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Abstract: The Neural Calcium Sensor1 (NCS1) is a crucial protein that binds to Ca2+ and is believed
to play a role in regulating tumor invasion and cell proliferation. However, the role of NCS1
in immune infiltration and cancer prognosis is still unknown. Our study aimed to explore the
expression profile, immune infiltration pattern, prognostic value, biological function, and potential
compounds targeting NCS1 using public databases. High expression of NCS1 was detected by
immune histochemical staining in LIHC (Liver hepatocellular carcinoma), BRCA (Breast invasive
carcinoma), KIRC (Kidney renal clear cell carcinoma), and SKCM (Skin Cutaneous Melanoma). The
expression of NCS1 in cancer was determined by TCGA (The Cancer Genome Atlas Program), GTEx
(The Genotype-Tissue Expression), the Kaplan–Meier plotter, GEO (Gene Expression Omnibus),
GEPIA2.0 (Gene Expression Profiling Interactive Analysis 2.0), HPA (The Human Protein Atlas),
UALCAN, TIMER2.0, TISIDB, Metascape, Drugbank, chEMBL, and ICSDB databases. NCS1 has
genomic mutations as well as aberrant DNA methylation in multiple cancers compared to normal
tissues. Also, NCS1 was significantly different in the immune microenvironment, tumor mutational
burden (TMB), microsatellite instability (MSI), and immune infiltrate-associated cells in different
cancers, which could be used for the typing of immune and molecular subtypes of cancer and
the presence of immune checkpoint resistance in several cancers. Univariate regression analysis,
multivariate regression analysis, and gene enrichment analysis to construct prognostic models
revealed that NCS1 is involved in immune regulation and can be used as a prognostic biomarker for
SKCM, LIHC, BRCA, COAD, and KIRC. These results provide clues from a bioinformatic perspective
and highlight the importance of NCS1 in a variety of cancers.

Keywords: Neural Calcium Sensor1; pan-cancer; immunotherapy; prognosis

1. Introduction

The main treatment for advanced cancer is immunotherapy, but there are many
patients who do not respond to it, limiting its clinical applicability. Therefore, the study of
new immune markers and understanding the mechanisms of immune marker resistance is
a research priority [1].

Intracellular calcium signaling plays a role in regulating cancer progression. Ca2+-
binding proteins can change their conformation upon binding Ca2+ and bind to other
effector proteins, which is crucial for regulating cellular homeostasis [2]. Neuronal Calcium
Sensor 1 (NCS1) is a calcium-binding protein expressed ubiquitously. It is involved in
encoding calcium-binding proteins that regulate various processes in the cellular life cycle,
promoting cell survival and tumor invasion [3–5]. Multiple transcript variants encoding dif-
ferent isoforms have been identified for this gene [6]. NCS1 has been suggested to enhance
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the function and persistence of chimeric antigen receptor T-cell immunotherapy (CAR-T)
cells via TH17 cells in hematologic malignancies [7]. It promotes the proliferation and
differentiation of ovarian granulosa cells [8,9], reduces survival in breast cancer, promotes
malignancy in squamous lung cancer, and enhances invasion and metastasis in prostate,
breast, and glioma cancers [10–13].

NCS1 is a crucial calcium-binding protein believed to play a role in regulating tumor
invasion and cell proliferation. However, its role in immune infiltration and cancer progno-
sis is still unknown. Tumor immune escape mechanisms exist during cancer development,
involving the immune checkpoint blockade (ICB) pathway. Tumor mutational burden
(TMB) is used to determine tumor antigenicity. Deficient mismatch repair (dMMR) and
microsatellite instability (MSI) can promote the accumulation of somatic mutations in tumor
cells, increasing TMB and the susceptibility to ICB [14]. Understanding tumor genetics
and immune and non-immune factors in the tumor microenvironment can facilitate the
development of new diagnostic, prognostic, and therapeutic strategies to improve the
prognosis of cancer patients [15].

