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Abstract: Small molecules are being used to inhibit cyclin dependent kinase (CDK) enzymes in
cancer treatment. There is evidence that CDK is a drug-target for cancer therapy across many
tumor types because it catalyzes the transfer of the terminal phosphate of ATP to a protein that
acts as a substrate. Herein, the identification of pyranopyrazoles that were CDK inhibitors was
attempted, whose synthesis was catalyzed by nano-zirconium dioxide via multicomponent reaction.
Additionally, we performed an in-situ analysis of the intermediates of multicomponent reactions, for
the first-time, which revealed that nano-zirconium dioxide stimulated the reaction, as estimated by
Gibbs free energy calculations of spontaneity. Functionally, the novel pyranopyrazoles were tested
for a loss of cell viability using human breast cancer cells (MCF-7). It was observed that compounds
5b and 5f effectively produced loss of viability of MCF-7 cells with IC50 values of 17.83 and 23.79 µM,
respectively. In vitro and in silico mode-of-action studies showed that pyranopyrazoles target CDK1
in human breast cancer cells, with lead compounds 5b and 5f having potent IC50 values of 960 nM
and 7.16 µM, respectively. Hence, the newly synthesized bioactive pyranopyrazoles could serve as
better structures to develop CDK1 inhibitors against human breast cancer cells.

Keywords: pyranopyrazoles; CDK1; Gibbs free energy; CHEMBL; nano-zirconium dioxide

1. Introduction

The cyclin-dependent kinases (CDKs) are proteins that are involved in the control of
cell cycle progression [1–3]. The loss of cell cycle control that results in aberrant cellular
proliferation is considered a fundamental characteristic of cancer, and inhibitors of CDKs
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provide a method of controlling cancer progression and hence have therapeutic implica-
tions [4–8]. There are currently around six types of CDK inhibitors based on the enzyme
binding pockets that have been designed so far and CDK1 is one of the most appealing
drug targets [9]. On the basis of the co-crystal structure of 3-phosphoinositide-dependent
protein kinase 1 with ATP, the inhibitors were classified as type-I inhibitors, which bind to
the active conformation of the enzyme that occurs when the aspartate amino acid of the
DFG motif is pointing into the ATP binding region [9]. The aspartate amino acid switches
from its active site position to the inactive conformation in type-II inhibitors. An inhibitor
that targets the allosteric region near the ATP-binding pocket is referred to as a type-III
inhibitor. The type-IV inhibitors interact with the allosteric site, which is located away from
the region where the ATP is bound. Allosteric amino acids and ATP-binding regions are
known to be occupied by type-V inhibitors [10]. Type-VI inhibitors irreversibly bind to
either the ATP-binding, or allosteric region of the enzyme [10]. According to published re-
ports, an aminothiazole compound, namely RO-3306 (1) was found to be a type-I inhibitor
that inhibits CDK1 with high potency in cancer cells compared to normal cells [11,12].
Specifically, co-crystal structural analysis of CDK1 bound to a potent ATP-competitive
inhibitor compound 23 [4-(2,6-difluoro-benzoylamino)-1H-pyrazole-3-carboxylic acid (4-
Fluoro-phenyl)-amide; 2] infers plasticity in the CDK1 substrate binding region, when
compared to CDK2 [13]. These studies were a breakthrough in developing CDK1-selective
inhibitors, as the main amino acid residues that interact with compound 23 are identical
in CDK1 and CDK2; resulting in a very similar activity towards these two CDKs [13,14].
There is a deeper understanding of the structural binding of purine analogues—namely
roscovitine (3) which was designed, synthesized, and analyzed as a potent CDK inhibitor
that interacts with the ATP-binding site with respect to C-8 substitution [15]. Since bio-
genic purine heterocycles were studied as structural analogues with pyrazolopyrimidines,
it was herein attempted to synthesize newer pyranopyrazoles (4) with a substitution at
pyrano-carbon that could be bio-isosteric with C-8 substituted purines (Figure 1) [16].
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Furthermore, we report the synthesis of pyranopyrazoles via multi-component reac-
tions (MCRs) catalyzed by recyclable nano-zirconium dioxide, which allows us to produce
a high yield of products, fewer by-products as compared with conventional synthesis, and
consequently reduced cost, time, and energy to synthesize, thereby allowing us to create
new catalytic systems. In addition, the MCR mechanism was studied by in silico Gibbs
free energy calculations, which correlates with the reaction spontaneity in the presence
of nano-zirconium dioxide, and our in vitro studies revealed that the newly synthesized
pyranopyrazoles could be used as a template to probe CDK1 in human breast cancer cells.

