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Abstract: Left ventricle remodeling (LVR) after acute myocardial infarction (MI) leads to impairment
of both systolic and diastolic function, a significant contributor to heart failure (HF). Despite extensive
research in the field, predicting post-MI LVR and HF is still a challenge. Several circulant microRNAs
have been proposed as LVR predictors; however, their clinical value is controversial. Here, we
used real-time quantitative PCR to quantify the plasma levels of hsa-miR-101, hsa-miR-150, and
hsa-miR-21 on the first day of hospital admission of MI patients with ST-elevation (STEMI). We
analyzed their correlation to the patient’s clinical and paraclinical variables and evaluated their
ability to discriminate between post-MI LVR and non-LVR. We show that, despite being excellent
MI discriminators, none of these microRNAs can distinguish between LVR and non-LVR patients.
Furthermore, we found that diabetes mellitus (DM), Hb level, and the number of erythrocytes
significantly influence all three plasma microRNA levels. This suggests that plasma microRNAs’
diagnostic and prognostic value in STEMI patients should be reevaluated and interpreted in the
context of associated pathologies.

Keywords: acute myocardial infarction; cardiac remodeling; microRNA; diabetes mellitus; hemoglobin

1. Introduction

Coronary artery disease (CAD) is the leading cause of mortality and morbidity world-
wide. The most common type of CAD is myocardial infarction (MI) [1]. Although the
incidence of MI has decreased over the past years due to extensive nationwide preven-
tion programs and emergency management guidelines, heart failure (HF) remains the
most frequent complication of MI [2]. Multiple factors influence the development of HF
post-MI, of which left ventricular remodeling (LVR) appears to be one of the most im-
portant [3]. Cardiac remodeling leads to impairment of the left ventricle’s systolic and
diastolic functions; therefore, the need for biomarkers to predict this process is as criti-
cal as ever [4]. For the time being, various circulant biomarkers and imaging tools are
available to identify and guide post-MI HF treatment. Of the circulant biomolecules, the
following have been tested as markers of cardiac injury: cardiac troponins, CK and CK-MB,
natriuretic peptides (N-terminal pro-brain natriuretic peptide), inflammation markers (C-
reactive protein, neutrophil to lymphocyte ratio, and cytokines), renal biochemical markers
(estimated glomerular filtration rate and cystatin C) and other biomarkers (matrix metal-
loproteinases, suppressors of tumorigenesis, galectin-3, and clusterin), but their accuracy
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is influenced by comorbidities and circadian variations in blood levels [5,6]. The imaging
tools range from wall motion index score assessed by 2D echo, global longitudinal strain
measured by speckle-tracking echocardiography, volumetric modifications assessed by 3D-
echocardiography, myocardial velocities measured by Doppler tissue imaging, myocardial
contrast echocardiography, stress echo, CMR-tissue tracking derived myocardial strain, or
intramyocardial hemorrhage CMR detection [7–12]. While some of these methods have
good prognostic potential, they are difficult to apply in practice due to a shallow learning
curve, observer bias, and the necessity of complex instruments.

MicroRNAs (miRNAs) are short (21–24 nucleotides) RNA molecules that act as post-
transcriptional regulators of gene expression in all aspects of cardiac pathogenesis, includ-
ing LVR through modulation of both pro- and anti-fibrotic processes [13,14]. miRNAs
influence both pro- and anti-fibrotic processes through the modulation of multiple targets
in the transforming growth factor-beta signaling pathways. The proper, timely activation
of a balanced miRNA post-MI response is instrumental for a favorable outcome.

Several circulant miRNAs have been proposed as post-MI LVR predictors. miR-101
protects against myocardial remodeling, and miR-150 attenuates cardiac remodeling and
predicts post-MI HF [15–17]. miR-21 is a multifunctional microRNA with various roles
in coronary heart disease. The data regarding miR-21 are inconclusive. While some
studies show that miR-21 exhibits a cardioprotective role in MI by inhibiting cardiomyocyte
apoptosis, other studies found that it contributes to cardiac remodeling fibrosis after
MI [18–25]. However, clinical and animal data are conflicting, and their prognostic value
concerning post-MI evolution is still highly controversial. Moreover, to the best of our
knowledge, there is no systematic investigation of the association of these three circulant
miRNAs to clinical and paraclinical parameters in MI patients.