This study employed machine learning, transcriptome mapping from The Cancer
Genome Atlas (TCGA), and relational databases to assess the enriched expression pattern
of NCS1 in different cancer subtypes. It also investigated the impact of NCS1 on immune
response and prognosis. The study explored the correlation between NCS1 expression
and tumor-infiltrating lymphocytes (TILs), as well as associated immune markers. The
researchers delved into the intricate and distinctive relationship between NCS1 and tu-
mors. Moreover, they demonstrated that high NCS1 expression in cancer patients reduces
their survival time and further confirmed the pro-cancer role of NCS1 through biological
validation using immunohistochemical staining.

2. Materials and Methods
2.1. Data Collection

TCGA tumor type and GTEx (The Genotype-Tissue Expression) normal-tissue-type
data were collected. The data sources were RNAseq data from TCGA [16] and UCSC
XENA uniformly processed GTEx data [17]; the data were normalized using the “EdgeR” R
package; RNAseq data were converted in transcription per million reads (TPM) format and
log2 (TPM+1) transformation; the dataset was filtered to retain clinical information and
remove the results of missing and duplicate samples. TMB was determined by counting
the number of insertion or deletion events in duplicate gene sequences, while MSI was
determined by counting the overall mutation incidence per million base pairs [17].

2.2. Evaluate NCS1 Expression Level and the Degree of DNA Methylation

To determine the potential prognostic value and correlation between NCS1 and clinico-
pathological features of the tumor, several tools and databases were utilized. These include
GEPIA 2.0 [18], Kaplan–Meier Plotter [19,20], The Human Protein Atlas [21], and tissue
microarray. GEPIA 2.0 is a tool that allows the analysis of RNA sequencing expression data
from TCGA and GTEx programs, enabling the investigation of the association between
NCS1 expression and cancer prognosis, including its correlation with the pathological
stage. The “Survival” module of GEPIA 2.0 is particularly useful for exploring these rela-
tionships [18]. The Human Protein Atlas provides protein expression profiles for a large
number of genes in various tissues and organs. The tissue microarray (TMA) used in this
study, MTU1021, was purchased from Guilin Yao Li Biotechnology Co., Ltd. It contains
samples from 28 organs and 41 tumor types, with each tumor surrounded by adjacent
organ tissues. NCS1 expression was detected using the NCS1 rabbit monoclonal antibody
(AB129166, Abcam, Cambridge, UK).

Additionally, the UALCAN database was used to evaluate NCS1 DNA promoter
region methylation in pan-cancer data [22], which includes data from TCGA, met500, and
Clinical Proteomic Tumor Analysis Consortium, to determine the epigenetic regulation
of NCS1.
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2.3. Evaluate NCS1 and Immune Infiltration

T cell immune estimation resource (TIMER 2.0) (http://timer.comp-genomics.org/,
accessed on 19 September 2021) uses the deconvolution method to estimate the abundance
of tumor-infiltrating immune cells (B cells, CD4+T cells, CD8+T cells, macrophages, neu-
trophils, and dendritic cells) [23]. A comparison of tumor infiltration between tumors with
different somatic copy number variants of NCS1 was analyzed by the “SCNA” module of
TIMER 2.0 [23]. Based on multiple tumor RNAseq data and relevant clinical information
obtained from the TCGA database, to evaluate reliable results for immune score assessment,
we used the “immuneeconv” package. This R package integrates six cutting-edge algo-
rithms: TIMER, xCell, MCP-counter, CIBERSORT, EPIC, and stromal score. It derives the
immune score, tumor microenvironment score, and stromal score for NCS1 in pan-cancer,
enabling the assessment of NCS1’s immune relevance in the context of pan-cancer. Over
40 widely recognized immune checkpoint genes were gathered, and their expression values
were extracted to investigate the expression patterns of immune checkpoint-related genes
in relation to NCS1 across various types of cancer.