2. Materials and Methods
2.1. Synthesis of Nano-Zirconium Dioxide

Hydrated zirconyl nitrate (ZrO(NO3)2·xH2O (ZN), Aldrich, INDIA, purity almost
100%) and glycine (NH2CH2COOH, Mallinckrodt, St. Louis, MO, USA, purity 99.5%, Gly)
were utilized as the precursors. The various results of the redox combinations (Gly:ZN)
for burning were determined by utilizing the complete reducing (+9) and oxidizing (−10)
valences of the precursor: Gly and ZN, respectively. As indicated by the rules of fuel
science [17], for a stoichiometric redox response, the proportion of the net reducing valency
of the fuel relative to the oxidizing valency of the metal nitrate ought to be solid (most
extreme amount of energy delivered in the ignition cycle). Accordingly, the Gly:ZN molar
proportion for the stoichiometric ignition ought to be 1:11. Also, fuel-lean (0.5 and 0.75) and
fuel-rich (2) Gly:ZN precursors were applied for test planning. The determined Gly:ZN
molar proportion was decided tentatively to ensure the auto-start of the ignition process,
taking into account that it happens in a restricted range of fuel-to-oxidant molar proportions
(above and below the stoichiometric one). The necessary amounts of starting materials were
crushed in a base measure of deionized water and blended to acquire a straightforward
fluid arrangement of oxidant–fuel precursor. After a lack of hydration at ca. 80 ◦C, when a
gooey fluid was produced, the temperature was increased to ca. 250 ◦C. This prompted a
quick, self-supporting, flameless, non-dangerous auto-ignition of the fluid, with a rapid
development of a large amount of gases and the development of an undefined powder (as
affirmed by XRD, not displayed here), which suggested inadequate burning. The initial
idea at the start and the amounts of the resultant powders, relied upon the fuel-to-oxidant
molar proportions. Consequently, these examples were used as crude powders. Therefore,
they were calcined in air, at 55 ◦C for 4 h at barometric pressure, to eliminate residual
unreacted starting materials (if any) and additionally, results of their disintegration gave
unadulterated, and very much solidified oxides which were examined by XRD.

2.2. Chemistry

The progress response was determined utilizing thin layer chromatography (TLC).
Analytical TLC was performed on precoated Merck silica gel 60 F254 plates (INDIA) using
ethyl acetate and hexane as eluent, and spots were detected under UV light. 1H NMR and
13C NMR spectra were recorded on an Agilent NMR instrument in DMSO as the solvent
(Santa Clara, CA, USA). Chemical shifts were expressed in ppm comparative to TMS. Mass
spectra were recorded on an Agilent LC-MS (Santa Clara, CA, USA). All solvents and
reagents were reagent grade.

2.2.1. General Procedure for Preparation of Newer Pyranopyrazole Derivatives 5(a–o)

A mixture of aryl aldehyde (1) (1 mmol), substituted hydrazine hydrate (2) (1 mmol),
ethyl acetoacetate (3) (1 mmol), malononitrile (4) (1 mmol), and nano-zirconium dioxide
were stirred in water/ethanol (1:1) at room temperature for about 30–60 min (Tables 1 and 2).
After completion of the reaction, catalyst was regained by filtration. Further, the filtrate
was worked up using ethyl acetate (25 mL × 3), and the solvent evaporated under high
pressure vacuum. The crude products were purified through a column chromatography
technique to obtain the desired compounds 5(a–o). Novel compounds were confirmed by
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1H, 13C NMR, mass spectroscopy and reported molecules were confirmed by comparing
their melting points with literature data.

Table 1. Optimization of reaction conditions in the synthesis of pyranopyrazoles.

Entry Solvent Amount of Catalyst (mol%) Time (min) Yield (%)

1 H2O 10 30 38
2 EtOH 10 30 45
3 H2O:EtOH (1:1) 10 30 53
4 H2O:EtOH (1:1) 10 50 62
5 H2O:EtOH (1:1) 20 30 68
6 H2O:EtOH (1:1) 20 50 75

Table 2. Physical data and cytotoxicity data of 6-amino-4-aryl-3-methyl-1,4-dihhydropyrano [2,3-c]
pyrazole-5-carbonitriles.