The present study uses real-time quantitative PCR to investigate these circulant miR-
NAs in the clinical context of MI. It aims to characterize their association with the clinical
and paraclinical variables, focusing on the ability of these miRNAs to predict post-MI
ventricular remodeling. We show that none of these plasma microRNAs (as assessed on
the day of admission) may serve as LVR predictors or correlate with biomarkers known for
their variation after MI (TnI, CK, CK-MB, LDH, and ASAT).

2. Materials and Methods
2.1. Inclusion and Exclusion Criteria

This study has been conducted in accordance with the Declaration of the Helsinki
Code of Ethics; the local hospital ethics review board has reviewed and approved the entire
protocol (3822/31 May 2016). We enrolled (November 2016–October 2018) 105 patients
diagnosed with first ST-elevation acute myocardial infarction (STEMI) at The Institute for
Cardiovascular Disease in Timisoara, Romania. Each patient provided a signed, written
consent. The protocol involved blood sampling and echocardiographic evaluations upon
hospital admission. The echocardiographic studies were performed on a Philips machine
in the intensive coronary care unit. We performed standard echo assessment from all
commonly available views (parasternal long and short axis, apical 4 chambers, apical
2 chambers, apical 3 chambers, subcostal view). We assessed wall thickness in diastole,
end-diastolic diameter of LV and RV, aortic annulus, left atrium, ascending aorta, systolic
and diastolic function of LV (EDV, ESV, EF, E, and A wave) and RV, valvular stenosis or
regurgitations, complications of MI (rupture of free wall, septum or papillary muscles),
and presence of liquid. The Simpson method is the gold standard technique to evaluate
ventricular volumes and ejection fraction and relies on tracing the endocardial border
of the LV cavity in systole and diastole. Ejection fraction is calculated with the formula
EF(%) = [(EDV − ESV) × 100]/EDV [26]. Only 43 patients participated in the follow-
up echocardiographic evaluation one-year post-STEMI. The same method was used to
appreciate the EF in the follow-up lot.

The inclusion criteria are:
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- STEMI diagnostic based on the Third Universal Definition of Myocardial Infarction
guidelines issued by the European Society of Cardiology (ESC) in 2012 [27];

- Hospital admission within 12 h from the onset of MI symptoms;
- Pre-hospital care according to the ESC guidelines for STEMI (antiplatelet: Aspirin

300 mg, Ticagrelor 180 mg or Clopidogrel 600 mg, Atorvastatin 80 mg, and fibrinolytic
therapy and anticoagulation in selected patients);

- Age over 18.

The exclusion criteria are:

- History of CAD;
- Cardiac arrest resuscitated before hospital admission;
- Valvular disease (moderate/severe stenosis or regurgitation);
- Associated diagnostics of cancer, acute infectious diseases, and liver dysfunction;
- Inability to provide signed, written consent.

All patients underwent primary percutaneous coronary intervention (PCI), routine
early PCI, or rescue PCI after fibrinolysis, according to the ESC guidelines.

Since the measurement of left ventricular longitudinal strain is not yet accessible in our
emergency room (ER) unit, LVR was diagnosed when a minimum of a 10% increase from the
baseline end-diastolic volume (∆EDV) was documented at the follow-up evaluation. The
follow-up lot was stratified into the LVR group (the patients who developed LV dysfunction
and HF symptoms (NYHA class 2 or higher), LVEF < 50%; ∆EDV ≥ 10%, n = 14) and
the non-LVR group (the patients who did not develop LV dysfunction and HF symptoms
(NYHA class I), LVEF ≥ 50%; ∆EDV < 10%; n = 29).

The control group consists of 17 patients without any medical history or clinical signs
of MI, for which all the exclusion criteria apply.

2.2. Specimen Collection

The blood samples (3 mL) were collected in EDTA-coated tubes and processed within
10 min for plasma separation (10 min centrifugation at 1500 rpm and room temperature).
The plasma was collected and stored at −80 ◦C until further use. Plasma samples showing
signs of hemolysis, hyperlipemia, and icterus were discarded.

2.3. RNA Purification

Total RNA was purified from 200 µL of plasma using a miRNeasy Serum/Plasma Kit
(Qiagen, Hilden, Germany, catalog no. 217184), according to manufacturer instructions.
RNA quality and quantity (A260/A280 and A230/260 ratios) were evaluated spectrophoto-
metrically using a Nanodrop 2000 instrument.

