, 2M012, TGS2600, TGS2610,
MQK2 and TGS800 are retained. The optimization results are shown in Table 5.

Table 5. Optimized sensor array LG for general green teas.

Tea Varieties

Sensors Retained in the Array Sensors Eliminated

TGS813, TGS832, MQ-6, MQ-8, MQ-5, MQ-3, 2M012,

msqf TGS2600, TGS2610, MOK?, TGS800 TGS826, TGS822, TGS2620, 2M009

dgdf 2M005, ?giiiﬁobﬁ%&gﬁ?& éﬁgi gds(gog 2MO12, TGS826, TGS2620, TGS813, TGS822
.

g TGisaé20, TGS2600, TGSR610, TGS826, MQKS, 708800 MO-6, 2M012

hem TGS260, TGS2600, TGS3610, TGS826, MQK2, TCS800 G862, MO

tphk 2M009, TGS813, TGS822, MQ-8, MQ-5, MQ-3, 2M012, MO-6, TGS832

TGS2620, TGS2600, TGS2610, TGS826, MQK2, TGS800
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(2) Sensor array optimization based on CA and DPV

The previous step eliminated redundant sensors with high correlation through corre-
lation analysis and the DPV. However, how to select a specific number of (N) sensors from
the remaining sensors to construct the array is still unknown. Thus, CA and the DPV are
designed to solve this problem.

The average value of aroma response data of each sensor to each sample of different
tea varieties was used as input. The system cluster method was performed. The square
Euclidean distance was used as the measurement standard and the between-groups linkage
was used as cluster method to analyze the output icicles of cluster results. The whole
process was performed in SPSS 24.0 software. The results are shown in Figure 7. The
clustering coefficients between the sensors are shown in Table 6.

=N = |

a o = 8 a o
S 2 2 8 2 35 & g 8 2 2
s 2 & 2 9o 5 & & &5 2 7
= =2 £ g =2 a & B B =2 £
O-—\OM.—#?Q’\‘NWOC-
2]

w

2

B

s

o

o)

£

£ 64

=

Z

8

104

Figure 7. Icicle figure of clustering sensors’ response average value (6 kinds of green tea).

Table 6. Clustering coefficient among sensors.

Ranking Sensor Group Value
1 TGS800 MQ-5 0.002
2 TGS2600 TGS2610 0.006
3 TGS800 TGS832 0.047
4 TGS800 TGS2600 0.080
5 MQ-3 2MO009 0.381
6 TGS800 2M012 0.490
7 TGS800 MQ-3 2.296
8 TGS813 MQ-8 2911
9 TGS800 TGS813 22.894
10 TGS800 MQK2 28.746

According to Figure 7, if the histograms of the sensors are connected, the connected
sensors can be grouped into one class. For example, if we want to group the sensors into
8 classes, we can make a horizontal dotted line at the place with the ordinate of 8 (shown in
Figure 7). By scanning left to right, the continuous sensor histogram without disconnection
can be grouped into one class, and the results of 8 classes can be obtained, namely MQK2,
MQ-8, TGS813, 2M009, MQ-3, 2M012, (TGS2610/TGS2600) and (TGS832/MQ-5/TGS800).
Similarly, we can cluster the remaining 11 sensors into 2-10 classes, as shown in Table 7.
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Table 7. CA results and optimized sensor array with different number N by CA and DPV.