Entry Aldehyde Product Time
(min)

Melting Point
(◦C)

MCF-7
IC50 (µM)

1
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Table 2. Cont.

Entry Aldehyde Product Time
(min)

Melting Point
(◦C)

MCF-7
IC50 (µM)
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Table 2. Cont.
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Table 2. Cont.

Entry Aldehyde Product Time
(min)

Melting Point
(◦C)

MCF-7
IC50 (µM)
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2.2.2. Characterization of
6-Amino-3-methyl-4-(4-(pyrimidin-5-yl)phenyl)-1,4-dihydropy-rano [2,3-c]
Pyrazole-5-carbonitrile (5a)

Brown solid; MP: 196–198 ◦C; 70% yield; 1H NMR (500 MHz, DMSO): δ 10.01 (s, 1H),
8.96 (s, 1H), 8.77 (s, 2H), 7.70 (d, J = 7.5 Hz, 2H), 7.65 (s, 2H), 7.14 (d, J = 7.0 Hz, 2H), 5.51 (s,
1H), 2.30 (s, 3H); MS: 330.34, m/z = 331.12 [M+H]+.

2.2.3. Characterization of
6-Amino-4-(3-(6-fluoro-5-methylpyridin-3-yl)phenyl)-3-methyl-1,4-dihydropyrano [2,3-c]
Pyrazole-5-carbonitrile (5b)

Yellow solid; MP: 214–215 ◦C; 63% yield; 1H NMR (500 MHz, DMSO): δ 10.02 (s, 1H),
8.34 (d, J = 2.5 Hz, 1H), 7.87–7.85 (m, 1H), 7.65 (s, 2H), 7.60 (dt, J = 7.4, 2.4 Hz, 1H), 7.42 (t, J
= 7.4 Hz, 1H), 7.23 (d, J = 7.3 Hz, 1H), 7.11 (t, J = 2.1 Hz, 1H), 5.50 (s, 1H), 2.56 (s, 3H), 2.30
(s, 3H); 13C NMR (100 MHz, DMSO): δ 163.24, 161.85, 160.88, 155.57, 146.15, 143.13, 142.98,
141.19, 136.65, 134.80, 130.96, 127.90, 126.5, 125.99, 120.47, 120.12, 119.7, 97.80, 57.13, 36.41,
14.06, 9.91; MS: 361.38, m/z = 362.14 [M+H]+.

2.2.4. Characterization of 6-Amino-3-methyl-4-(3-(pyridin-4-yl)phenyl)-1,4-dihydropyrano
[2,3-c] Pyrazole-5-carbonitrile (5c)

Dark yellow solid; MP: 245–247 ◦C; 78% yield; 1H NMR (600 MHz, DMSO): δ 9.93 (s,
1H), 8.84 (d, J = 2.4 Hz, 1H), 8.56 (dd, J = 7.5, 2.6 Hz, 1H), 7.82 (dt, J = 7.5, 2.5 Hz, 1H), 7.70
(d, J = 7.5 Hz, 2H), 7.65 (s, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.14 (d, J = 7.2 Hz, 2H), 5.47 (s, 1H),
2.30 (s, 2H); 13C NMR (100 MHz, DMSO): δ 161.82, 155.59, 149.16, 148.35, 145.31, 140.85,
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136.37, 136.17, 134.68, 129.82, 128.91, 127.69 126.42, 124.52, 121.49, 97.99, 57.20, 36.04, 9.89;
MS: 329.36, m/z = 330.17 [M+H]+.

2.2.5. Characterization of
6-Amino-4-(3-(6-chloro-5-methylpyridin-3-yl)phenyl)-3-methyl-1,4-dihydropyrano
[2,3-c] Pyrazole-5-carbonitrile (5d)

Brown solid; MP: 212–214 ◦C; 82% yield; 1H NMR (600 MHz, DMSO): δ 10.02 (s, 1H),
8.60 (d, J = 2.4 Hz, 1H), 7.89–7.87 (m, 1H), 7.60 (dt, J = 7.5, 2.5 Hz, 1H), 7.42 (t, J = 7.5 Hz,
1H), 7.23 (dtd, J = 7.5, 2.5, 1.0 Hz, 1H), 7.11 (td, J = 2.5, 1.0 Hz, 1H), 5.51 (s, 1H), 2.53 (s, 3H),
2.30 (s, 3H); 13C NMR (100 MHz, DMSO): δ 161.83, 155.54, 150.32, 146.18, 145.61, 138.68,
136.37, 135.70, 132.87 130.18, 128.21, 126.56, 126.06, 121.41, 97.74, 57.13, 36.40, 19.09, 9.87;
MS: 377.83, m/z = 378.14 [M+H]+.