2.4. PCR Detection

All RNA samples were spiked in with Caenorhabditis elegans cel-miR-39. We used
the TaqMan® MicroRNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA,
USA, catalog no. 4366596) for reverse transcription starting from the equal (10 ng) total
RNA input. All qRT-PCR reactions were performed in duplicate, using inventoried Taq-
Man™ MicroRNA Assays (ThermoFisher Scientific, Waltham, MA, USA, assays ID 000438,
000473, 000397, 000200). Fold changes were calculated using the ∆∆CT method of relative
quantification with C. elegans miR-39 as a normalizer [28].

2.5. Statistical Analysis

All statistical analyses were performed on Prism 9 for MacOS, Version 9.3.1. We used
basic descriptive statistics to describe the demographic, clinical, functional, and laboratory
data of the patients. Data distribution was checked using the Kolmogorov–Smirnov test; the
heteroscedastic Student’s t-test (for variables with normal distribution) and Mann–Whitney
U test (for data not normally distributed) were used to assess the differences between
continuous variables. We used the Z-test to compare the binary variables datasets. All
correlation analyses were performed using the Spearman test; all ROC/AUC analyses
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were performed using the Wilson/Brown method for 95% CI calculation. For all tests, the
threshold of statistical significance is 0.05. All statistical tests are two-tailed.

3. Results
3.1. Baseline Clinical Data of Patients

Table 1 presents the demographic features and clinical data for the 105 STEMI patients.
The cohort’s median age was 61 (ranging from 29 to 87) years, and female patients repre-
sented 27.62%. In terms of risk factors, the most frequent ones were hypertension (71.43%),
smoking (50.48%), and obesity (29.52%). The median time interval between the onset of
symptoms and reperfusion was 6 (1.5–16) hours; seven patients (6.67%) died in the hospital.
All data can be accessed in Supplementary Table S1.

Table 1. Demographic and clinical features of STEMI patients.

Characteristics All (n = 105)

Age, years 60.83 ± 12.9
Female, n (%) 29 (27.62)

Cardiovascular history/risk factors, n (%)
Hypertension 75 (71.43)
Hypercholesterolemia 23 (11.90)
Current smoker 53 (50.48)
Obesity 31 (29.52)
Diabetes mellitus 24 (22.86)

Presentation
Peak CK-MB (U/L) 108.97
Time from symptoms onset to reperfusion
(hours) 6.34 ± 3.37

In-hospital death, n (%) 7 (6.67)
Thrombolytic, n (%) 21 (20)

Type of infarction, n (%)
Anterior 49 (46.67)
Inferior 51 (48.57)
Other 5 (4.76)

Medication, n (%)
Clopidogrel 52 (49.52)
Ticagrelor 46 (43.81)
Aspirin 98 (93.33)
Statin 98 (93.33)
ACEi/ARB 68 (64.76)
Betablocker 80 (76.19)
Aldosterone receptor antagonist 82 (78.10)
Nitrate 19 (18.10)

ACEi = Angiotensin-converting enzyme inhibitors; ARB = Angiotensin receptor blockers.

Only 43 patients had an echocardiographic evaluation one year after the STEMI and
were, thus, included in the follow-up group. Table 2 shows the demographic, clinical, and
echocardiographic parameters of LV function upon admission and at follow-up, stratified
by the presence or absence of remodeling. Compared to non-LVR, LVR patients showed
significantly different changes in ejection fraction and EDV volumes at discharge from
the hospital and the follow-up. The prevalence of risk factors and the location of STEMI
were similar between patients with and without LVR. All follow-up data can be accessed in
Supplementary Table S2.
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Table 2. Demographic and clinical features of the follow-up cohort of STEMI patients.

