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Abstract: Endogenous ochronosis, also known as alkaptonuria, is a rare disease known for its bluish-
black discoloration of the skin, sclerae, and pinnae, as well as urine that turns black upon standing.
Though rarely fatal, joint degradation is a common sequela, and many patients require multiple large
joint arthroplasties throughout their lifetime. Though many aspects of the pathophysiological mecha-
nisms of the disease have been described, questions remain, such as how the initiation of ochronotic
pigmentation is prompted and the specific circumstances that make some tissues more resistant to
pigmentation-related damage than others. In this report, we present the case of an 83-year-old female
previously diagnosed with alkaptonuria including high-quality arthroscopic images displaying the
fraying of articular cartilage. We also offer a summary of the latest literature on the pathophysiologi-
cal mechanisms of the disease, including cellular-level changes observed in ochronotic chondrocytes,
biochemical and mechanical alterations to the cartilaginous extracellular matrix, and patterns of
pigmentation and joint degradation observed in humans and mice models. With these, we present an
overview of the mechanisms of ochronotic chondropathy and joint degradation as the processes are
currently understood. While alkaptonuria itself is rare, it has been termed a “fundamental disease,”
implying that its study and greater understanding have the potential to lead to insights in skeletal
biology in general, as well as more common pathologies such as osteoarthritis and their potential
treatment mechanisms.

Keywords: ochronosis; alkaptonuria; ochronotic pigmentation; chondropathy; chondrocyte; cartilage;
homogentisic acid; HGA; joint degradation

1. Introduction

Ochronosis, named in reference to the Greek word “ochre” meaning “earthy” or “yel-
lowed in appearance,” is a rare disorder that presents primarily as discolored blue-black
or grey-blue pigmentation of the skin, cartilage of the ears, and sclerae [1]. Endogenous
ochronosis is synonymous with alkaptonuria (AKU, OMIM 203500), which has also been
called “black urine disease,” since the urine collected from those affected turns black upon
standing. Clinically, in addition to the darkening of the skin, sclerae, cartilaginous struc-
tures of the ear, and urine upon exposure to air, common symptoms include shrinking
intervertebral spaces, calcifications along multiple spinal regions, joint cartilage degrada-
tion, and cardiac stenosis and renal stone formation [2–4]. In advanced cases, the joint
cartilage degradation can become so severe that complete resorption of the subchondral
plate and the total destruction of the joint can be observed [5]. Skin and cartilaginous
structure discoloration can often present later in life, while arthralgia and back pain of-
ten present earlier with varying severity [1]. Though rarely fatal, AKU is a progressive
lifelong condition that affects patients’ quality of life, often causing severe joint pain and
necessitating multiple large joint arthroplasties.
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AKU is believed to be caused by a rare autosomal recessive genetic variant of the ho-
mogentisate dioxygenase gene, HGD, which is located on chromosome 3q21–23 [6]. The bio-
chemical diagnosis of AKU is made through the detection of homogentisic acid (HGA) in the
urine, and the molecular diagnosis is based upon the identification of pathogenic variants
of HGD, the gene responsible for producing the enzyme homogentisate 1,2-dioxygenase
(HGD) [7]. Variants found to be implicated in the disease include frameshift, missense,
nonsense, and splicing [8]. It was the first human disorder shown to follow Mendelian
inheritance [9]. Current literature suggests that the inactivation of the HGD gene arrests the
production of HGD, which is a key component of phenylalanine and tyrosine catabolism.
Without HGD, these amino acids cannot be fully degraded, resulting in a buildup of excess
HGA, an intermediate of their catabolic pathway [10]. Current understanding suggests
that HGA oxidizes to benzoquinone acetic acid before irreversibly decaying into ochronotic
pigment which can be found bound to collagen, compromising its structural integrity and
giving it a bluish tint. As discussed later in this review, it is currently unknown whether
HGA itself, its oxidized intermediate benzoquinone acetic acid, or ochronotic pigment
initially binds to collagen fibrils [11]. Evidence suggests that these compounds play indi-
vidualized roles dependent upon tissue and bodily location, providing some explanation
for the diverse multi-system involvement ochronosis displays [1,12].