2.2.6. Characterization of 6-Amino-3-methyl-4-(4-(pyridin-4-yl)phenyl)-1,4-dihydropyra-no
[2,3-c] Pyrazole-5-carbonitrile (5e)

Brown solid; MP: 232–234 ◦C; 80% yield; 1H NMR (600 MHz, DMSO): δ 9.93 (s, 1H),
8.79 (d, J = 7.4 Hz, 2H), 7.77 (d, J = 7.4 Hz, 2H), 7.70 (d, J = 7.5 Hz, 2H), 7.65 (s, 2H), 7.14
(d, J = 7.2 Hz, 2H), 5.47 (s, 1H), 2.30 (s, 3H); 13C NMR (100 MHz, DMSO): δ 161.76, 155.56,
150.96, 147.36, 146.46, 136.33, 136.205, 128.94, 127.63, 121.67, 121.36, 97.80, 57.09, 36.04, 9.82;
MS: 329.36, m/z = 330.16 [M+H]+.

2.2.7. Characterization of
6-Amino-4-(4-(6-fluoro-5-methylpyridin-3-yl)phenyl)-3-methyl-1,4-dihydropyrano [2,3-c]
Pyrazole-5-carbonitrile (5f)

Yellow solid; MP: 268–269 ◦C; 79% yield; 1H NMR (600 MHz, DMSO): δ 10.02 (s, 1H),
8.26 (d, J = 2.5 Hz, 1H), 7.70 (d, J = 7.4 Hz, 2H), 7.65 (s, 2H), 7.14 (d, J = 7.2 Hz, 2H), 6.98–6.96
(m, 1H), 5.50 (s, 1H), 2.56 (s, 3H), 2.30 (s, 3H); 13CNMR (100 MHz, DMSO): δ 169.58, 162.28,
160.93, 154.76, 144.42, 142.30, 142.15, 140.41, 135.63, 134.43, 128.17, 126.93, 120.77, 119.33,
119.00, 97.40, 56.94, 35.85, 13.99, 9.80; MS: 361.38, m/z = 362.18 [M+H]+.

2.2.8. Characterization of
6-Amino-1-(4-chlorophenyl)-3-methyl-4-(3-(pyrimidin-5-yl)phenyl)-1,4-dihydropyrano
[2,3-c] Pyrazole-5-carbonitrile (5g)

MP: 242–243 ◦C; 1H NMR (400 MHz, DMSO): δ 9.15 (tdd, J = 16.3, 10.4, 6.1 Hz, 4H),
7.95–7.63 (m, 4H), 7.29 (dd, J = 14.7, 8.2 Hz, 3H), 6.98 (s, 2H), 4.37 (s, 1H), 2.33 (s, 3H);13C
(100 MHz, DMSO): δ 166.23, 161.44, 159.41, 157.98, 157.90, 155.45, 147.54, 146.49, 143.14,
140.19, 136.55, 134.91, 134.54, 133.62, 133.03, 132.21, 131.93, 130.57, 128.77, 127.81, 120.29,
114.77, 113.32, 107.47, 106.57, 57.21, 18.32, 13.83; MS: 440.17, m/z = 441.11 [M+H]+.

2.3. Gibbs Free Energy Calculation

The geometry of all the plausible intermediates and products were constructed using
GaussView software [18] and fully optimized with the aid of the density function theory
method (DFT) by employing the B3LYP functional [19] and the LanL2DZ basis set without
any symmetry constraints. The optimization calculations were performed in the gaseous
phase using the Gaussian 09W software package [20].

2.4. Cell Viability Assay

We obtained MCF-7 cells from Procell Life Science and Technology. A humidified
atmosphere of 5% CO2 was maintained at 37 ◦C for the culture of MCF-7 cells (2000) in
MEM or Leibovitz’s L-15 medium enriched with 2% FBS [21–24]. DMSO was used to
prepare a stock solution of pyranopyrazoles, and the stock solution was then diluted with
culture medium to achieve the desired concentration. A series of compounds were applied
to MCF-7 cells in 96-well plates for 12 h followed by 72 h of treatment with or without
pyranopyrazoles at concentrations of 0, 0.01, 0.1, 10, 100, and 1000 µM. Incubation with
AlamarBlue assay reagent was performed for a further 4 h. According to the established
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protocol, the IC50 values of compounds were determined in the absence and presence
of pyranopyrazoles.