Characteristics All
(n = 43)

LVR
(n = 14)

non-LVR
(n = 29) p

Age, years 57.81 ± 11.73 62.31 ± 11.32 56.6 ± 11.88 0.3545 *
Female, n (%) 12 (27.91) 3 (21.43) 9 (31.03) 0.509 **

Cardiovascular history/risk
factors, n (%)
Hypertension 33 (76.74) 12 (85.71) 21 (72.41) 0.332 **
Diabetes mellitus 8 (18.60) 2 (14.29) 6 (20.69) 0.61 **
Hypercholesterolemia 11 (28.58) 2 (14.29) 9 (31.03) 0.238 **
Current smoker 24 (55.81) 5 (35.71) 19 (65.52) 0.066 **
Obesity 16 (37.21) 7 (50.0) 9 (31.03) 0.226 **
Anemia:
Hb < 13.5 g/dL (men), <12 g/dL
(women)

7 (16.28) 4 (28.57) 3 (10.34) 0.128 *

Type of infarction, n (%)
Anterior 23 (53.49) 8 (57.14) 15 (51.72) 0.741 **
Inferior 19 (44.19) 6 (42.86) 13 (44.83) 0.904 **
Other 1 (2.33) 0 1 (3.45)

Echo parameters
Average change EF (%) 5.35 −10.32 12.92 0.0003 *
Average change EDV (%) 3.77 26.65 −7.28 <0.0001 *

Medication, n (%)
Clopidogrel 17 (39.53) 7 (50) 10 (34.48) 0.327 **
Ticagrelor 26 (60.47) 7 (50) 19 (65.52) 0.327 **
Aspirin 43 (100) 14 (100) 29 (100) -
Statin 43 (100) 14 (100) 29 (100) -
ACEi/ARB 33 (76.74) 9 (64.29) 24 (82.76) 0.180 **
Betablocker 37 (86.05) 11 (78.57) 26 (89.66) 0.328 **
Aldosterone receptor antagonist 36 (83.72) 11 (78.57) 25 (86.21) 0.522 **
Nitrate 8 (18.60) 4 (28.57) 4 (13.79) 0.242 **

* Unpaired two-tailed t-test with Welch correction; ** two-tailed Z test.

3.2. miRNA in STEMI Patients vs. Controls

Compared to the control group, the plasma levels of all three miRNAs (miR-101,
miR-150, and miR-21) were significantly increased in patients with STEMI. The receiver
operating characteristic (ROC) curve analysis showed areas under the ROC curve (AUC)
ranging from 0.78 (miR-150) to 0.885 (miR-21), confirming that these miRNAs could be used
as diagnostic biomarkers for STEMI (Table 3). Of note, there are no significant differences
between plasma levels of any of the miRNAs in males vs. females.

Table 3. Fold change and ROC analysis of normalized miRNA plasma values in STEMI patients vs.
control group.

STEMI vs. Control

FC
(p *)

ROC Analysis

AUC (%) p **

miR-101 51.5 (0.003) 0.810 <0.0001
miR-150 3.7 (0.009) 0.780 0.0002
miR-21 11.7 (<0.0001) 0.866 <0.0001

* Unpaired heteroscedastic Student t-test with Welch’s correction; ** Wilson/Brown method.

3.3. miRNA and Clinical Parameters in STEMI Patients

We have systematically evaluated the correlation of the three miRNAs with the clinical
and paraclinical parameters accessible through the electronic hospital archive (Table 4 and
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Supplementary Table S1). None of the three miRNAs correlates with any of the biomarkers
known for their variation in STEMI (troponin I, CK, CK-MB, LDH, and ASAT). All three
miRNAs display a statistically significant correlation to diabetus mellitus (DM) and, except
for plasma miR-21, to erythrocyte/hematocrit and hemoglobin levels (Table 4). miR-150
also correlates marginally to age (Spearman coefficient r = 0.24; p value = 0.012), obesity
(r = 0.272; p = 0.006), creatinine level (r = 0.312; p = 0.001), lymphocytes (r = −0.263;
p = 0.007), and erythrocyte sedimentation rate (r = −0.196; p = 0.047). Of note, there is a
strong correlation between all three plasma miRNAs, presumably reflecting a common
tissue source and/or a common physio-pathological regulatory mechanism.

Table 4. Correlation parameters (Pearson coefficient and p-values) between plasma miRNAs and
clinical parameters in the STEMI patients’ group.