There are two classifications of ochronosis, endogenous and exogenous, with differing
conditions that precipitate them. Both present in similar ways, and both are thought to be
derived from a buildup of HGA. However, exogenous ochronosis is often less severe in
presentation and only results in cartilage discoloration. The key difference between the
two diseases involves how the buildup of HGA is triggered; in exogenous ochronosis, the
buildup of acid is acquired via the inhibition of HGD from an outside influence rather than
a genetic mutation, often a side effect of drugs like acne medications such as minocycline, or
potentially hydroquinone which has utilizations in both medications and cosmetics [13–15].

AKU, or endogenous ochronosis, is rare, with global prevalence estimated to lie some-
where between 1/100,000 to 1/250,000 and the prevalence in the United States estimated to
be 1 per 1,000,000 [16,17]. Like many rare diseases, however, its prevalence can sharply rise
in specific populations. In particular, South Africa, the Dominican Republic, and Slovakia
have all been shown to harbor populations at greater risk [18]. Exogenous ochronosis is
markedly more common than endogenous, especially in areas where phenol-containing pre-
scriptions are routine. For instance, many antimalarials are comprised of such compounds,
resulting in an uptick in exogenous ochronosis prevalence where malaria is endemic [13,18].

Investigations into the pathogenic mechanisms of AKU have opened the door to a
greater understanding of much more common diseases like osteoarthritis. AKU has been
deemed a “fundamental disease,” described as “rare genetic disorders that are gateways
to understanding common conditions and human physiology” [19]. Shared aspects of
ochronosis and osteoarthritis include articular cartilage degeneration, osteophyte formation,
synovial inflammation, thickening of the subchondral bone, dysregulation of cellular signal-
ing pathways including Hedgehog signaling, cell death of chondrocytes via chondroptosis,
and the appearance of high-density mineralized protrusions [20,21]. Furthermore, recent
investigations applying nuclear magnetic resonance (NMR) spectroscopy to the examina-
tion of AKU cartilage and osteoarthritic cartilage found similar intrastrand disruption of
the collagen triple helix in both [22]. A greater understanding of how ochronosis leads
to chondropathy and cartilage damage can lead to a better understanding of a variety of
disease pathologies and potential treatments, both for patients suffering from ochronosis,
as well as those suffering from much more common conditions like osteoarthritis.

2. Case Report

We report the case of an 83-year-old female presenting with a multi-decade history of
ochronosis. On the initial orthopedic evaluation, she complained of back and joint pains.
A history of dark urine upon standing since childhood and progressive discoloration of
her sclerae and pinnae were noted, consistent with her prior clinical diagnosis of AKU.
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She denied taking medications known to cause cartilage discoloration. Initial physical
examination and radiographic imaging were consistent with early multifocal osteoarthritis
and extensive degenerative disc disease. She was previously followed with a multi-year
history of progressive spine, hip, and knee pain. CT scans of her spine 5 years apart
show progressive loss of intervertebral disc cartilage (Figure 1). Subsequent X-ray imaging
demonstrated progressive degenerative spondylosis (Figure 2). After being diagnosed, she
was treated for about 20 years with conservative joint-preserving measures, including oral
non-steroidal anti-inflammatory drugs (NSAIDs), intra-articular corticosteroids, and physi-
cal therapy. Eventually, at the age of 60, she underwent knee arthroscopy, at which time
findings included brown/black discoloration of articular cartilage, erosion of superficial
zones of articular cartilage, and fraying and destruction of deeper cartilage layers (Figure 3).
Although the pathology was revealed, the procedure did not result in substantial pain
relief because of an incompetent cartilage-bearing surface. Eventually, her right knee pain
became too severe to be managed non-operatively. X-rays showed generalized chondrolysis
and loss of the medial tibiofemoral joint space, as well as reactive subchondral bone and
osteophytes characteristic of osteoarthritis (Figure 4). At the age of 68, she underwent a
successful right total knee replacement, followed in succession 2 years later by a right hip
replacement and 3 years after that by a left knee replacement, all due to loss of articular
cartilage, secondary osteoarthritis, and unremitting and unmanageable joint pain. She has
experienced chronic back pain and kyphosis; however, the pain is well-controlled with
NSAIDs and she continues to live independently.
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Figure 1. (A) Sagittal computed tomogram of the cervical spine of the patient taken 6 years ago when 
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Figure 1. (A) Sagittal computed tomogram of the cervical spine of the patient taken 6 years ago
when she was 77 years old. Destruction of intervertebral disc cartilage is apparent (white arrows).
(B) Sagittal computed tomogram of the cervical spine of the same patient five years later, when she
was 82 years old, showing progressive disc degeneration (black arrows) resulting from advancing
disc cartilage destruction and reactive bone formation over the 5-year period. Vacuum phenomena
are also apparent in the inferior two disc spaces.
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Figure 2. Lateral chest X-ray of the patient taken 2 years ago when she was 81 years old. The spine 
exhibits degeneration of the intervertebral disc cartilage with end-plate sclerosis (white arrow) and 
osteophytes typical of lumbar spondylosis (black arrow). The intervertebral bodies may be 
osteoporotic. 