Clusters

Optimized Sensor Arrays with Different Number N

Number CA Results by CA and DPVs
MQK2, (MQ-8/TGS813/2M009/MQ-3/ ]
2 2M012/TGS2610/ TGS2600,/TGS832,/MQ-5/ TGS800) MQK2, MQ-8
MQK2, (MQ-8/TGS813), (2M009/MQ-3/ v
3 2M012/TGS2610/ TGS2600,/TGS832/MQ-5/ TGS800) MQK2, MQ-8, MQ-3
MQK2, MQ-8, TGS813, (2M009/MQ-3/ ] ]
4 2MO12/TGS2610/ TGS2600,/TGS832/MQ-5,/TGS800) MQK2, MQ-8, TGS813, MQ-3
MQK2, MQ-8, TGS813, (2M009/MQ-3), ] ]
5 (2M012/TGS2610/ TGS2600,/ TGS832/MQ-5/ TGS800) MQK2, MQ-8, TGS813, MQ-3, 2M012
MQK2, MQ-8, TGS813, (2M009/MQ-3), 2M012, ] ]
6 (TGS2610/ TGS2600/ TGS832/MQ-5,/TGS800) MQK2, MQ-8, TGS813, MQ-3, 2M012, TGS832
MQK2, MQ-8, TGS813, 2M009,MQ-3, 2M012, ] ]
7 (TGS2610/TGS2600,/ TGS832/MQ-5/TGS800) MQEK?2, MQ-8,TG5813, 2M009, MQ-3, 2M012, TGS832
. MQK2, MQ-8, TGS813, 2M009, MQ-3, 2M012, MQK2, MQ-8, TGS813, 2M009, MQ-3, 2M012,
(TGS2610/TGS2600), (TGS832/MQ-5/TGS800) TGS2600, TGS832
. MQK2, MQ-8, TGS813, 2M009,MQ-3, 2M012, MQK2, MQ-8, TGS813, 2M009, MQ-3, 2M012,
(TGS2610/TGS2600), TGS832, (MQ-5,/TGS800) TGS2600, TGS832, MQ-5
0 MQK2, MQ-8, TGS813, 2M009,MQ-3, 2M012, TGS2610, MQK2, MQ-8, TGS813, 2M009, MQ-3, 2M012,

TGS2600, TGS832, (MQ-5/TGS800)

TGS2610, TGS2600, TGS832, MQ-5

For each clustered sensor class, we selected a sensor with maximum DPV in its
class to construct the optimized sensor array. For example, if we want to obtain an
optimized sensor array with number N = 8, there are two classes that have more than one
sensor in the clustered results of 8 classes, namely (TGS2610/TGS2600) and (TGS832/MQ-
5/TGS800). According to Table 5, the DPVs for 6 green teas of these sensors are ((TGS2610,
1.28)/(TGS2600, 3.89)) and ((TGS832, 6.56)/(MQ-5, 2.06) /(TGS800, 0.17)). Hence, we chose
TGS2600 and TGS832 combined with other clustered classes with single sensor MQK2,
MQ-8, TGS813, 2M009, MQ-3, 2M012 to construct an optimized sensor array with number
N = 8. We can obtain optimized sensor arrays with different number N = 2-10 by CA and
DPVs, as shown in Table 7.

(3) Sensor number determination

Table 8 shows the discriminating accuracy of six kinds of green tea (msqf, dgdf, gs,
lagp, hsmf and tphk) by sensor arrays with different number N of sensors. In general, if N is
too small, such as when N < 6, the accuracy will be relatively low. When N > 6, the accuracy
is more than 98%, and is very close to other rates, which are 98.42%, 98.88%, 98.90%, 98.80%
and 98.87% for the accuracy rates of N = 6,7, 8, 9 and 10, respectively. It can be seen that
when N = 8, the number of sensors is appropriate and the accuracy is stable and relatively
high. Thus, we can acquire an optimized array LG with 8 sensors MQK2, MQ-8, TGS813,
2M009, MQ-3, 2M012, TGS2600 and TGS832) for general green tea detection.

3.1.2. Optimization of Sensor Array LF for Fried Green Tea

Fried green tea accounts for approximately 70% of green tea in China. When LG is
directly used to discriminate between varieties of fried green tea, the results are not quite
satisfactory. Therefore, it is necessary to screen out the sensor array for fried green tea.
Here, we specify that there are 8 sensors (N = 8) in sensor array LF, which is equal to that
of LG. The fried green tea samples used for LF optimization are msqf, dgdf and gs.