2.4. Association between NCS1 and Immunotherapy

Our comprehensive immunogenicity analysis of NCS1 was conducted using the R
software package(4.1.2), the cBioPortal [24], and the TISIDB database [25]. There are two
main sources of tumor immunogenicity differences: internal tumor factors and external
tumor factors. Internal tumor factors include neoantigen frequency, tumor mutation load,
immune inhibitors, immune-stimulators, and major histocompatibility complex (MHC)
molecules. Among the external tumor factors are tumor-infiltrating lymphocytes (TILs)
and chemokines (or receptors for chemokines) that regulate T-cell transport [25]. The R
package and the TISIDB database were used to analyze the TMB and MSI of NCS1 in
pan-cancer. The TISIDB database modules “Immunomodulators”, “Chemokines”, and
“Lymphocytes” were used to analyze the association between NCS1 and immunosuppres-
sive, immunostimulatory, and MHC molecules, as well as TILs and chemokines regulating
T-cell trafficking in pan-cancer. Spearman correlation analysis was performed to assess
whether NCS1 regulates immune function in cancer. The “Subtypes” module of the TISIDB
database was used to explore the distribution of NCS1 expression in molecular and immune
subtypes of human cancers. Clinical features related to NCS1 such as pathological staging
and grading were explored in human cancers. The “Drugs” module was used to identify
relevant drugs for NCS1, which can help design therapeutic approaches in combination
with immunotherapy.

The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm from tide.dfci.har-
vard.edu [26] combines the expression profiles of T-cell dysfunction and T-cell rejection
to model tumor immune escape based on TIDE scores. It can be used to predict immune
checkpoint blockade (ICB) resistance and identify biomarkers of ICB response.

2.5. Relationship between NCS1 and Prognosis of Tumor Patients

This study conducted both univariate and multifactorial Cox regression analyses to
investigate the association between NCS1 and tumor clinical characteristics, specifically
tumor grade and tumor stage. The findings were presented using forest plots generated
with the “forest plot” package, which displayed each factor’s p value, hazard ratio (HR),
and 95% hazard ratio (CI). Based on the results of the multifactorial Cox proportional
risk analysis, column plots were created using the “RMS” package to predict the overall
recurrence rate at 1, 3, and 5 years. The line graphs visually depict these factors and enable
the calculation of individual patient prognostic risk based on the points associated with
each risk factor. In the column line diagram, line segments represent the range of values
for each variable, with the length indicating the magnitude of the factor’s impact on the
outcome event. Individual scores are represented by points on the diagram, reflecting the
scores corresponding to each variable at different values. The Total Point represents the
cumulative score derived from all variables. By summing the scores of all clinical indicators,

http://timer.comp-genomics.org/
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the total score is obtained, which can be used to infer the patient’s future survival rate at 1,
3, and 5 years.

NCS1 was identified as a variable in the Nomogram based on the results of both uni-
variate and multifactorial Cox regression analyses. If NCS1 shows significant differences in
prognosis in both analyses, it suggests that the gene is an independent variable regardless of
other clinical factors. The nomogram’s discrimination was evaluated by plotting observed
rates against nomogram-predicted probabilities, and the concordance index (C-index) was
calculated using a bootstrap method. A closer alignment between the nomogram model
and the calibration curve indicates better predictive accuracy.

To analyze the impact on the 1-, 3-, and 5-year survival rates of tumor patients, the
“pROC” package was utilized for analysis and the “ggplot2” package for visualization.
Bootstrap correction and 200 replicate bootstrap samples were employed to assess the
internal validity of the constructed comparison plots. Kaplan–Meier curves were generated
using the “RMS”, “Survival”, and “Survminer” packages, providing p-values and HR with
95% CI for analysis via log-rank tests.

2.6. NCS1-Related Gene Enrichment Analysis

The 100 most relevant genes for NCS1 were obtained from GEPIA2.0 (Table S2) and
the list of genes was analyzed using Metascape (https://metascape.org, accessed on
19 September 2021) [27] for GO/KEGG, transcription factors, PaGenBase, DisGeNET,
and Coronavirus disease (COVID) analysis [27,28]. PaGenBase is used to understand the
functions of NCS1-like genes and their roles in specific biological processes and promote
drug development and disease mechanism [29]. DisGeNET is used for a variety of re-
search purposes, including analyzing the molecular basis of human diseases, verifying
predicted disease-causing genes, and evaluating text mining performance [30]. A COVID
analysis was performed to confirm that NCS1 is a reliable marker for COVID, followed
by a principal components analysis (PCA) to determine whether NCS1 distributions in
para-cancerous and tumorous tissues were correlated [31]. NCS1 particular knockout cell
lines were subjected to ICSDB (https://icsdb.lk, accessed on 19 September 2021) to evaluate
the changes in cell proliferation and to verify its efficiency [32].