2.5. In Silico Mode-of-Action Analysis

The mode-of-action of pyranopyrazoles that inhibit the proliferation of human breast
cancer cells was investigated using the CHEMBL database [25–35]. The pyranopyrazole
core-structure was used to retrieve CHEMBL database bioactivity profiles via a ligand simi-
larity search which comprises the organism, genes, microbes, viruses, and other bioassays
as classifications and rankings.

2.6. Kinase Assay

Promega’s Kinase-Glo luminescence assay was used for detection of CDK1 activity.
IgG was used as a negative control, and 1 mg of CDK1 antibodies were used to immuno-
precipitate 1 mg of protein from the total cell lysate. At 41 ◦C, the reaction mixture was
incubated for three hours and subsequently, beads were washed three times with lysis
buffer, following overnight incubation at 41 ◦C. The reactant beads were added to 10 mL
kinase reaction buffer containing 0.2 mM ATP, 2 mM DTT, 0.1 mg/mL BSA, 20 mM MgCl2,
and 40 mM Tris-HCl, and beads were resuspended for 30 min at room temperature with a
CDK1/2 specific substrate (p53). A total of 10 µl of ADP-GLO reagent and 10 mL of kinase
detection reagent were added to the reaction for 40 min at room temperature and 5 min at
room temperature, respectively. Each experiment consisted of loading 1 mL of the mixture
and analyzing it with CDK-1 antibodies.

2.7. In Silico Bioinformatic Analysis

A molecular docking study was performed with the synthesized compound and
CDK1. Docking the lead compound 5b and co-crystallized ligand was carried out using the
Scripps Research Institute’s AutoDockTools (ADT) (v1.5.7) [13]. The X-ray crystallographic
structure of CDK1 in complex with the ligand (PDB code: 4Y72 [29]) was downloaded from
the Protein Data Bank (www.rcsb.org-accessed on 6 June 2020) and prepared for docking
calculations. The AutoDock protocol was followed to prepare the pdbqt file for the receptor
by deleting the heteroatoms and adding polar hydrogen atoms. The receptor was fixed,
and docking of compound 5b was performed in the catalytic site of the CDK1 enzyme.
With an initial population of 150 randomly placed individuals, a maximum number of
2,500,000 energy evaluations, a mutation rate of 0.02, a crossover rate of 0.80, and 10 docking
runs, the empirical-free energy function and the Lamarckian Genetic Algorithm were used
to perform molecular docking with the macromolecule. The grid with a size of 60 × 60 × 60
was placed in the center of the active site. The built-in clustering analysis was used to
process the predicted binding poses for each compound, with the confirmation of the lowest
energy with respect to the largest cluster chosen as the representative. BIOVIA Discovery
Studio Visualizer (v21.10.20298) [36] and PyMOL (v2.5.2) [37] were used to examine the
modeled structure.

2.8. Statistical Analysis

The data were analyzed by Student’s t-test and p < 0.05 was considered statistically
significant (GraphPad Prism 5.0; GraphPad Software, La Jolla, CA, USA).

3. Results
3.1. Synthesis and Characterization of Nano-Zirconium Dioxide

X-ray diffraction patterns of the synthesized nano-ZrO2 showed sharp peaks at 2 theta
values of 30◦, 35◦, 51◦, 60◦, 63◦ corresponding to (101), (002), (200), (211), (202). This
comprises of a Cu target that emits Cu Kα radiation at 40 mA and 40 kV, respectively, with
a current and voltage of 40 mA and 40 kV. The XRD patterns were created with a scanning
speed of 2◦/min and 2◦ of rotation ranging from 5 to 80 degrees. All the reflections of the
XRD patterns were indexed to the standard pattern of the pure cubic phase of zirconia. This