Spearman Coefficient
(p) DM Erythrocytes Hemoglobin Hematocrit

miR-101 0.241
(0.013)

−0.345
(0.0003)

−0.258
(0.008)

−0.300
(0.002)

miR-150 0.352
(0.0002)

−0.193
(0.048)

−0.256
(0.008)

−0.182
(0.063)

miR-21 0.275
(0.004)

−0.135
(0.168)

−0.055
(0.575)

−0.108
(0.274)

3.4. miR and Hb Levels

Given the well-known impact of Hb on the clinical outcome of MI, we further stratified
our cohort according to Hb level: Hb < 13 g/dL, between 13 and 15 g/dL, and over
15 g/dL [16]. All miRNAs show gradual increases in both FC values and MI discriminative
power with Hb level (Table 5). Interestingly, the correlation to DM has been preserved for
the miR-150 group (Spearman coefficient r = 0.568; p-value = 0.014), miR-101 (r = 0.477;
p = 0.045), miR-21 (r = 0.2715; p = 0.038) in the Hb 13–15 g/dL group, and only for miR-150
(r = 0.363; p = 0.049) in the Hb > 15 g/dL group. Furthermore, in the Hb 13–15 g/dL group,
miR-101 (r = 0.318; p = 0.035) and miR-21 (r = 0.349; p = 0.020) correlate to the time elapsed
since the onset of symptoms. The correlations between all three plasma miRNA levels
are preserved except for miR-150 and miR-101 in the Hb > 15 g/dL group. None of the
STEMI biomarkers (troponin I, CK, CK-MB, LDH, and ASAT) correlate with any of the
three miRNAs in any of the three Hb subgroups.

Table 5. Fold change (vs. controls) and ROC analysis of normalized miRNA plasma values in STEMI
patients in the three Hb subgroups.

Hb < 13 g/dL Hb: 13–15 g/dL Hb > 15 g/dL

FC
(p *)

ROC Analysis
FC

(p *)

ROC Analysis
FC

(p *)

ROC Analysis

AUC %
(p **)

AUC %
(p **)

AUC %
(p **)

miR-101 2.86
(0.047)

0.722
(0.025)

4.39
(0.0035)

0.819
(<0.0001)

5.84
(0.0013)

0.845
(<0.0001)

miR-150 1.90
(0.161)

0.660
(0.106)

3.89
(0.0007)

0.799
(0.0002)

4.77
(0.0002)

0.816
(0.0004)

miR-21 8.67
(0.0003)

0.830
(0.0009)

11.94
(<0.0001)

0.9071
(<0.0001)

13.77
(<0.0001)

0.912
(<0.0001)

* Unpaired heteroscedastic Student t-test with Welch’s correction; ** Wilson/Brown method.

3.5. miRNA in LVR vs. Non-LVR Group

The expression levels of plasma miRNAs are not significantly different in the LVR
vs. non-LVR groups, and their AUCs are modest and statistically insignificant (Table 6).



Biomedicines 2023, 11, 2738 7 of 14

Furthermore, none of the miRNAs are correlated with the changes in EF and EDV in the
LVR group, while in non-LVR patients, all three miRNAs are (negatively) correlated with
the change in EF.

Table 6. Fold change and ROC analysis of normalized miRNA plasma values in LVR vs. non-LVR
patients.

miR-101 miR-150 miR-21

LVR vs. non-LVR

FC
(p *)

1.77
(0.095)

1.23
(0.547)

1.65
(0.189)

AUC
(p **)

0.667
(0.078)

0.547
(0.622)

0.631
(0.169)

EF change %
(LVR patients)

Spearman
coefficient (p)

0.374
(0.764)

−0.093
(0.274)

0.177
(0.912)

EF change %
(non-LVR patients)

Spearman
coefficient (p)

−0.514
(0.004)

−0.556
(0.003)

−0.509
(0.005)

EDV change %
(LVR patients)

Spearman
coefficient (p)

0.117
(0.690)

0.202
(0.485)

0.209
(0.470)

EDV change %
(non-LVR patients)

Spearman
coefficient (p)

0.036
(0.851)

0.223
(0.224)

−0.020
(0.919)

* Unpaired heteroscedastic Student t-test with Welch’s correction; ** Wilson/Brown method.

The correlation to DM is lost for all miRNAs; none of the miRNAs in either group are
associated with Hb levels, erythrocyte numbers, or hematocrit levels.