2.7. The Structure of NCS1 and Screening of Therapeutic Drugs

To explore the clinical application of NCS1 and the value of transformation, we
searched the pharmacogenetics Drugbank (https://go.drugbank.com, accessed on 19
September 2021) [33], pharmGKB (https://www.pharmgkb.org, accessed on 19 Septem-
ber 2021) [34], and chEMBL databases (https://www.ebi.ac.uk/chembl, accessed on 19
September 2021) [35] for the compound structure.

2.8. Statistical Analysis

Spearman correlation analysis was employed to evaluate the correlation between
continuous variables. Paired t tests or t tests were utilized to compare the NCS1 expression
levels between groups or between tumors and normal tissues, depending on whether
the samples were paired. Kaplan–Meier survival curves were generated to assess the
survival probabilities. Cox regression analysis was conducted using the R survival data
package, with a significance level set at p < 0.05. Graphs were created using R packages
such as “forest plot”, “RMS”, “ggplot2”, “pROC”, “Survival”, and “Survminer”. Two-tailed
Student’s t tests were used to compare differences between two groups, while the Wilcoxon
test was employed for two-group data. One-way ANOVA was performed to determine
statistical significance among more than two groups. Mean ± SD values were reported for
data. Statistical significance was defined as p < 0.05. All statistical analyses were conducted
using SPSS (version 24.0.0).

https://metascape.org
https://icsdb.lk
https://go.drugbank.com
https://www.pharmgkb.org
https://www.ebi.ac.uk/chembl
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3. Results
3.1. The Landscape of NCS1 Status in Pan-Cancer

The expression of NCS1 in 33 human cancers was determined using the TCGA
and GTEx portals. NCS1 was found to have significant differences in different tumor
stages of pan-cancer (Figure 1A). Kaplan–Meier survival analysis showed that the high ex-
pression of NCS1 predicted low levels of overall (OS) and disease-free survival (DFS)
(p < 0.01) (Figure 1B,C). Analysis of RNAseq data in TPM format from UCSC Xena
(https://xenabrowser.net/datapages/, accessed on 19 September 2021) processed uni-
formly by the Toil process [16] for TCGA and GTEx showed that the difference in NCS1
expression was significant in 27 of the 33 tumor types. NCS1 was not expressed in CESC
(Cervical Cancer), LUAD (Lung Adenocarcinoma), PCPG (Pheochromocytoma & Paragan-
glioma), and in MESO (Mesothelioma), SARC (Sarcoma), and UVM (Ocular melanomas)
due to some missing data, and the results could not be derived (Figure 1D, Table S1).
HPA immunohistochemistry data showed that NCS1 expression in BRCA and LIHC was
significantly different from that in normal tissues (Figure 1E). According to the TMA data,
the high expression of NCS1 was observed in KIRC (Kidney Clear Cell Carcinoma), SKCM
(Melanoma), and BRCA (Breast Cancer) (Figure 1F).

3.2. The Degree of DNA Methylation and Tumor–Immune Interaction of NCS1 in Pan-Cancer

The outcomes indicated that NCS1 had hypermethylation in LIHC (Liver Cancer)
(p value = 1.09 × 10−8), BRCA (p value = 1.09 × 10−8), COAD (Colon Cancer)
(p value = 5.69 × 10−8), and KIRC (p value < 1 × 10−12) (Figure 2A). Tumor hetero-
geneity is a tumor-specific factor that should be considered when searching for molecular
markers [36,37]. We examined the association between ncs1 and the degree of immune
cell infiltration in multiple tumor types by using the Tumor Immune Assessment Resource
(Timer) database, and the correlation linear regression plots showed a correlation between
the high expression of NCS1 and increased immune cell infiltration in BRCA, LIHC, KIRC,
and COAD. Notably, in COAD, NCS1 showed a negative correlation with B cells. There
was a significant correlation with increased tumor invasion by antigen-presenting cells
(APCs) (Figure 2B). APCs may directly process NCS1. T cells may present it to B cells,
while T cells may recognize and activate it. Molecular characterization based on the so-
matic mutation profiles has been shown to detect a correlation between mutations and
cancer prognosis [38–40]. To gain a deeper understanding of the association between NCS1
genomic indicators and immune infiltration across various cancer types, SCNAs were
categorized into five levels: deep deletion, arm-level deletion, normal, arm-level gain, and
high amplification. The findings revealed significant variations in immune cell enrich-
ment among different NCS1 SCNAs in pan-cancer, indicating varying degrees of immune
cell infiltration (Figure 2C,D). The R package integrated six latest algorithms, including
TIMER, xCell, MCP-counter, CIBERSORT, EPIC, and quanTIseq [41]. Significant differ-
ences were obtained between NCS1 expression and pan-cancer in Stromal Score, tumor
microenvironment score, immune score, and immune infiltration-related cells (Figure 2E).
It is suggested that the genomic alteration of NCS1 in pan-cancer is closely related to the
degree of immune infiltration.

