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Abstract: The increase in diagnostic and therapeutic procedures in the treatment of oncological dis-
eases, as well as the limited capacity of experts to provide information, necessitates the development
of therapy decision support systems (TDSS). We have developed a treatment decision model that
integrates available patient information as well as tumor characteristics. They are assessed according
to their relevance in evaluating the optimal therapy option. Our treatment model is based on Bayesian
networks (BN) which integrate patient-specific data with expert-based implemented causalities to
suggest the optimal therapy option and therefore potentially support the decision-making process for
treatment of laryngeal carcinoma. To test the reliability of our model, we compared the calculations
of our model with the documented therapy from our data set, which contained information on
97 patients with laryngeal carcinoma. Information on 92 patients was used in our analyses and
the model suggested the correct treatment in 419 out of 460 treatment modalities (accuracy of 91%).
However, unequally distributed clinical data in the test sets revealed weak spots in the model that
require revision for future utilization.

Keywords: therapy decision support system (TDSS); Bayesian networks (BN); tumor board; laryngeal
carcinoma

1. Introduction

Decision-making in oncology requires considering a large amount of heterogeneous
information. Experts must evaluate the current disease as well as secondary diseases in
addition to personal and social background. In some cases, not all the relevant information
can be considered appropriately. This may be due to a lack of available information,
the limited memory of the experts, or the shortage of time in everyday clinical practice.
Treatment decisions in oncology are generally made in specialized tumor boards. In these
meetings, experts from various specialties contribute to the decision-making process to
find the optimal treatment tailored to each patient. In some cases, important information is
underestimated or disregarded due to the above-mentioned problems of the tumor board.
Therefore, many experts advocate treatment support systems [1]. These can help experts to
make treatment decisions in everyday clinical practice by suggesting the optimal therapy.
These support systems should serve as additional help for the experts and should certainly
not replace them.

Treatment decision support systems (TDSS) help to process large amounts of data and
to determine the influence of the various pieces of information.

A growing proportion of decision support systems are based on the application of
machine learning techniques such as neural networks or deep learning. In this process, sys-
tems learn to recognize patterns in data that were not known before or classify information
based on found causalities (e.g., for diagnostic or therapeutic decisions) [2,3]. However,
these approaches require large amounts of structured data to train and validate the models.
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Usually, and specifically in complex clinical settings like oncology, these training data are
not available.

Another method to develop a decision model is the manual, expert-based approach.
Bayesian networks (BN) are suitable structures for manually creating decision models [4].

In a BN, a variety of information entities can be combined to provide flexible and
transparent decision representation as well as mathematically accurate and reproducible
inferencing (e.g., therapy decision, outcome, comorbidities, or quality of life) [5]. A BN
is a probabilistic graphical model that represents a network of categorial variables and
their conditional probability distributions. In direct causal dependencies, two directly
dependent variables are connected by a directed edge; from a parent node to its child
node [5]. Variables describe clinical states such as diseases (e.g., tumor size, location,
infiltration of certain structures), symptoms, and complications. For each variable, its states
can be either binary (true or false), or if necessary, the probability distribution between
0 and 1 to represent the occurrence distributed among them. Graphical models reflect the
causal structure of the variables. The conditional probability tables (CPTs) reflect causal
influence from medical evidence [6,7].

Models already exist that function as decision support in clinical practice. BN have
been used for decision support in the treatment of lung cancer by Sesen et al. [8]. Leibovici
et al. created a model to assist in selecting the most appropriate antibiotics. This model
reduced the use of broad-spectrum antibiotics and, consequently, the hospital stay in
patients [9]. This suggested the proper antibiotic treatment in up to 85% of 1203 patients in
their evaluation. There are other works that created models as therapy decision support
but have not yet been applied in practice. Huehn et al. used Bayesian networks for
decision support in immune checkpoint blockade in recurrent/metastatic (R/M) squamous
cell carcinoma of the head and neck (HNSCC). In their work, the model gave correct
probabilities in 84% of all treatment decisions in 25 R/M HNSCC cases tested [10]. Cypko
and Stoehr created a model for laryngeal carcinoma and validated a subnetwork that
focused on TNM staging [11].