According to the high correlated sensors listed in Table 3, we used the DPVs for 3 fried
green teas that were listed in Table 4 to decide which sensor should be eliminated. For msqf,
sensors of TGS822, TGS2620 and 2M009 should be eliminated; for dgdf, sensors of TGS826,
TGS822, MQ-8 and TGS2620 should be eliminated; and for gs, sensors of TGS822, MQK2
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and MQ-8 should be eliminated. Thus, TGS822, TGS2620 and MQ-8 were eliminated from
LF since they were rejected by two or more kinds of green tea. After removal, the retained
12 sensors were 2M009, TGS813, TGS832, MQ-6, MQ-5, MQ-3, 2M012, TGS2600, TGS2610,
TGS826, MQK2 and TGS800. Then, we took the average value of aroma data of each sensor
to each sample of different kinds of fried tea as input for SPSS software, and produced
and icicle figure of the clustering process, as shown in Figure 8. Similarly, we grouped
the sensors into 8 classes, as described previously, namely TGS813, MQK2, MQ-6, 2M009,
2M012, (MQ-5/TGS832/TGS800), (MQ-3/TGS2600) and (TGS2610/TGS826). For each
clustered sensor class, we selected a sensor with maximum DPV for 3 fried green teas, as
listed in Table 4, and constructed an optimized sensor array LF with number N = 8, namely
TGS813, MQK2, MQ-6, 2M009, 2M012, MQ-5, MQ-3 and TGS2610.

Table 8. Sensor arrays with different numbers N based on CA and DPV.

Number of Sensors (N) Sensor Arrays Optimized by CA and DPV Discrimination Accuracy by RFML [18]
2 MQK2, MQ-8 93.84%
3 MQK?2, MQ-8, MQ-3 94.35%
4 MQK2, MQ-8, TGS813, MQ-3 96.09%
5 MQK?2, MQ-8, TGS813, MQ-3, 2M012 97.07%
6 MQK?2, MQ-8, TGS813, MQ-3, 2M012, TGS832 98.42%
7 MQK2, MQ-8, TGS813, 2M009, MQ-3, 2M012, TGS832 98.88%
8 MQK?2, MQ-8, TGS813, 2M009, MQ-3, 2M012, 98.90%
TGS2600, TGS832 ’

9 MQK2, MQ-8, TGS813, 2M009, MQ-3, 2M012, 98.80%
TGS2600, TGS832, MQ-5 ’

10 MQK?2, MQ-8, TGS813, 2M009, MQ-3, 2M012, 98.87%

TGS2610, TGS2600, TGS832, MQ-5

-3: TGS2600

~10: TGS2610

~4: TGS813
-12: MQK2
-6: MQ-6

~11: 2MO009

-5: 2MO12
L 9: MQ-5

-7. TGS832

L2 TGS800
-8:MQ-3
L1 TGS826

0

Number of classes
[*2)
1

Figure 8. Icicle figure of clustering sensors’ response average value (3 kinds of fried green tea).

3.1.3. Optimization of Sensor Array LB for Baked Green Tea

Lagp, hsmf and tphk were used as baked green tea examples for the optimization of
sensor array LB. Similarly, according to the high correlated sensors listed in Table 3, we
used the DPVs for 3 kinds of baked green tea that were listed in Table 4 to decide which
sensor should be eliminated. For lagp, sensors of 2M012 and MQ-3 should be eliminated;
for hsmf, sensors of MQ-6 and MQ-5 should be eliminated; and for tphk, sensors of MQ-3
and MQ-6 should be eliminated. Thus, MQ-3 and MQ-6 were eliminated from LF since
they were rejected by two or more kinds of green tea. After removal, the retained 13 sensors
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were TGS822, TGS813, 2M009, TGS832, TGS800, MQ-5, 2M012, TGS2620, TGS826, TGS2600,
MQK2, MQ-8 and TGS2610.