www.rcsb.org
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reveals that the zirconia sample synthesized by the combustion method produced a cubic
structure. Diffraction peaks in Figure 2A with 2θ value 2.96, 2.56, 1.81, 1.54, 1.48, 1.28, 1.17,
1.14, 1.04, 0.98, 0.90, 0.86, 0.85, 0.85 originate from the crystal planes (111), (200), (220), (311),
(222), (400), (331), (420), (422), (511), (440), (531), (600), (620) of cubic zirconia, respectively.
Further, the surface area of ZrO2 was obtained by the N2 adsorption technique. The
isotherm of ZrO2 was found to be type IV and H3 hysteresis loop, which is characteristic
of a mesoporous structure with a surface area of 22.825 m2/g. The total pore volume and
mean pore diameter was about 0.0742 cm3/g, and 13.011 nm, respectively (Figure 2B).
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Figure 2. PXRD pattern (A) and N2 adsorption–desorption isotherms (B) of nano-ZrO2.

3.2. Synthesis of Pyranopyrazoles

Using MCR, the synthesis of pyranopyrazoles were carried out in the presence of a
nano-ZrO2 catalyst. The five-component reaction was primarily performed between 4-nitro
benzaldehyde (1i), hydrazine hydrate (2), malononitrile (3), ethyl acetoacetate (4), and
nano-ZrO2 (10 mol%) in water at room-temperature for 30 min and afforded 5i with 38%
yield (Schemes 1 and 2, Tables 1 and 2, entry-1). Further, the reaction was carried out using
different solvents like ethanol and a mixture of water–ethanol (1:1) for about 30 min, it was
found that the percentage yield (53%) was slightly increased in a water–ethanol mixture
(Table 1, entry-3). The same reaction was carried out by altering the amount of catalyst to
20 mol% in a water–ethanol mixture for about 50 min, and a significant yield (75%) was
observed (Scheme 1, Table 1, entry-6). Moreover, increasing the amount of catalyst has no
effect on the percentage yield. The optimization reaction conditions, and the outcomes are
summarized in Tables 1 and 2. The new compounds were characterized using NMR and
Mass sepctral analysis (supplementary data).
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Scheme 2. General schematic representation for the synthesis of pyranopyrazoles.

A plausible reaction mechanism for this condensation is shown in Scheme 3. In
the synthesis of pyranopyrazoles nano-ZrO2 acts as both Lewis acid and base. Initially,
a pyrazolone derivative was formed by the condensation reaction of ethyl acetoacetate
and substituted hydrazine hydrate. ZrO2 accepts an electron pair from the oxygen of the
carbonyl group and acts as a Lewis acid, this enables the reaction between ethyl acetoacetate
and hydrazine hydrate. The Lewis base site of ZrO2 enables malononitrile to generate an
active methylene group. Thus, the presence of an active methylene group initiated the
Knoevenagel condensation reaction between benzaldehyde and malononitrile forming
arylidene malononitrile. Further, a Michael addition reaction occurred between pyrazolone
and arylidene malononitrile which was followed by cyclization and tautomerization to
form pyranopyrazole.
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3.3. In Silico Mechanistic Studies of Pyranopyrazole Products

The minimized structures of the intermediates and products were validated by comput-
ing fundamental harmonic vibrational analysis at the same level of theory. For mechanistic
clarification, Gibb’s free energy calculations for intermediate zirconium complexes were
chosen. The ZrO2 makes the coordination complex with the ligand. It reacts with the
pyrazolone ring, forming a Zr-O bond quickly, which is stabilized and attains a lower
energy intermediate with a ∆E1 value of −1.793 kcal/mol. Further, the reaction between
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pyrazolone and arylidene malononitrile occurs by cyclization to form pyranopyrazole with
an ∆E2 value of 2.997 kcal/mol. Figure 3 shows the optimized geometries and intermediate
energy pathway. Based on intermediate reduced Gibbs free energy through (a) to (b), we
can deduce that the reaction occurs spontaneously when the monodentate ligand forms
nano-Zirconium dioxide coordination complexes.
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3.4. Effect of Pyranopyrazoles on MCF-7 Cell Viability

Since 4-arylazo-3,5-diamino-1H-pyrazoles were observed to target CDKs in human
breast cancer (MCF-7) cells, the effect of pyranopyrazoles on MCF-7 cell viability was
determined using Alamar Blue assays [38–44]. Tested compounds (5b, 5d, and 5f) with
different concentrations (0, 0.01, 0.1, 10, and 100 µM) showed a dose–dependent decrease
in the viability of MCF-7 cells (Figure 4). Other compounds tested did not produce a
significant loss of cell viability in MCF-7 cells. Compound 5b, bearing a 3-pyridyl-4-fluoro-
5-methyl ring, generated a superior IC50 value of 17.23 µM, when compared to other
structurally related compounds.
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Figure 4. Loss of MCF-7 cell viability produced by compounds 5b 5d, and 5f. MCF-7 cells were
exposed to 5b (A), 5d (B), and 5f (C) for 72 h and the viability of cells was analyzed by Alamar Blue
assays. The results are presented as mean ± S.E.M. of triplicate determinations.