 
Figure 3. Arthroscopic images obtained during the patient’s arthroscopy 23 years earlier, when she 
was 60 years old, revealing ochronosis of the medial femoral condyle with brownish-black 
discoloration. (A) Damage to the superficial articular surface can be seen (arrow). (B) Destruction of 
the deeper layers of articular cartilage is evident resulting in an insufficient bearing surface. 

Figure 2. Lateral chest X-ray of the patient taken 2 years ago when she was 81 years old. The
spine exhibits degeneration of the intervertebral disc cartilage with end-plate sclerosis (white arrow)
and osteophytes typical of lumbar spondylosis (black arrow). The intervertebral bodies may be
osteoporotic.
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Figure 3. Arthroscopic images obtained during the patient’s arthroscopy 23 years earlier, when
she was 60 years old, revealing ochronosis of the medial femoral condyle with brownish-black
discoloration. (A) Damage to the superficial articular surface can be seen (arrow). (B) Destruction of
the deeper layers of articular cartilage is evident resulting in an insufficient bearing surface.
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Figure 4. Anteroposterior radiograph of the patient’s knee taken 14 years ago when she was 69 years
old. The medial tibiofemoral compartment articular cartilage has been destroyed (black arrow) and
reactive bone and osteophytes have formed. Varus knee angulation has resulted. The radiographic
appearance is typical of osteoarthritis which can result from a variety of chondral insults including
genetic, inflammatory, septic, and mechanical conditions.

3. Pathophysiology

As discussed throughout this paper, much work has been conducted to understand
the pathophysiology of ochronosis. However, pertinent questions still remain, including
those related to the molecular mechanisms of the disease and what influences its onset
and progression [23]. Mouse models have been useful in studying the pathophysiologic
mechanisms of the disease, but factors including the relatively short lifespan of mice when
compared to humans and differences in joint loading and cellular turnover rates limit the
correlations from these studies to human disease processes [24].

In humans, ochronotic pigment tends to appear initially in areas of high mechanical
loading such as the weight-bearing joints [5,19,23]. Ochronotic pigment has been shown
to cause micro- and macro-level changes, ranging from biochemical and biomechanical
disturbances in individual chondrocytes to grossly observed pigmentation and degradation
of ochronotic cartilage. In one study, it was discovered that the activity of Tergazyme, a
detergent with protease enzyme that “effectively digests noncalcified ECM”, was unable to
decompose ochronotic cartilage [5]. This finding, along with the fact that acidification of
urine turned black due to AKU does not restore its original color, provides evidence that
the deposit of ochronotic pigmentation is potentially irreversible [11].