Then, we took the average value of aroma response data of each sensor to each sample
of different kinds of baked tea as input for SPSS software, and produced an icicle figure
of the clustering process, as shown in Figure 9. Similarly, we grouped the sensors into
8 classes, as described previous, namely MQK?2, TGS822, 2M009, 2M012, TGS813, MQ-8,
TGS832 and (TGS2620/TGS2610/TGS2600/MQ-5/TGS800/TGS826). For each clustered
sensor class, we selected a sensor with maximum DPV for 3 kinds of baked green tea, as
listed in Table 4, and constructed an optimized sensor array LB with number N = 8, namely
MQK?2, TGS822, 2M009, 2M012, TGS813, MQ-8, TGS832 and TGS2620.
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Figure 9. Icicle figure of clustering sensors’ response average value (3 kinds of baked green tea).

3.2. Classification of Green Tea Varieties

Three groups of optimized sensor arrays (LG, LF and LB) obtained for green tea, fried
green tea and baked green tea, respectively, were generated based on the process above.
The discriminating accuracy of these 3 sensor arrays needs to be further verified. The data
analysis methods used were PCA based on the average value (PCA-ave), LDA based on
the average value (LDA-ave), PCA based on the maximum variance moment (PCA-var)
and LDA based on the maximum variance moment (LDA-var). Similar methods are also
described in [30].

The results of the 12 varieties of green tea detected by sensor array LG are shown in
Figure 10 and Table 9. There are 2, 2, 2 and 4 kinds of tea area overlap that occur in LDA-ave,
PCA-ave, LDA-var and PCA-var, respectively. As shown in Figure 11 and Table 9, when
discriminating between 6 varieties of fried green tea using LF, there are 2 kinds of tea area
overlap occurring in LDA-var. For discriminating between 6 varieties of baked green tea
using LB, there are 2 kinds of tea area overlap occurring in PCA-var, as shown in Figure 12
and Table 9. Because of the large degree of dispersion between inter-classes, the scale range
of the whole graph is large, and the points of some regions appear to gather on the whole
graph. As a result, some local magnifications are added to the whole graph to represent
the local aggregation points. For easy understanding, the points of incorrect distinguished
results are red-circled in Figures 10-12.



Chemosensors 2021, 9, 266 14 of 20

LDA-ave of green tea PCA-ave of green tea
e 38 Asiehb . h ® swshb
Xhzxh = Lle N Xhzxh
18 =l XIsk g [ ¥
36 X o, | xlsle
20 - xjth él | ) Xjtix
g 34 1 % ® emsmf g T1lol 098 095 » = emsmf
® -1125 3 . " ble O L] L]
< - ble
.E-IO . £ magdf :-ao -125 . 0:L X dgdf
§ 55 . 50 80 LLT— E a - o
o A lagp Q‘: 135 M 22 g ® lagp
-40 60 X 2
4 msqf .gl S 4 msqf
-65 Lqs 8 -145 + <03 + s
45 -40 -35 y A -l 09 0 06 0.7 0.8
-70 : ; , g B 2 ‘ ‘ : ; e
-120 -60 0 60 120 ¥ e 0 1 .
1. Main Axis First Principle Component
LDA-var of green tea PCA-var of green tea
14
50 swshb _12 - R Xswshb
g 13 2 ~ B hzxh
Xhzxh 5 o oloF Xhaxt
Xlske g h xlske
20 x® 0 xj E04 102 e o Xji
.:C% = = emsmf © : '“ 7‘ ' = emsmf
Xk 5
.10 wE ®ble = #ble
§ L mdgr '§'0~4 1 e = godf
& ® hsmf =N ®hsmf
-40 lagp E lagp
61 68 msqf 8-1‘2 ] 4 msqf
Q
72}
-70 f— a 096 092 ~0.88 a8
70 tphk i) T . T Y tphk
; : -1.5 -0.5 0.5 15 25
1. Mam Axis First Principle Component
Figure 10. Classification results of green tea identified using LG.
Table 9. Discrimination accuracy of tea varieties by sensor array optimized for specific kinds of tea.
No. Tea Varieties Sensor Array LDA-ave PCA-ave LDA-var PCA-var
2 tea areas overlap 2 tea areas overlap 2 tea areas overlap 4 tea areas overlap
12 kinds of green tea LG (qs and dgdf) (Islc and emsmf) (lagp and hsmf) (msqf and dgdf, Islc
q & &p and emsmf)
6 kinds of fried green tea LF 100% 100% 2 tea areas overlap 100%
(dgdf and gs)
6 kinds of baked green tea LB 100% 100% 100% 2 tea areas overlap
(emsmf and jtlx)
- LDA-ave PCA-ave LDA-var PCA-var
No. Tea Varieties Sensor Array +NNC +NNC +NNC +NNC
12 kinds of green tea LG 94.44% 94.44% 94.44% 83.33%
6 kinds of fried green tea LF 100% 100% 88.89% 100%
6 kinds of baked green tea LB 100% 94.44% 100% 88.89%