Since laryngeal carcinoma is a common disease in otorhinolaryngology and takes up a
large share of the tumor board discussions, we explored the approach and process of model
development for treatment decisions for this disease. Laryngeal carcinoma is the third most
common malignant tumor in the head and neck region. In Germany, the relation between
men and women is approximately 7:1 [12,13]. The main risk factors for laryngeal carcinoma
are chronic tobacco and alcohol abuse, especially in combination [14–16]. Other risk factors
include occupational causes such as exposure to asbestos, ionizing radiation, or exposure
to coal products and tar products [17]. Diagnosing laryngeal carcinoma requires a clinical
examination. This includes clinical inspection, imaging, panendoscopy, and stroboscopy (=
assessment of the vibration behavior of the vocal folds) [18–20]. The prognosis of laryngeal
cancer depends mainly on the localization, the staging, and, in the case of primary surgery,
the status of the resection margins (R status). The larynx is divided into supraglottic, glottic,
and subglottic regions. The TNM classification is internationally accepted for the staging
of head and neck malignancies. The T stage describes the extension of the primary tumor,
the N stage describes the affection of the regional lymph nodes, and the M stage describes
distant metastases. Furthermore, the preepiglottic space is of particular importance for
tumor extension [21].

Currently, the most effective and widely accepted methods for the treatment of laryn-
geal carcinoma are surgical therapy, radiotherapy, radiochemotherapy, and immunotherapy.
Guidelines for therapy of laryngeal carcinoma are, for example, the NCCN guidelines or
the German S3 guidelines. Surgical treatment of laryngeal cancer comprises total or par-
tial laryngectomy, transoral robotic, or laser-assisted surgery. In transoral resection of
T1/T2 glottic carcinomas, a safety margin of at least 1 mm should be maintained, whereas
a safety margin of at least 5 mm is mandatory for T3 and T4a carcinomas. Radiotherapy
can be used alone or in combination with systemic chemotherapy (chemoradiation) [22,23].
For extended or incurable tumors, chemotherapy is necessary. Treatment with chemothera-
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peutics involves the use of cytotoxic agents that block the growth of malignant tumor cells
by various mechanisms [24]. Depending on the tumor status and the patient’s general con-
dition, the type of systemic therapy is chosen. For patients in good general condition with
locally advanced disease, concurrent cisplatin and radiation therapy are recommended [23].
Advanced laryngeal cancer can also be treated with immunotherapy, e.g., epidermal growth
factor receptor blocking (cetuximab) [24], or checkpoint inhibitors, such as nivolumab or
pembrolizumab [23].

We extended the previous work of Cypko et al. [6] and Stoehr et al. [25] by extending
their approach for laryngeal cancer support as well as integrating adequate therapy options
with a real-life validation effort.

In this work, we describe the procedure and assessment of an expert-based develop-
ment of a BN model for treatment decision support of laryngeal cancer cases in the head
and neck tumor board. In the validation of our model, specific patient information was
implemented into the model. In this way, the therapy options recommended by the model
were compared with the actual treatment decision in the tumor board.

The work at hand contributes to the field of applied medical informatics by:

• Presenting a user-centered and expert-based approach to decision modeling;
• Formally expressing the approach to a decision pathway for laryngeal cancer treatment

options;
• Validating the results using real patient data;
• Discussing strengths and weaknesses in approaching expert-based decision support.

2. Materials and Methods

To create a tumor decision model, it was necessary to consider all aspects that are
important for deciding the optimal therapy method. The weighting of individual pieces of
information had to be considered, priorities had to be set, and direct and indirect causalities
of conditions and therapy methods had to be taken into account.

All diagnostic as well as general information entities of the patient, specifically re-
garding the tumor were collected. Tumor type, tumor size, tumor spread or infiltration,
lymphogenic as well as hematogenic metastasis, etc. were elicited, and the TNM classifica-
tion was used to determine the tumor stage.

We base our work on the one of Cypko et al., where a TNM staging subnetwork was
developed with information on the tumor physical extension (according to TNM staging),
comorbidities, genetic and molecular factors, therapy options, risk factors, complications,
and quality of life. The model covered the variables relevant to the tumor board, and their
causal and probabilistic relationships [6]. The prior results of the TNM model represent the
basis of our therapy model.

In our work, reports of tumor board procedures and decision-making strategies, as
well as recommended, planned, and actual therapies for laryngeal carcinoma, have been
compiled. In patients with laryngeal cancer treated at University Hospital Leipzig from
2017 to 2020, all information entities important for therapy decisions were collected and
analyzed.