There is a strong correlation between all three plasma miRNAs in the non-LVR group,
while in the LVR group, miR-150 becomes disconnected from the other two miRNAs. In
the LVR group, all correlations to DM, Hb level, number of erythrocytes, and hematocrit
are lost; smoking is correlated to miR-21 (r = 0.587; p = 0.034); the time elapsed since the
onset of symptoms is negatively correlated to miR-101 (r = −0.689; p = 0.032) and miR-21
(r = −0.659; p = 0.043).

3.6. miRNA in Diabetic vs. Non-Diabetic Patients

In our study, demographics, cardiovascular risk factors, and type of myocardial
infarction are not significantly different between diabetic and non-diabetic patients (Table 7).
Nevertheless, significant differences in terms of blood hypertension (p = 0.048) and in-
hospital death ratios (p = 0.0015) in favor of diabetic patients have been noticed.

All three plasma miRNA levels are significantly downregulated in diabetic vs. non-
diabetic MI patients; their ability to discern between diabetic and non-diabetic MI patients
is rather modest (Table 8). Of note, the diabetic status strongly influences the ability of all
three miRNAs to differentiate between MI and controls.

The miRNAs’ correlations to erythrocytes, Hb levels, and hematocrit are partially
preserved in diabetic and non-diabetic subgroups. In the non-diabetic cohort, miR-101
is negatively correlated to erythrocytes (r = −0.104; p = 0.004) and hematocrit (r = −0.16;
p = 0.02), while miR-150 is positively correlated to obesity (r = 0.285; p = 0.011). In the
diabetic subgroup, except for miR-21, the other two miRNAs have preserved their negative
association with Hb levels.

In non-diabetes patients, miR-150 correlates to miR-101 and miR-101 to miR-21, and in
the diabetic cohort, only miR-21 is correlated to the other two miRNAs.
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Table 7. Demographic and clinical features of MI patients with and without diabetes.

Characteristics Diabetic
(n = 24)

Non-Diabetic
(n = 81)

p-Value
(Z Test)

Age, years 63.63 ± 10.00 60.00 ± 13.59 0.159 *
Female, n (%) 10 (41.67) 19 (23.46) 0.081 **

Cardiovascular history/risk factors, n (%)
Hypertension 21 (87.50) 54 (66.67) 0.048 **
Hypercholesterolemia 2 (8.33) 21 (25.93) 0.067 **
Current smoker 10 (41.67) 43 (53.09) 0.327 **
Obesity 9 (37.5) 22 (27.16) 0.327 **

Presentation
Peak CK-MB (U/L) 88.29 114.68 0.394 *

Type of infarction, n (%)
anterior 14 (58.33) 35 (43.21) 0.194 **
inferior 10 (41.67) 41 (50.62) 0.441 **
other 5 (6.17)
In-hospital death, n (%) 5 (20.83) 2 (2.47) 0.0015 **

* Unpaired heteroscedastic Student t-test with Welch’s correction; ** two-tailed Z test.

Table 8. Fold change (FC) and area under curve (AUC) analysis in diabetic STEMI, non-diabetic
STEMI, and controls.

Diabetic vs. Non-Diabetic MI Diabetic MI vs. Controls Non-Diabetic MI vs. Controls

FC
(p *)

ROC Analysis
FC (p *)

ROC Analysis FC
(p *)

ROC Analysis

AUC, % (p **) AUC, % (p **) AUC, % (p **)

miR-101 0.56
(0.016)

0.666
(0.014)

2.84
(0.037)

0.7402
(0.0095)

5.05
(0.0002)

0.8308
(<0.0001)

miR-150 0.35
(0.001)

0.742
(0.0003)

1.62
(0.251)

0.639
(0.1315)

4.64
(0.0017)

0.8221
(<0.0001)

miR-21 0.50
(0.010)

0.6893
(0.0050)

17.61
(0.0003)

0.8186
(0.0006)

13.78
(<0.0001)

0.9179
(<0.0001)

* Student t-test with Welch’s correction; ** Wilson/Brown method.

4. Discussion

The role of plasma miRNAs as diagnostic and prognostic markers post-MI is still
disputed, mainly due to methodological differences in defining post-MI adverse events
(like LVR), the timing of blood sampling, and the analytical platforms used. Here, we
analyzed the early (hospital admission day) plasma expression level of three miRNAs
(miR-101, miR-150, and miR-21), presumed LVR prognostic biomarkers, with a special
focus on diabetes and hemoglobin levels.