In general, the discrimination accuracy of fried green tea by LF or baked green tea by
LB is higher than that of general green tea by LG. It seems that there are some effects in
SAO for green tea with specified processing techniques.

According to Figures 10-12, we can see the distribution of dispersion and concen-
tration of the discrimination results, and find out whether there are regional overlaps.
However, in order to obtain the discrimination accuracy value, it is necessary to combine
some classification algorithms. Here, we used NNC to obtain discrimination accuracy
value, as shown in Table 9.
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Figure 11. Classification results of fried green tea identified using LF.
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Figure 12. Classification results of baked green tea identified using LB.

When LDA-ave +NNC are used, satisfactory results are obtained. The discrimination
accuracy of LG for 12 kinds of green tea, LF for 6 kinds of faked green tea and LB for
6 kinds of baked green tea can almost reach to 88.89~100%.
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Note that NNC may lead to misjudgments. For example, when detecting 12 kinds
of green tea by LG and PCA-ave, a feature value of gs is misjudged as dgdf since they
are closer to the center of dgdf, although gs and dgdf seem to be correctly separated, as
shown in Figure 10. Similarly, a feature value of emsmf is misjudged as jtlx when detecting
6 baked green teas by LB and PCA-ave, as shown in Figure 12. These misjudgments will
reduce the accuracy of tea discrimination.

3.3. Classification of West Lake Longjing Tea Grade

Here, we further discriminated between different grades of identical fried green tea.
Since West Lake Longjing is the most common representative of fried green tea, we will
consider 4 grades of West Lake Longjing tea as examples.

It can be seen in Figure 13 and Table 10 that the LDA-ave, PCA-ave and LDA-var
methods all have good classification effects on West Lake Longjing tea using LF. Some
scholars also used the commercial electronic nose PEN2 to carry out Longjing tea quality
identification research [32]. Taking into account the difference between the experimental
sample and the environment, it is not scientific to directly compare the two electronic
noses quantitatively. However, it can be concluded that in the identification of Longjing
tea grades, our self-made electronic nose using the optimized sensor array can achieve an
effect comparable to that of the PEN2 electronic nose.

LDA-ave of Longjing tea PCA-ave of Longjing tea
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Figure 13. Grade classification results for West Lake Longjing tea identified using LF.

Table 10. Discrimination accuracy of West Lake Longjing tea grades by LE.

Methods LDA-ave PCA-ave LDA-var PCA-var
(+NNO) (+NNO) (+NNO) (+NNCQC)
LE 100% 100% 100% 100%

3.4. Comparison of Correlation Analysis Methods and the Elimination of Sensors

In this paper, we used DPVs to eliminate the correlated sensors; the principles and
characteristics of these methods are listed in Table 11. Coefficient of variation (COV) is
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another common index that can reflect the dispersion degree of the observed values for
each indicator on the unit mean. COV has also been introduced for the screening and

elimination of sensors, which is compared with the method proposed in this paper.

Table 11. Comparison of correlated sensor analysis and elimination methods.

Method

Principle

Characteristics

Correlation analysis

T (5 =%) (0i—9)
VI (-7 (i)
The correlation calculation

formula is identical to
Formula (1) in this paper.