We structure our review of the current literature on ochronotic chondropathy as
follows. First, biochemical and biomechanical disturbances which can be observed in
individual chondrocytes are discussed. Second, we examine the literature surrounding
how the extracellular matrix (ECM) of cartilage is affected, including alterations in ECM
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composition and how ochronotic pigmentation accumulates on collagen. Lastly, we discuss
reports examining the larger-scale patterns of ochronotic pigmentation observed in mouse
models of AKU and those extracted from human patients during joint replacement surgery.
Combining the findings from each of these sections, we are presented with a comprehensive
overview of the latest literature on how ochronosis damages joints, from the level of
individual chondrocytes to grossly observable changes in cartilage ultimately leading to
degradation and necessitating surgical intervention.

3.1. Cellular-Level Changes in Chondrocytes

Chondrocytes, as the only cells found in cartilage [25], play a crucial role in the patho-
genesis of ochronosis. One report showed that in vitro, an HGA-treated medium without
cells took three weeks to darken to the same degree that HGA-treated medium with cells
achieved in three days [26], suggesting that cells play a crucial role in accelerating the
process of pigmentation deposition. A growing body of research has shed light on a variety
of biochemical and biomechanical changes at the level of individual chondrocytes in the
setting of HGA. In 2021, Galderisi et al. published a study in which they used a model of
AKU chondrocytes to examine the effects of HGA on the chondrocyte cytoskeleton and
found distinct alterations in the concentration and organization of cytoskeletal proteins
when compared to control chondrocytes [27]. More specifically, they found reduced con-
centrations of actin, vimentin, and tubulin with associated microstructural disorganization
of all three in chondrocytes exposed to HGA compared to controls [27].

In 2016, Gambassi et al. reported that chondrocytes treated with HGA had shorter
primary cilia and dysregulated Hedgehog signaling when compared to control chondro-
cytes [20]. Hedgehog signaling plays a role in the regulation of chondrocyte growth and
differentiation, and increased Hedgehog signaling has been implicated in osteoarthritis [28].
Primary cilia have previously been described as “a master regulator of cell signaling” and
have been shown to be involved in inflammatory signaling in chondrocytes [29]. Recent
work has suggested that in the setting of inflammation, the intracellular metabolic processes
of chondrocytes can be altered, leading to the expression of ECM-degrading enzymes in a
process known as metabolic reprogramming [30]. Interestingly, Gambassi et al. reported
that when HGA-treated chondrocytes were introduced to antagonists of Smoothened, a
receptor-like protein found on primary cilia, cilia length was restored to normal levels, thus
outlining a potential treatment mechanism for AKU in need of further investigation [20].

Another recent report showed that human chondrocytes exposed to chronic treatment
of HGA experienced decreased levels of autophagic processes and the accumulation of
ochronotic pigmentation, leading to the proposition that the former is responsible for the
latter [31]. Chondroptosis, a distinct form of cell death of chondrocytes that has been impli-
cated in the settings of osteoarthritis, trauma, and hyperthermia [32–34], was also observed
in that experiment, as was mitochondrial damage [31]. Chondroptosis and classical apopto-
sis share a variety of similarities and differences, but one major distinction between them
is the reliance on autophagocytosis in chondroptosis, rather than heterophagocytosis by
phagocytes as seen in classical apoptosis [32,33]. This process of autophagocytosis provides
a potential explanation for the empty lacunae sometimes observed in AKU cartilage [35].

Taken together, the current literature on ochronotic chondrocytes suggests that key
pathophysiological features may include (1) cytoskeletal disorganization; (2) dysregula-
tion of cell signaling processes (including Hedgehog signaling); (3) shortened cilia length;
(4) decreased autophagic processes facilitating the accumulation of intracellular pigmenta-
tion and (5) increased levels of cell death via chondroptosis.