Furthermore, we tested the most active compounds such as 5b, 5c, 5e, and 5f for the
ability to inhibit human breast cancer cells’ (T47D, BT-474, SKBR3, and MDA-MB-231)
proliferation (refer supplementary data). Around 2000 cells per well seeded overnight were
treated with the compounds with 2% FBS conditioned medium and incubated for 3 days.
The analysis of the IC50s of lead pyranopyrazoles revealed that the compounds could
inhibit the proliferation of BT-474 cells effectively (Table 3). The tested pyranopyrazoles
failed to inhibit the human breast derived normal cells.
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Table 3. Cytotoxicity data of pyranopyrazoles against TNBC and MCF-10A cells.

Compound Name
IC50 (µM) (Alamar Blue)

T47D BT-474 SKBR3 MDA-MB-231 MCF-10A

5b 27.48 23.66 >100 13.47 90.52
5c 33.71 21.28 69.38 14.95 88.25
5e >100 50.17 >100 22.07 >100
5f 45.79 15.23 >100 19.1 >100

3.5. In Silico Mode-of-Action Analysis of Compound 5b

In silico mode-of-action analysis was performed for compound 5b using the latest
version of CHEMBL as described by Yang et al. [45]. For this purpose, the smile format of
compound 5b was added into the similarity searching engine of CHEMBL, which resulted
in 2,157,379 compounds of proportionate similarity, choice of organism, cell type, and
14,855 predicted human targets [46]. The analysis of the results sheet identified CDK1
as a target for compound 5b as the top ranking. Therefore, in silico bioinformatics was
performed to determine the binding mode of compound 5b; the employed ADT parameters
and protocol were validated using the available experimental data. The binding mode of
the co-crystallized ligand in the complex with CDK1 (PDB code: 4Y72) was predicted and
compared to the experimental structure (Figure 5). A comparison of the predicted docked
structure with the corresponding resolved crystal structure revealed that the ADT with the
employed parameters correctly predicted the binding mode of the co-crystallized ligand
inside the active site of CDK1, forming two essential hydrogen bonds with GLU81 and
LEU83 (Figure 6). The binding mode and affinity of the synthesized compound 5b, with the
CDK1 active site was then investigated using molecular docking. The calculated docking
score for the synthesized compound was −10.54 kcal/mol with three hydrogen bonds
compared to the co-crystallized ligand (−9.3 kcal/mol), indicating that CDK1 inhibition is
a plausible mechanism explaining the anticancer activity observed with the synthesized
compound 5b. Compound 5b exhibited a higher binding affinity with CDK1 than the
co-crystallized ligand, indicating a specific interaction of the nitrogen atom with the amino
acid residue TYR15 (Figure 7).
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3.6. In Vitro Inhibition of Lead Cyclin Dependent Kinase 1 by Pyranopyrazoles

Since the ADP-GloTM Kinase Assay [47] uses multiple enzymes as components, it
should not generate a high rate of interference or false responses when screening pyra-
nopyrazoles anti-CDK1 activity. It is also possible to determine the kinetic parameters
of CDK1 by using ADP-Glo since it can be used with a wide range of ATP and substrate
concentrations. Based on the luminescence units for compounds 5b and 5f, Figure 8 illus-
trates the standard curves generated for inhibition of cdk1 activity by pyranopyrazoles
at different concentrations. According to the materials and methods, equal volumes of
ADP-Glo reagent were added to each well, incubated for 40 min at room temperature, and
then kinase detection reagent was added. It was found that both lead molecules 5b and 5f
had potent IC50 values, which were 960 nM and 7.16 µM, respectively. The results from our
study are in agreement with those from PHA-793887 [48], a pyranopyrazole that mainly
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inhibits CDK1 with an IC50 value of 60 nM, by binding to the enzyme’s adenine pocket
through the heterocyclic moiety (Figure 8).
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