Based on the information collected and the treatment decisions made in the tumor
board of the University Hospital Leipzig, the therapy decision model should function as an
aid in the tumor board and be able to recommend the optimal therapy method individually
for each patient, taking into account all their findings and information. In this work, the
focus was on staging, so treatment options were inferred from TNM staging.

2.1. Medical Preliminary Consideration

The tumor state with the different T, N, and M stages as well as the different therapy
options and the prerequisites for the implementation of the possible therapies are explained
in the following paragraphs.

We created a map that represented the patient information as well as their correlations
and causal dependencies. We established arches between entities describing the patient’s
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condition and the resulting decisions and actions that result from their possible manifesta-
tion. The current TNM classification of laryngeal carcinoma works as a source in describing
tumor state [21]. For decisions involving surgical therapy, the NCCN Guidelines 2021 were
used as the source [23]. This map served as the basis for the technical realization as a BN.

We focused primarily on the TNM stage, as this information was most crucial in the
tumor board when making treatment decisions. In addition, since there was not enough
data within the dataset to consider detailed information on every patient, it could not be
tested and therefore was not modeled. After reviewing the model with ENT experts and
assessing the clinical data basis, we reduced the map. The reduction was necessary to allow
us a technical realization and validation but also needed to be still clinically sound. In
further reviews with ENT clinicians, we secured the clinical significance but also downsized
the desired model.

2.2. Creating the Model

We utilized the software GeNIe Version 2.2, distributed by Bayesfusion (https://
www.bayesfusion.com/genie/), for model development and validation [26]. Information
relevant to the treatment decision of laryngeal cancer is specified in nodes. In these nodes,
the different characteristics or states matching treatment decisions are specified as states.
For example, a node for the “T-stage” was created representing the different T-stages, which
are classified according to the TNM classification. This is illustrated in Figure 1.

Biomedicines 2023, 11, x FOR PEER REVIEW  4  of  16 
 

2.1. Medical Preliminary Consideration 

The tumor state with the different T, N, and M stages as well as the different therapy 

options and  the prerequisites  for  the  implementation of  the possible  therapies are  ex‐

plained in the following paragraphs. 

We created a map that represented the patient information as well as their correla‐

tions and causal dependencies. We established arches between entities describing the pa‐

tient’s condition and  the resulting decisions and actions  that result  from  their possible 

manifestation. The current TNM classification of laryngeal carcinoma works as a source 

in describing tumor state [21]. For decisions involving surgical therapy, the NCCN Guide‐

lines 2021 were used as  the source  [23]. This map served as  the basis  for  the  technical 

realization as a BN. 

We focused primarily on the TNM stage, as this information was most crucial in the 

tumor board when making treatment decisions. In addition, since there was not enough 

data within the dataset to consider detailed information on every patient, it could not be 

tested and therefore was not modeled. After reviewing the model with ENT experts and 

assessing the clinical data basis, we reduced the map. The reduction was necessary to al‐

low us a technical realization and validation but also needed to be still clinically sound. 

In further reviews with ENT clinicians, we secured the clinical significance but also down‐

sized the desired model. 

2.2. Creating the Model 

We  utilized  the  software  GeNIe  Version  2.2,  distributed  by  Bayesfusion 

(https://www.bayesfusion.com/genie/), for model development and validation [26]. Infor‐

mation relevant to the treatment decision of laryngeal cancer is specified in nodes. In these 

nodes, the different characteristics or states matching treatment decisions are specified as 

states. For example, a node  for  the “T‐stage” was created representing  the different T‐

stages, which are classified according to the TNM classification. This is illustrated in Fig‐

ure 1. 

 

Figure 1. Node: T category with the different states. 

For the T category, a node was created with subcategories T1‐T4b as well as TX, T0, 

and TIS. For metastases to the regional lymph nodes, a node was generated and the pos‐

sible N stages were given as the states of this event. The same was performed for the dis‐

tant metastases, which were  listed  in an M node. Since  the T, N, and M categories are 

causally related to all therapeutic options, this was taken into account in the graph as well 

as in the evaluation. 

In the next step, a therapy sub‐model was created. In this sub‐model common as well 

as all overall possible therapy methods were listed. For the possible therapy options, the 

exact type or description of the respective therapy was presented as subitems. 