3.3. Correlation between NCS1 and Tumor Immunogenicity in Pan-Cancer

Immune checkpoint genes represent novel targets for the development of cancer
therapies, while there is a significant correlation between the expression pattern of immune
checkpoint genes and patient survival and response to ICB therapy [42]. We collected over
40 common immune checkpoint genes and concluded that a significant relationship exists
between immune checkpoint genes (CD276, CD274, NRP1, LAG3, LAIR1, LGALS9, and
VSIR) and NCS1.

https://xenabrowser.net/datapages/
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Figure 1. The landscape of NCS1 status in pan-cancer. (A) The correlation between NCS1 expression
and the pathological stage of cancer using “pathological stage staging” of GEPIA2.0 found that NCS1
was significantly correlated with the pathological stage of tumors in pan-cancer. (B,C) The Kaplan–
Meier plotter database was used to analyze the survival curves of high and low NCS1 expression
in 33 human cancer types and determined that NCS1 was associated with lower levels of OS and
DFS. (D) The combined data of TCGA and GTEx show the difference in the NCS1 expression in
tumor and normal tissues of 33 cancers. * p < 0.05, ** p < 0.01, *** p < 0.001. (E) Representative
IHC images of NCS1 expression in normal liver tissue, breast tissue, and LIHC, BRCA tissue from
HPA immunohistochemistry data. (F) Representative IHC of NCS1 expression in normal kidney,
skin, and breast tissues with corresponding KIRC, SKCM, and BRCA tissues obtained according
to TMA MTU1021 images. Abbreviation: ACC: Adrenocortical Cancer; BLCA: Bladder Cancer;
BRCA: Breast Cancer; CESC: Cervical Cancer; CHOL: Bile Duct Cancer; COAD: Colon Cancer; DLBC:
Large B-cell Lymphoma; ESCA: Esophageal Cancer; GBM: Glioblastoma; HNSC: Head and Neck
Cancer; KICH: Kidney Chromophobe; KIRC: Kidney Clear Cell Carcinoma; KIRP: Kidney Papillary
Cell Carcinoma; LAML: Acute Myeloid Leukemia; LGG: Lower Grade Glioma; LIHC: Liver Cancer;
LUAD: Lung Adenocarcinoma; LUSC: Lung Squamous Cell Carcinoma; MESO: Mesothelioma; OV:
Ovarian Cancer; PAAD: Pancreatic Cancer; PCPG: Pheochromocytoma & Paraganglioma; PRAD:
Prostate Cancer; READ: Rectal Cancer; SARC: Sarcoma; SKCM: Melanoma; STAD: Stomach Cancer;
TGCT: Testicular Cancer; THCA: Thyroid Cancer; THYM: Thymoma; UCEC: Endometrioid Cancer;
UCS: Uterine Carcinosarcoma; UVM: Ocular melanomas.
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Figure 2. Association of NCS1 expression with DNA methylation, genomic mutations, and immune
infiltrating associated cells in pan-cancer; (A) DNA methylation of NCS1 in LIHC, BRCA, COAD,
and KIRC. (B) Association of NCS1 with tumor-infiltrating immune cells in BRCA, LIHC, KIRC,
and COAD. (C) Association of NCS1 genomic indicators with immune infiltration in BRCA, LIHC,
KIRC, and COAD, * p < 0.05, ** p < 0.01, *** p < 0.001. (D) Relationship between the SCNA of NCS1
and immune infiltration in different cancer types. (E) Heat map of correlation between NCS1 and
mesenchymal score, microenvironmental score, immune score, and immune infiltrate-associated
cells in pan-cancer. Abbreviation: ACC: Adrenocortical Cancer; BLCA: Bladder Cancer; BRCA:
Breast Cancer; CESC: Cervical Cancer; CHOL: Bile Duct Cancer; COAD: Colon Cancer; DLBC: Large
B-cell Lymphoma; ESCA: Esophageal Cancer; GBM: Glioblastoma; HNSC: Head and Neck Cancer;
KICH: Kidney Chromophobe; KIRC: Kidney Clear Cell Carcinoma; KIRP: Kidney Papillary Cell
Carcinoma; LAML: Acute Myeloid Leukemia; LGG: Lower Grade Glioma; LIHC: Liver Cancer;
LUAD: Lung Adenocarcinoma; LUSC: Lung Squamous Cell Carcinoma; MESO: Mesothelioma; OV:
Ovarian Cancer; PAAD: Pancreatic Cancer; PCPG: Pheochromocytoma & Paraganglioma; PRAD:
Prostate Cancer; READ: Rectal Cancer; SARC: Sarcoma; SKCM: Melanoma; STAD: Stomach Cancer;
TGCT: Testicular Cancer; THCA: Thyroid Cancer; THYM: Thymoma; UCEC: Endometrioid Cancer;
UCS: Uterine Carcinosarcoma; UVM: Ocular melanomas.
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In LUAD, LUSC (Lung Squamous Cell Carcinoma), PRAD (Prostate Cancer), UCEC (En-
dometrioid Cancer), BLCA (Bladder Cancer), TGCT (Testicular Cancer), ESCA (Esophageal
Cancer), LIHC, CESC, SARC (Sarcoma), BRCA, COAD, SKCM, CHOL (Bile Duct Cancer),
KIRC, THCA (Thyroid Cancer), HNSC (Head and Neck Cancer), LGG, KICH (Kidney
Chromophobe), and UVM, the expression of NCS1 showed a positive correlation with
immune checkpoint genes, especially in TGCT, LIHC, BRCA, SKCM, COAD, KICH, and
UVM. It is suggested that NCS1 may be similar to the above genes or have some standard
biological processes involved in coordinating the activity of immune checkpoint genes
in different signaling pathways, which may lead to reduced survival and a diminished
response to immune checkpoint blockade therapy (Figure 3A).