3.2. Alterations to the Extracellular Matrix

While the mechanisms through which excess circulating HGA leads to the onset and
progression of ochronosis are still being elucidated [23], there is a growing body of prior
work offering insights into these questions. In 2010, an ultrastructural examination of
ochronotic tissue revealed two distinct forms of extracellular pigmentation; a periodicity
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of minute ochronotic granules was seen on some collagen fibers, and larger, crystal-like
pigmentation structures were observed entirely encasing other fibers [36]. From these
observations, it was proposed that the former structure may precipitate the latter, i.e., the
minute periodic granules may act as nucleation points for the further polymerization of
ochronotic pigment into larger crystal-like structures covering collagen [36]. This work
was one of the foundations for what Gallagher et al. described as the “exposed collagen
hypothesis” which includes the following principles: (1) “there are specific sites on col-
lagen where HGA can bind but which are protected in native collagen in undamaged
extracellular matrix”; (2) “following structural and compositional changes, including loss
of PGs, the potential binding sites become exposed allowing HGA to bind”; (3) “binding of
HGA-derived pigment to the collagen fibres makes them stiffer and susceptible to more
mechanical damage”; (4) “this leads to further ultrastructural changes in collagen, increased
exposure of binding sites to HGA and a downward spiral of pigmentation” (Figure 5) [19].
While these descriptions refer to the binding of HGA and HGA-derived pigment to the
collagen fibrils, it is important to note that it is not currently known whether it is HGA itself,
its oxidized intermediate, benzoquinone acetic acid, or ochronotic pigment that initially
binds to collagen fibrils [11]. Furthermore, though the pigmentation that is characteristic
of ochronosis is often described as a “polymer”, the notion that these structures are pro-
duced by the association of multiple identical monomers (i.e., by homopolymerization) has
been contested, and it has been noted that nonpolymeric structures can also produce dark
pigmentation similar to ochronosis [37].

As discussed earlier, Galderisi et al. found differences in the concentrations and or-
ganization of actin, vimentin, and tubulin in HGA-exposed chondrocytes compared to
controls [27]. These findings led to the proposition that these changes play a role in the
impaired synthesis and excretion of ECM components observed in ochronosis [27]. Other
literature has supported this hypothesis; a study examining cartilage matrix components
from 0.6% of the total global population of AKU patients reported a lower turnover state,
accelerated aging, greater total extractable protein, and lower levels of extractable gly-
cosaminoglycans in AKU cartilage compared to samples from osteoarthritic and healthy
(non-arthritic) patients [38]. Another study examining human ochronotic articular cartilage
found increased porosity, decreased water content, and decreased heat capacity when
compared to healthy cartilage, as well as associated alterations in rheologic capacity as mea-
sured by strain sweep test, oscillatory sheer stress analysis, and stress-relaxation test [39].
From these studies, it is clear that (1) ochronotic pigment deposition is involved in the
disturbance of ECM homeostasis, and (2) these disturbances result in alterations to the
rheologic capacity of joints, potentially leading to a downward spiral further inducing
mechanical degradation and leading to the destruction of the joint.

3.3. Patterns of Structural Damage Observed in Cartilage

Hughes et al. used AKU mouse models to study the anatomical distribution of
ochronotic pigmentation and determine which tissues are the primary sites to become
susceptible to pigmentation [40]. Amongst their findings, they observed that (1) the site
of initial pigment deposition was associated with individual chondrocytes in the calcified
cartilage (Figure 6), consistent with other prior research examining both mouse models of
AKU and human AKU patients [5,24], and (2) areas under greater physiological load, such
as in the lumbar vertebral endplates compared to those at the base of the tail, displayed
greater numbers of pigmented chondrocytes, also consistent with previous research [5,40].
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Figure 5. Diagrammatic representation of the exposed collagen hypothesis as described by Gallagher
et al. The top panel shows collagen in its native state, surrounded by a protective layer of proteogly-
cans (PGs) disallowing the binding of HGA. The middle panel shows the periodic binding of HGA
after protective PGs have been lost from collagen due to mechanical loading, aging, degeneration, or
some other insult. The bottom panel shows the deposition of ochronotic pigment onto the exposed
collagen, making it stiffer and leading to a downward spiral of further pigmentation and damage.
Note that while the middle panel displays HGA itself binding the collagen, it is not currently known
whether it is HGA, its oxidized intermediate benzoquinone acetic acid, or ochronotic pigment that
first binds to collagen. Adapted with permission from Ref. [19]. 2016, Seminars in Cell & Developmental
Biology.