4.1. miRNAs and Hb Level

All three miRNAs negatively correlate to Hb levels, the number of erythrocytes, and
the hematocrit value. Of note, to our knowledge, none of the three miRNAs are expressed
in erythrocytes; hence, none are expected to increase upon hemolysis.

Interestingly, the MI discriminative power of all miRNAs is strongly impacted by the
Hb level: the lower the Hb, the more modest and less statistically significant the AUC. In
the absence of data relating PaO2 to miRNA levels in these patients, one can only speculate
that this might be due to better tissue (myocardial included) oxygenation. The relationship
of these miRNAs to Hb and the number of erythrocytes and the hematocrit is interesting
since both animal and human studies have shown that plasma Hb level impacts the clinical
outcome of MI, and anemia is a risk factor in post-MI evolution [29–34].
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miR-21 is hypoxia-responsive and shows significant cardioprotective effects against hy-
poxia lesions upon in vivo and ex vivo overexpression [21,35,36]. A significant hematocrit/Hb-
related decrease in serum miR-21 levels was recently reported in a small cohort of chronic
HF patients with reduced EF [37]. Ex vivo and in vivo experiments identified miR-21 as a
major regulator of hematopoiesis through the SMAD7/TGF-beta signaling axis, and the
inhibition of miR-21 increased the hematocrit level [38].

Plasma miR-150 (but not miR-21) was found to be significantly upregulated in aplastic
anemia patients; this is in line with our data showing a negative correlation with the
level of Hb and the number of erythrocytes. Of note, miR-150 was proposed as a clinical
evolution biomarker in aplastic anemia, being (together with miR-1) an excellent responder
to immunosuppressive therapy [39]. The negative correlation of miR-150 with Hb (and
possibly chronic hypoxia) is in line with its demonstrated cardioprotective protective effect
in vitro [40–43].

4.2. miRNAs and DM

DM strongly influences LV dynamics (although not necessarily through LVR) in dia-
betic patients with HF and MI, with a significant impact on life quality and cardiovascular
outcome [44,45]. Early post-MI glycated hemoglobin value correlated negatively with the
EF and predicted worse EF [46]. In our MI cohort, 24 patients have diabetes, and the levels
of all three miRNAs are significantly decreased compared to non-diabetic MI patients. The
diabetic status per se impacts the ability of these miRNAs to discern between MI patients
and healthy controls, although with no effect regarding the relationship to LVR.

miR-21 has long been associated with DM and its complications (diabetic retinopathy,
neuropathy, and nephropathy) [47]. miR-21 is downregulated in the plasma of diabetic
patients and might signal diabetic cardiomyopathy patients [48,49].

Circulant miR-101 level is altered in diabetic patients and has been proposed as a
diagnostic biomarker for type I and type II DM [50,51]. Together with six other miRNAs,
miR-101 predicts type II DM remission in patients with CAD from the CARDIOPREV
study [52].

The relationship of miR-150 to DM has been more thoroughly investigated. Circulant
miR-150 is significantly decreased in both type I and II DM patients, being associated
with islet autoimmunity and (together with miR-21) diabetic retinopathy [48,53,54]. The
significance of miR-150 association with both MI and diabetes is underlined by a recent
communication highlighting the role of miR-150 in the modulation of GLUT4 and glucose
utilization in rat cardiomyocytes [55]. Equally significant, circulant miR-150 (together with
five other miRNAs) predicts DM development in patients with CAD from the CORDIO-
PREV Study [56].

4.3. miRNAs and LVR

LVR refers to changes in ventricular size, shape, and function. It is a consequence of
fibrosis, cardiomyocyte hypertrophy, and apoptosis. Fibrosis is the main component of
post-MI remodeling and represents an unrestrained accumulation of extracellular matrix
(ECM) components produced mainly by fibroblasts [57]. This leads to the organization of a
permanent scar and a loss of function in the affected area. LVR is initiated in the acute phase
of MI when transforming growth factor-beta (TGF-β) released by macrophages stimulates
fibroblasts to deposit ECM molecules in the surrounding tissues [58]. miRNAs modulate
both Smad and non-Smad dependent signaling pathways of TGF-β by targeting the key
molecules that mediate transcription of ECM genes and TGFβ signaling [59,60]. Therefore,
miRNAs can regulate collagen synthesis and other molecules involved in the progression
of cardiac fibrosis. Moreover, several miRNAs have been investigated as biomarkers of
LVR after MI [61].