Figure 1. Node: T category with the different states.

For the T category, a node was created with subcategories T1-T4b as well as TX, T0,
and TIS. For metastases to the regional lymph nodes, a node was generated and the possible
N stages were given as the states of this event. The same was performed for the distant
metastases, which were listed in an M node. Since the T, N, and M categories are causally
related to all therapeutic options, this was taken into account in the graph as well as in the
evaluation.

In the next step, a therapy sub-model was created. In this sub-model common as well
as all overall possible therapy methods were listed. For the possible therapy options, the
exact type or description of the respective therapy was presented as subitems.

The prerequisites for specific therapies to be performed were elicited and placed above
the possible therapeutic options in the model. Of these prerequisites, edges were placed in
the direction of the therapy nodes. Thus, a therapy could only be selected if the prerequisite
above it was fulfilled.

When creating the nodes, we distinguished on the “logical level” between observable
nodes and calculated/inferred nodes. Observable states include patient information that we
insert into the model. Our target variables, the therapy options, on the other hand, can occur
in a distributed manner and express probabilities of success and are calculated/inferred
nodes. For example, in a given constellation, surgical therapy may be 70% true and
radiotherapy 30% true [27].

https://www.bayesfusion.com/genie/
https://www.bayesfusion.com/genie/
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2.3. Probability Integration

GeNIe is able to infer the probability for certain target nodes. Probability condi-
tions must be entered into the model to represent the causal conditions between nodes.
Conditional probability tables in GeNIe contain the individual causal conditions of all
combinations of states between two nodes. Using the NCCN guidelines, we entered the
specific probability of one state occurring dependent on the parent’s states’ occurrence. The
probabilities were entered into the model for which therapy would be selected according to
the guidelines for the most varied constellations. In the program described below, the most
varied situations with the different stages and patient conditions were specified and the
appropriate therapies were selected based on the guidelines.

For example, surgical therapy would have a probability of 74% of being considered
for a patient with stage T2, N2a, and M0 laryngeal carcinoma and who is tolerant to
chemotherapy. In contrast, a patient with stage T2, N2a, and M1 laryngeal carcinoma
would not receive surgical therapy with a probability of 17%. Figure 2 shows an example
of a table with the entered probabilities in the different states.
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2.4. Description of the Data Set

The data analysis included information on 97 patients with laryngeal cancer, who
were presented to the head and neck tumor board and treated at the Department of
Otolaryngology at the University Hospital Leipzig. Patients with the same health conditions
or the same tumor stages were grouped. The analysis included data from 83 men (85.6%)
and 14 women (14.4%). Most patients (n = 32) from the data analysis were between the
ages of 61 and 70 years (33.0%) followed by the age group between 71 and 80 years with
21 patients (21.6%). From the dataset, five patient cases were excluded from the analysis
because they contained inconsistent data from the health records. Thus, 92 patient cases
were analyzed. Table 1 shows the frequencies in detail.

Table 1. Statistical summary of the patient-related features for therapy decision.

Patient-Related Features
n = 97 Absolute Frequency Relative

Frequency

Gender
Male 83 0.856

Female 14 0.144

Age group

51–60 30 0.302
61–70 32 0.330
71–80 21 0.216
81–90 12 0.124

unknown 2 0.021

Most of the tumors were in advanced stages T3/T4a, as shown in Table 2. Surgical
therapy was the most common treatment modality among patients from the data set. In
some patients, primary tumor extension or metastases did not allow for surgical interven-
tion. In addition to the poor general condition and therefore insufficient anesthetic ability,
the missing complete tumor resectability with adequate safety margins prevented surgical
therapy in 11 patients (11.3%). An insufficient anesthetic ability was present in two cases,
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where patients had very poor general condition. Surgery was a performed therapeutic
option in the data set with 80 patients (82.5%). Chemoradiation ranked second, which was
performed in nine patients (9.3%), whereas radiotherapy alone was performed in three
patients (3.1%).

Table 2. Statistical description of the diagnosis-related factors for therapy decision.