}ny| =

Calculate the sum of each sensor’s
correlation coefficients and eliminate
the sensor with the largest sum.
Optimizes the correlation between
sensors, but does not judge the
discriminating ability of the sensor.

RSD — %Z?:L(Xi*?)z

X
Where x; is the i-th test value

The larger the coefficient of variation,
the greater the intra-class dispersion

of the sensor to detect the same class
of tea. Therefore, sensors with large

Cov of the gas sensor, ¥ is the coefficients of variation were
average value of the gas eliminated. This method does not
sensor at different times, and  judge the dispersion between classes
n is the total number of tests.  and does not optimize the correlation
between sensors.
Ly (f i—u:)(u-fu)T The DPV Con'siders' the inter- and
T )n:’-’,’:)lj"’: (u.,,; Ty intra-class dispersion of sensors.
DPV e St SNPIASITI Optimizes sensors’ discriminating

The calculation formula for
DPV is introduced in

performances but does not optimize
the correlation between sensors.

Equation (2) of this paper.

In order to verify the classification effect of the sensor array obtained by different
methods, we discriminated 6 tea samples for training using 6 group sensors: preliminary
15 sensors, 3 groups of random-selected 11 sensors, 11 sensors screened by correlation
analysis and COV as well as 11 sensors screened by correlation analysis and the DPV. The
discriminating results are shown in Table 12. Sensors screened by the correlation analysis
and the DPV have a better discrimination performance than that by the correlation analysis
and COV, or by random. This is due to the fact that the DPV simultaneously considers the
inter- and intra-class dispersion of sensors and is better for eliminating correlated sensors,
which are analyzed using correlation analysis. The preliminary 15-sensor array combined
with RFML has the highest accuracy. Sensors screened by the correlation analysis and
the DPV have the most balanced performance. From the perspective of data processing
efficiency and equipment cost, the 11-sensor array screened by the correlation analysis and
the DPV is obviously better than the preliminary 15-sensor array.

3.5. Comparison of Screening Methods for Given Number of Sensors N

The second optimization step is to select N sensors from 11 sensors remained after
the first step to construct a sensor array with good independence. For N = 8, the sensor
array optimized by CA and DPV for 6 kinds of green tea is (MQK2, MQ-8, TGS813, 2M009,
MQ-3, 2M012, TGS2600, TGS832), and the corresponding rankings of DPV are (2, 1, 6, 10, 3,
4,11, 8). If the sensor array is optimized only by the ranking order of DPVs at the second
step, the result is (MQ-8, MQK2, MQ-3, 2M012, TGS813, TGS832, 2M009, TGS2600), and
the corresponding rankings of DPV are (1, 2, 3, 4, 6, 8, 10, 11). Note that two methods of
CA + DPV and only DPV were used in selecting 8 sensors at the second optimization step,
and the results are coincidentally consistent.
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Table 12. Discrimination accuracy of the sensors screened by different methods at the first step.
Discrimination Accuracy
Sensor Screening Method Selected Sensor Array
RFML [18] LDA-ave PCA-ave LDA-var PCA-var
TGS826, TGS899, TGS2600,
Random selection 1 TGS813, 2M012, MQ6, TGS2620, 97.81% 100.00% 72.22% 88.89% 66.67%
TGS822, MQ3, 2M009, MQK2
TGS826, TGS899, TGS2600,
Random selection 2 TGS813, 2M012, MQ6, TGS2620, 98.15% 100.00% 72.22% 94.44% 66.67%
TGS822, MQ3, TGS2610, MQK2
TGS822, MQ5, TGS826, MQ6,
Random selection 3 2M012, TGS2600, TGS2610, 96.05% 88.89% 61.11% 83.33% 77.78%
TGS800, 2M009, TGS2620, MQ3
TGS2600, TGS813, 2M012, MQ-6,
- TGS832, GS2620, MQ-8, MQ-3, o o o o o
Preliminary sensors MQ-5, TGS2610, 2M009, MOK2, 99.85% 100.00% 72.22% 100.00% 66.67%
TGS822, TGS826, TGS800
TGS2600, TGS813, 2M012, MQ-8,
Correlation analysis and COV MQ-3, MQ5, TGS2610, 2M009, 98.33% 100.00% 66.67% 83.33% 72.22%
MQK?2, TGS800, TGS826
TGS800, TGS2600, TGS813, 2M012,
Correlation analysis and DPV TGS832, MQ-8, MQ-3, MQ-5, 98.90% 100% 83.33% 94.44% 88.89%