We showed that none of the investigated miRNAs are differentially expressed and
cannot differentiate between LVR and non-LVR patients. Interestingly, all plasma miRNA
levels correlate to EF changes in non-LVR patients but not in LVR ones, while the changes
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in EDV are not correlated to any of the miRNAs. Of note, all three miRNAs are excellent
MI discriminators, the performances of which are influenced by DM status and the level of
plasma Hb.

miR-21 promotes cardiac fibrosis, hypertrophy, and angiogenesis and reduces apop-
tosis and inflammation [21–23,62–67]. Although miR-21 is one of the most investigated
miRNAs (in five human trials) as a putative predictor of cardiac remodeling after MI, its
value is not well established. Multiple variables might explain the heterogeneity of these
results. In the Zile and Grabmayer studies, the cohort size is relatively small, LVR is defined
as the absolute change of EDV (based on either echocardiography or CMR studies), and
the follow-up period is rather short (three to six months); in these studies, miR-21 did not
correlate with LVR parameters [68,69]. Dubois and Liu analyzed larger cohorts, defined
LVR as an increase of at least 20% in EDV (measured by echocardiography), and had a
good follow-up interval of one-year post-MI, but sampled blood late, at discharge; in these
studies, miR-21 correlated with LVR parameters [18,70]. The study led by Gao and his
colleagues suggests that miR-21 could be used as a post-MI survival predictor. It comprised
a rather large number of patients, with blood sampling on admission, but the endpoint was
death within 30 days, with no data on LVR parameters [71].

miR-150 protects against MI-induced fibrosis, and its prognostic use has been evalu-
ated in four human trials [72]. Similarly, as for miR-21, the four studies for miR-150 are very
heterogeneous in terms of cohort sizes, LVR definition, biological material of choice (plasma,
serum), the timing of collection/follow-up, and endpoint evaluation; none overlap with
our choices. Although Karakas et al. investigated a large number of patients, almost 70% of
them had a history of MI, which is an exclusion criterion in most of the studies, including
ours [73]. Devaux et al. used blood samples collected at discharge and echocardiography to
assess LVR but modified the parameter used to evaluate cardiac remodeling: the absolute
change of EDV in the first study is too indiscriminate, while the wall motion score index (in
the second study) is too observer-dependent [74,75]. In addition, almost half of the patients
did not receive any revascularization therapy (since it was technically unavailable at the
moment and patient evolution was favorable), which might have significantly influenced
the progression of LVR. The definition of LVR (EF ≤ 35%) and non-LVR (EF > 50%) pro-
posed by Lin et al. leaves a substantial gap among patients with EF between 35 and 50%,
which might also show signs and symptoms of HF [16].

While many reports support the role of miR-101 as protective against adverse cardiac
remodeling, only one human trial confirmed its prognostic value [15,75–77]. The patients
at risk for altered LV contractility show a combination of low miR-101/miR-150 and high
miR-16/miR-27a plasma levels at discharge, while our evaluation was based on plasma
samples at admission.

Many factors could account for the lack of concordance regarding the role of these
miRNAs as LVR predictors, starting with the cohorts’ sample size, time of blood collection,
detection and data normalization methods, and LVR definition. Our data indicate that
patients’ comorbidities like DM and paraclinical parameters like Hb levels and erythrocyte
numbers are potential confounders and could significantly influence the expression levels
of all three miRNAs and their statistical association with ventricular remodeling. In this
respect, a major limitation of our study (besides the modest size of the cohort analyzed) is
the lack of an in-depth analysis of the impact of medication (like statins and antiplatelet
drugs) due to the rather low adherence of our patients to the physicians’ indications [78,79].

5. Conclusions

Plasma miR-21, miR-101, and miR-150 fail as early (day of admission) biomarkers for
LVR, despite being excellent discriminators of MI. Our analysis shows that the plasma lev-
els of these miRNAs are strongly influenced by the patient’s diabetic status and hemoglobin
levels. Future studies on much larger cohorts are needed to globally and comprehensively
evaluate the impact of clinical and paraclinical confounding factors on the statistical associ-
ation of miRNA to MI in general and to ventricular remodeling phenomena in particular.
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