Diagnosis-Related Features
n = 97 Absolute Frequency Relative

Frequency

T State
in total

Tx 1 0.010
Tis 1 0.010
T1 5 0.052
T1a 19 0.196
T1b 8 0.082
T2 16 0.165
T3 22 0.227
T4a 23 0.237
T4b 2 0.021

T State
without surgical intervention

Tx 1 0.010
T1b 1 0.010
T3 5 0.052
T4a 8 0.082
T4b 2 0.021

2.5. Validation Process

For validation, a set of information on 92 patients who were treated at the University
Hospital Leipzig due to a laryngeal carcinoma was available to us. We entered the data
into the GeNIe as a CSV file and used its internal validation algorithm to test the model.
We configured the five treatment nodes to be the target for the validation, meaning GeNIe
inferred them given the data from each patient case and compared it to the given data from
each treatment option. The outcome of the validation test will be described in the Section 3.

We also utilized GeNIe’s internal training feature to test the outcome of training the
model’s conditional probabilities using real-life data. We used a 10-fold cross-validation
with uniform parameter initialization to train and test. However, given that we only had
92 test cases, the cross validation performed worse and the resulting accuracy was lower.
This confirmed our efforts in creating a decision model manually with the precondition of
sparse clinical data sets.

3. Results
3.1. The Treatment Model for Laryngeal Carcinoma

In Figure 3, we illustrate the therapy model including the different descriptions of
the tumor as well as the therapy methods. The model consists of nine nodes. The orange-
colored boxes represent the T, N, and M stages of the laryngeal tumor. Based on the TNM
classification, the T stages range from TX-T4b, the N stages range from NX-N3b, and the
M stages range from MX-M0 [21]. The pink-colored boxes reflect the different therapeutic
modalities of laryngeal carcinoma. The yellow-colored box describes the tolerability for
chemotherapy, which is a prerequisite for the implementation of chemotherapy.
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3.2. Validation of the Treatment Model

Our analysis showed an overall accuracy of 91% for all five target nodes regarding
the model calculation in comparison with the documented tumor board decision. This is
the result of multiplying the number of patients in our data set (n = 92) and the possible
therapy options, a total number of 460 treatment option combinations. Out of these
treatment options, 419 were chosen correctly by our model (91%). For the decision regarding
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chemotherapy, the accuracy of the model was 73%. In many cases, the model showed
deviating results compared to the recorded tumor board decision. This may be due to
the smaller number of cases compared to surgical therapy leading to greater imprecision.
Another reason can be that patients often have a say in the choice of therapy and opt for
a treatment method that is not the first choice according to the guidelines. Regarding
radiochemotherapy, the model calculated the treatment with an accuracy of 93%. For
surgical treatment, the model achieved a correct recommendation in 91% of the cases. The
accuracy for radiotherapy alone was 98%. For immunotherapy, the accuracy reached 100%.
Since this therapy is currently being established and therefore no data were available in
our data set, this result is not significant.

Table 3 presents the accuracy of the model calculation with respect to the different
treatment modalities. Figure 5a–c shows the receiver operating characteristic (ROC) curves
for the three main treatment nodes: surgery, radiochemotherapy, and radiotherapy, respec-
tively. The other two treatment options were omitted because there were no positives in
our data. Generally speaking, ROC curves show the relation of sensitivity and specificity
of a classifier. A good performance of a classifier would be indicated by a curve that moves
close to the top-left corner. The ROC curves demonstrate high predictive performance of
the model for the majority classes and acceptable performance for rare therapy decisions
(see Table 4 for class frequencies). However, one can clearly see the difference between
the curves regarding one therapy option. One option is better defined with high validity
than the other (e.g., predicting the performance of surgery rather than against it). This can
be looped back to the evidence base we used. There, most patients with similar staging
received similar therapies. Hence, the prediction tends to be the evidentially more suitable
treatment. This can also be seen in the area under the curve (AUC), which in all three cases
shows the tendency to favor one treatment option over the other.

Table 3. Accuracy of the model calculation regarding the different treatment modalities.

Treatment Accuracy in Absolute
Numbers

Accuracy in Relative
Numbers

All nodes 419/460 0.91087 (91%)

Chemotherapy 67/92 0.728261 (73%)

Radiochemotherapy 86/92 0.934783 (93%)

Larynx surgery 84/92 0.913043 (91%)

Radiotherapy 90/92 0.978261 (98%)

Immunotherapy 92/92 1 (100%)

Table 4. F1 measure for larynx model.