Vigorita et al. collected and stained samples of intact articular cartilage from a 73-year-
old woman who underwent total knee replacement secondary to advanced ochronosis,
leading to some of the most striking images of advanced ochronotic pigmentation taken
from a human being collected to date [41]. In their report, blanket pigmentation was
observed in both the radial and transitional zones, though it was most prominent in the
radial zone where it appeared both intracellularly in chondrocytes and within the ECM,
while pigmentation was absent in the superficial zone and calcified zone except for some
relatively minor pericellular pigmentation in the calcified zone [41]. Based on these results,
they hypothesized that (1) the avascularity of cartilage generally disallows the clearing
of HGA prior to polymerization and therefore facilitates the deposition of the ochronotic
pigment; (2) the movement of water between the superficial zone and the synovial fluid
clears HGA, accounting for the relative lack of pigmentation in the superficial zone; and
(3) the relatively low metabolic activity and turnover rate of chondrocytes in the calci-
fied zone lead to a low production rate of HGA, thus accounting for the relative lack
of pigmentation compared to the radial and transitional zones in advanced ochronotic
cartilage [41].
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Figure 6. From Hughes et al.: Progression of ochronotic pigment in articular cartilage in a 66-week-
old BALB/c Hgd−/− mouse. (A) A diagram displaying the progression of ochronotic pigmentation as
observed in chondrocytes in the region of articular calcified cartilage. (i) A healthy, unpigmented
chondrocyte; (ii) chondrocyte displaying pericellular pigmentation, the initial pigmentation to be
observed; (iii) chondrocyte displaying progression to intracellular pigmentation as is typically
observed after pericellular pigmentation; (iv) chondrocyte displaying more dramatic intracellular
pigmentation and associated pyknosis. (B) Chondrocytes of the medial femoral condyle of the
knee displaying ochronotic pigmentation (arrows) as observed without staining. (C) Chondrocytes
in the articular calcified cartilage displaying the four steps of pigmentation (i–iv) as described in
the diagram in (A), observed with Schmorl’s staining. Scale bar in (B,C) = 50 µm. Adapted with
permission from Ref. [40]. 2021, Calcified Tissue International.

4. Conclusions

Much prior work has been conducted examining the processes leading to, and the
effects of, ochronotic pigmentation. Breakthroughs from these efforts have elucidated
ochronitc pigmentation’s effects on individual chondrocytes, the ECM of cartilage, and
patterns of damage observed throughout affected joints. These insights include the proposi-
tions that (1) individual chondrocytes affected by pigmentation undergo dysregulations in
cytoskeletal concentration and organization, cell signaling, organelle functioning including
mitochondrial and cilia functioning, and cell death via chondroptosis; (2) ECM is initially
resistant to pigmentation but undergoes a positive-feedback-like process through which
collagen damage leads to initial periodicities of ochronotic pigmentation that act as nucle-
ation points for further pigment deposition; and (3) ochronotic pigmentation is primarily
seen in the pericellular area of chondrocytes in articular calcified cartilage before moving
intracellularly and eventually spreading to the radial and transitional zones, leading to the
potential resorption of the subchondral bone plate and total destruction of the joint. While
AKU is rare, it is a debilitating disease that often leads to multiple large joint arthroplasties
as demonstrated by the case reported here. Its proposed status as a “fundamental disease”
dictates that insights into its pathophysiological processes have the possibility of shedding
light on other more common diseases like osteoarthritis. This notion has proven fruitful, as
illustrated through the discovery of mechanisms related to both diseases such as chondrop-
tosis and the formation of high-density mineralized protrusions. Further study may lead to
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more insights, paving the way to potential treatment mechanisms for both diseases and a
greater understanding of skeletal biological processes.
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