Figure 3. Correlation analysis between NCS1 and the immune checkpoint genes, TMB, MSI, and
immune infiltration. (A) NCS1 expression correlates with immune checkpoint genes. * Represents
p < 0.05, ** p < 0.01, *** p < 0.001.(B) Relationship between NCS1 expression and TMB. (C) Rela-
tionship between NCS1 expression and microsatellite instability. (D–I) Relationship between NCS1
expression and TILs, immunosuppressants, immunostimulants, MHC molecules, chemokines, and
chemokine receptors.



Biomedicines 2023, 11, 2765 9 of 19

The impact of NCS1 on the tumor microenvironment (TME) immune mechanisms and
immune response was investigated by analyzing the correlation between NCS1 expression
and tumor mutation burden (TMB) as well as microsatellite instability (MSI) [43]. Tumor
mutation burden (TMB) is a measure that quantifies the number of mutations present
in cancer cells [43–45]. The researchers calculated the tumor mutation burden (TMB) for
each tumor sample and examined its association with NCS1 using Spearman’s rank cor-
relation coefficient. The results indicated a positive correlation between NCS1 expression
and TMB in UCEC and SKCM (Figure 3B). Microsatellites (MS) are short sequences of
repeated DNA in the human genome that play an important role in tumor development.
Microsatellite instability (MSI) is considered a molecular marker for prognosis of colorectal
cancer. NCS1 was positively correlated with microsatellite instability in BRCA, DLBC,
UCS, ACC (Adrenocortical Cancer), LUSC, TGCT, and LIHC (Figure 3C) and negatively
correlated with expression in KICH, THCA, and STAD (Figure 3C). The researchers visu-
alized and scored immunophenotypes, including tumor-infiltrating lymphocytes (TILs)
(Figure 3D), immune-inhibitors (Figure 3E), immune-stimulators (Figure 3F), MHC molecules
(Figure 3G), chemokines (Figure 3H), and chemokine receptors (Figure 3I). A genetic screen-
ing technique based on the ICSDB database was used to investigate whether the NCS1
gene could increase T cell-mediated sensitivity and tumor cell resistance by interacting
with 28 types of TILs. According to the multivariate analysis, the NCS1 immunophenotype
scores varied among different tumors.