Treatment Positive Cases Negative Cases F1 of Positive
Class

F1 of Negative
Class

Weighted Average
of F1

Chemotherapy 0 92 0.843 0 0.843

Immunotherapy 0 29 1 0 1

Larynx surgery 80 12 0.556 0.952 0.896

Radiochemotherapy 9 83 0.965 0.571 0.926

Radiotherapy 3 89 0.989 0 0.968
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Figure 6a–c displays the precision-recall curves for the three therapy options: surgery,
radiotherapy, and radiochemotherapy. These curves plot the positive predictive value
against the true positive rate. Curves for chemo- and immunotherapy were omitted be-
cause of missing positive cases in the test data, and therefore graphs would be unusable.
All curves show a high sensitivity for one specific option. Figure 6a shows high sensitivity
toward larynx surgery (blue curve), Figure 6b,c shows high sensitivity against the perfor-
mance of either radio- or radiochemotherapy (orange curves). This means that with a high
recall there are few to no false positive predictions. However, the opposite therapy options
(orange curve in Figure 6a, blue curves in Figure 6b,c, respectively) reach high recall only
with lower precision. Our model’s prediction against surgery or for radiochemotherapy,
respectively, reaches a precision of roughly 50% with a recall of only 50%. The precision of
outcome values for radiotherapy does not exceed 20% precision (see Figure 6c).

We calculated the F1 score as a harmonic mean of precision and recall. Table 4 shows
the results of our model. It is also clearly visible how either one therapy option tends to
favor only one of its possibilities. Both precision-recall curve and F1 display the flaws in
the test data, which are unbalanced in terms of containing all possible values in a suitable
distribution. This implies that statements from our model should be individually assessed
in regard to the model’s sensitivity.
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4. Discussion

The aim of our work is to create the approach of a decision model for laryngeal
cancer as a potential basis for a TDSS for the head and neck tumor board. To find an
optimal patient-specific treatment option, the processing of large amounts of data from
many different sources is required. This process can be supported by TDSS. Especially
by multidisciplinary teams, for example in tumor boards, such systems are increasingly
applied [28]. TDSS based on BN can play a significant role because they provide flexible
and transparent decision modeling, as well as mathematically accurate and reproducible
recommendations [4,5].

In a validation study of 92 patient cases discussed in the head and neck tumor board of
the University Leipzig, the model showed good results in calculating the optimal treatment
from primary patient data compared to the actual tumor board recommendation.

For treatment options that were recommended less frequently, however, our model
showed deviating results. Here, our assessment of the model performance is inconclusive
due to very few cases for validation. Poor validation metrics could indeed indicate poor
predictive accuracy or originate from statistical noise. So far, the best patient-specific
treatment is based on the most frequently used therapy, as this is evidence-based. This
does not necessarily reflect the success of the therapy, but only the frequency or probability
of use.

Since immunotherapy is currently being established, there is insufficient data for
patients treated with immunotherapy in our dataset, which contains retrospective patient
data from previous years. Because of this, the validation of the immunotherapy node was
not possible with clinical data. However, the node was still integrated into the model, as
cases will occur more frequently in laryngeal cancer treatment.

Previous models in head and neck oncology, such as Huehn et al. already showed
acceptable results for clinical models in a molecular setting [10]. In addition, it was stated
that abstracted patient factors and generalized medical guidelines must be adjusted to
the individual case and verified by real-world data, despite an accurate processing model
with appropriate results. Huehn et al. also indicated that their model represents a tradeoff
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between the complexity of the model and the ability to evaluate each possible individual
decision with reasonable certainty [10]. This was also a pitfall in our approach to modeling.
We needed to find a realistic, medical sound depiction, yet rely on a limited data set of test
cases. However, combining different views and previous works, e.g., [23] and [6], promises
to overcome individual shortcomings.

A treatment decision model for oropharyngeal carcinoma was designed by Buyer
et al. [29]. In this work, it was discussed that the determination of the metrics presented
was highly dependent on the underlying data set. Thus, they also assumed that the results
were limited and could be expanded with the integration of more or different other data
sets. Buyer et al. suggested that the approach presented could likely adapt to real-world
causal effects such as a reduction in the need for adjuvant treatment when R0 resection
with clear margins was achieved. They also wrote that the resulting sets of their work
were purely categorical, and this would have allowed their approach to be compared with
other methodological solutions that are also able to account for state differences between
variables such as the Goodall measure or likelihood-based methods [29].