TGS2610, 2M009, MQK2

Thus, in order to show the effect of SAO at the second step, we constructed 5 sensor
array groups. Four of them were randomly selected from the eleven sensors remained after
the first step, and the other group was selected using CA and the DPV. The accuracy with
which each of the 5 sensor groups were discriminated between 6 tea examples for training
is shown in Table 13. The results show that the sensor array selected using CA and DPV
screening has almost the best performance in most cases, because the sensor array has better
independence based on CA and better discrimination performance based on the DPV.

Table 13. Discrimination accuracy of the different 8 sensors screened using different methods.

Sensor Screening Method

Discrimination Accuracy

Selected Sensor Array

RFML [15] LDA-ave PCA-ave LDA-var PCA-var
Random selection-1 TGgS;%ﬁZ%%STgS%%OMF%Sm , 9660% 88.89% 83.33% 100% 88.89%
Random selection-2 2%0%-3,, 1\1\//[[81?2”1\148;’332?(2;65;3’3 97.26% 83.33% 83.33% 94.44% 77.78%
Random selection-3 21\&%6%’, ﬁ%ﬁéﬁ%ﬁé%?gﬁég é 97.64% 94.44% 77.78% 88.89% 66.67%
Random selection-4 25%3193TTG§%%%0?\£4501T2G¥[2%3 83.08% 88.89% 77.78% 94.44% 83.33%
CA and DPV MQK2, MQ-8, TGS813, 2M009, 98.84% 88.89% 88.89% 100% 94.44%

MQ-3, 2M012 TGS2600, TGS832

4. Conclusions

This paper proposed an optimization of an electronic nose sensor array to detect tea
aroma based on correlation coefficient and cluster analysis. A method based on correlation
coefficient and DPV is proposed to eliminate redundant sensors with high correlation
coefficients. Three sensor arrays are constructed based on green tea (LG), fried green tea
(LF) and baked green tea (LB), respectively. Based on the optimized sensor array LG, only
2 kinds of tea areas are overlapped when discriminating 12 green tea varieties by LDA-ave,
LDA-var and PCA-ave methods. Combined with the NNC algorithm, the accuracy can
reach 83.33-94.44%. This indicates that the tea aroma data obtained by LG have high
quality. When detecting various grades of West Lake Longjing tea, LF shows comparable
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discrimination accuracy to that of the German PEN2 electronic nose based on the same
data-processing method. Then, some sensor arrays screened and constructed based on
other SAO methods were also experimented in the same electronic nose system for the
identification of tea types. The experimental results show that sensors screened by the
correlation analysis and the DPV have a better discrimination performance than that by the
correlation analysis and COV, or by random. Finally, yet importantly, given the number of
sensors, the proposed method can filter out the optimal sensor combination from the given
candidate list.

The results show that, after proper optimization, fewer sensors can not only stop the
reduction of the sensor array’s performance in tea aroma detection, but can also improve
it; this is because, in our model, the introduction of noise is reduced. The electronic nose
SAO method proposed in this paper can effectively eliminate redundant sensors and
improve the quality of original tea aroma data. Fewer sensors also help simplify the circuit
board design, provide a higher degree of freedom in the layout of system components and
facilitate the miniaturization of the electronic nose system. In addition, fewer sensors can
reduce the cost of the sensor array, which is beneficial to providing more design freedom
for other modules in the system, thus having the potential to reduce system costs.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10
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