NCS1 is believed to be associated with the molecular and immune subtypes of tu-
mors (Figure 4A,B). Using TCGA immune-related gene expression data as a training
set, NCS1 could be used to predict the immune subtypes of LIHC (p = 1.91 × 10−4),
BRCA (p = 1.94 × 10−26), COAD (p = 4.47 × 10−3), and KIRC (p = 2.64 × 10−5) (Figure 4C).
Based on the molecular subtype classification from the TCGA database, NCS1 was a
good predictor of molecular subtypes including SKCM (p-value = 4.51 × 10−2), LIHC
(p-value = 3.36 × 10−9), BRCA (p-value = 6.25 × 10−64), and COAD (p-value = 3.09 × 10−2)
(Figure 4D).

The TIDE algorithm was utilized to investigate the role of NCS1 in immunotherapy.
High TIDE scores were associated with elevated expression of NCS1 in LIHC, BRCA, and
KIRC; SKCM exhibited low NCS1 expression, resulting in a more favorable response to
immune checkpoint blockade (ICB) therapy (Figure 5A). As a regulator of immune escape
in tumors, elevated expression of NCS1 in cancer cells leads to resistance against T-cell-
mediated killing effects during immune checkpoint blockade (ICB) therapy (Figure 4E).

3.4. There was a Significant Correlation between NCS1 Expression and Survival Rate

Patients were divided into high/low expression groups based on the median ex-
pression of NCS1. Univariate and multivariate COX regression analyses were conducted
to identify significant prognostic variables and to create a line graph (nomogram) for
prognostic guidance. A prognostic line graph for cancer was developed based on the
results of the multivariate Cox proportional hazards analysis. Univariate regression anal-
ysis identified NCS1, age, sex, race, and pTNM-stage as predictors related to overall
survival (OS) in SKCM, LIHC, and KIRC. In the multifactor regression analysis, after ad-
justing for clinical characteristics such as age and sex, NCS1 was associated with SKCM
(HR = 1.22125, p-value = 0.00403) and LIHC (HR = 1.26497, p-value = 0.00239). It was
concluded that NCS1 could be an independent predictor of survival outcome in SKCM
and LIHC, confirming the independent prediction of NCS1 in SKCM and LIHC survival
prognosis stability. A prognostic model was constructed using multivariate Cox analysis to
generate ROC curves for predicting the 1-, 3-, and 5-year survival of patients with SKCM,
LIHC, and KIRC, and the corresponding AUC was calculated. The results showed that the
1-, 3-, and 5-year prediction curves in the constructed prognostic model were in good agree-
ment with the actual results. In addition, KM curves were constructed to observe the rela-
tionship between NCS1 and overall survival (OS), with high expression of NCS1 in SKCM
(HR = 1.53, P = 0.002), LIHC (HR = 1.50, P = 0.02), BRCA (HR = 1.40, P = 0.038), COAD
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(HR = 1.51, P = 0.041), KIRC (HR = 1.49, P = 0.041), and KIRC (HR = 1.49, P = 0.0009), which
was associated with a decrease in OS (Figure 5B). Additionally, the expression levels of
NCS1 significantly varied among different pathological stage and grade groups in KIRC
tumors, as well as in different pathological stage groups in BRCA tumors (Figure 5C,D).