In our analysis, it was noticeable that uncertain therapy methods were suggested for
information that was not clearly defined, such as Tx (= primary tumor cannot be assessed),
because no correct probability can be generated if the information is unclear. In our model,
we restricted ourselves to the TNM nodes as well as the nodes for the possible therapies.
Originally, the model was much more complex. However, this was significantly reduced
because we would not have been able to validate the causalities since we did not have
extensive enough test cases. Not being able to demonstrate that certain conditions really
influence decisions is a necessity in clinical decision support. In addition, an excessive
number of nodes, and thus information, can lead to limitations in the computability of the
model. Huehn et al. also described that an immense increase in the size of the model can
complicate the process of determining the individual probabilities of individual connections
between two nodes [10].

Cypko and Stoehr presented a model for laryngeal carcinoma and validated a subnet-
work that focused on TNM staging [11]. It has to be noted that the TNM classification is a
clearly defined system, whereas treatment decisions are much more complex and therefore
diverse, as shown in the different options for similar circumstances. In this respect, the
presented treatment showed a reasonable overall accuracy of 91%.

While the preliminary work of Cypko and Stoehr focused on TNM staging, in our
model, reference was made exclusively to preoperative therapy [11]. This means that our
model is suitable for the treatment of primary laryngeal cancer patients. For adjuvant
treatment as well as for recurrences, the creation of separate models is planned and not the
focus of this study.

In our work, we focused primarily on the TNM classification as a relevant factor. The
validation study of the model with 92 patient cases may have limited validity. However, this
model serves as an advanced concept for the use of treatment decision support systems in
the tumor board and an extension of the model is planned. As new therapeutic modalities
such as the various chemotherapeutic agents as well as immunotherapies are increasingly
used, an extension of the model or its integration with other models, e.g., Huehn et al. and
Cypko and Stoehr is necessary for the future [10,11]. Although these therapy methods
were not used in our dataset they were nevertheless integrated into the model because
they are relevant for patients in palliative situations. In the time we treated, there were no
matched patients included in the analysis. In addition, more patient data will be available
for validation studies as newer therapies increase in use. Despite the limited amount of
patient cases, the results of our study are promising.

The model expansion also aims to use a larger data set as well as a larger set of
parameters. Similarly, collecting data from different centers in different regions would
be beneficial. Additionally, the method needs to be validated in different backgrounds to
prove its potential.
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5. Conclusions

A therapy decision support model serves as an aid for the experts, for example in
the tumor board. It can be used as a small feature within a clinical information system
in preparation for the tumor board to illuminate possibilities of the therapy approach in
advance or it can be used in the tumor board itself. However, it should not be used as a
basis for decision-making. The experience and knowledge of the experts should still be
taken into account. It must always be considered in the context of clinical practice.

Our decision model for laryngeal cancer was created by integrating the most relevant
parameters for a general treatment decision. The BN model was validated in a retrospective
analysis of 92 patients who were presented on the tumor board of the University Hospital
Leipzig from 2017 to 2020. In this analysis, the calculation of the model from primary data
taken from the patient record of 92 patients was compared to the treatment decision of the
tumor board. Because of conflicting data, information from five patient cases was excluded
from our analysis so as not to bias the results. The analyses of our model showed an overall
accuracy of 91.0%.

Therapy decision support systems can be a real asset in everyday clinical practice. For
the development of a decision model, a large balanced data set is indispensable to achieve
better results. To prove that the decision model can be used in practice, validation with
patient data from clinical practice has to be performed. With a rather unbalanced data
set, accurate predictions cannot be made for certain aspects, in our case chemotherapy
and immunotherapy. With a larger and more homogeneous data set, better results can
be obtained.

Overall, however, the structure of the model and the formalism are very important.
Evidence-based causalities were set. The probabilities that were entered into the GeNIe
model are based on guidelines that are also used in clinical practice. Extension and mainte-
nance of the model are important and possible at any time. As soon as new knowledge or
new findings occur, the model can be adapted to them.

These results will be tested prospectively, and we hope that further optimization and
validation will lead to a beneficial clinical decision support system that provides transparent
and comprehensive assistance in the decision-making process.
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