Figure 4. Correlation of NCS1 with immunotherapy in pan-cancer. (A) NCS1 predicts different
immune subtypes in pan-cancer. (B) NCS1 predicts different molecular subtypes in pan-cancer.
(C) NCS1 can be used to identify different immune subtypes of LIHC, BRCA, COAD, and KIRC.
(D) NCS1 can be used to identify different molecular subtypes of LIHC, BRCA, COAD, and KIRC.
(E) NCS1 high expression in SKCM, LIHC, BRCA, COAD, and KIRC shows immune checkpoint
resistance correlation. * p < 0.05, ** p < 0.01, **** p < 0.0001.
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Figure 5. Relationships between NCS1 and prognosis. (A) Univariate and multifactorial regres-
sion analyses suggested that NCS1 could be a prognostic predictor for SKCM, LIHC, and KIRC.
Patients with different NCS1 expression levels showed significant differences in 1-, 3-, and 5-year
survival rates; (B) KM curves of overall survival of NSC1 in SKCM, LIHC, BRCA, COAD, and KIRC.
(C) Correlation of NCS1 with pathological stage staging in BRCA and KIRC patients. (D) Correlation
between NCS1 and tumor grade in KIRC patients.

3.5. GO/KEGG Enrichment Analysis of NCS1 and NCS1 Similar Genes

GEPIA 2.0 identified 100 genes that exhibited the highest similarity to NCS1 in terms
of biological function, and these genes were analyzed using Metascape [27]. The results
revealed that these genes were enriched in Gene Ontology (GO) terms related to chemical
synaptic transmission, synaptic vesicle cycle, learning, and memory (Figure S2A), with a
concentration of biological processes related to signaling, localization, and behavior (Figure
S2B). A protein–protein interaction network of genes similar to NCS1 was presented [46]
(Figure S3). The MCODE algorithm was utilized to identify densely connected protein
neighborhoods and predict the most significant hub genes and pathways within the net-
work [47]. GO enrichment analysis was conducted on each MCODE network to assign
functional annotations to the network components. The results show that the essential
genes are CAMK2A, SHANK1, DLG4, CACNG3, CACNG8, CNIH2, SYN1, SYN2, RAB3A,
SEPTIN3, SK1SEPTIN5, GNAO1, GNG3, and PRKCG (Figure S3B); the main biological
processes are protruding through Chemical Transmission, Antegrade Trans-synaptic Signal-
ing, and Trans-synaptic Signaling (Figure S3C). Gene list enrichment was observed in the
following ontology categories: Transcription Factor Targets [48], DisGeNET [30], PaGen-
Base [29], and COVID [27]. Based on these findings, EFCQ6 and RFX102 were identified as
targets of a transcription factor that regulates NCS1-like genes (Figure 6A).

Based on DisGeNET, NCS1 and its related genes are primarily associated with pheno-
types of Lewy body disease (Figure 6B). Immunosuppression and immune dysfunction
weaken the immune system in cancer patients. Peripheral blood mononuclear cells (PBMCs)
play a vital role in hematological malignancies, vaccine development, and immune disor-
ders, particularly in response to tumor antigens. Furthermore, COVID-19 patients have a
higher likelihood of developing colorectal cancer, lung cancer, and breast cancer compared
to non-cancer patients [49]. Based on the aforementioned reasons, there is a significant
difference in PBMCs between COVID-19 patients and non-COVID-19 patients regarding
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NCS1 and its related genes (Figure 6C), indicating that NCS1 could serve as a potential
therapeutic target for COVID-19, and the development of an NCS1 mRNA vaccine is
plausible. PaGenBase offers a pathway for the development of novel drugs. In conclusion,
NCS1 and its related genes are clearly expressed in amygdala, cortex, and DRG cell lines
(Figure 6D), providing a choice of experimental direction for further NCS1 research. Princi-
pal component analysis (PCA) can be employed to differentiate tumors from normal tissues
based on NCS1 and related genes (Figure 6E,F).

Figure 6. Enrichment and PCA analysis of NCS1 and NCS1-related genes. (A–D) Enrichment analysis
of NCS1 and its similar genes in transcription factor targets, PanGenBase, DisGeNET, and COVID-19.
Edge-linked terms with similarity scores > 0.3. (E) PCA analysis of NCS1 and NCS1-related genes.
(F) Variance percentages are based on a PCA analysis of NCS1.

We conducted a screening of 976 cell lines from the ICSDB database to assess prolifer-
ation following CRISPR knockout of NCS1. The knockout of NCS1 resulted in impaired
viability in cell lines such as LNCAP (PRAD, z-score = −2.163, p = 0.015), PANC1 (PAAD,
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z-score = −2.163, p = 0.015), G564NS (GBM, z-score = −1.649, p = 0.050), and BJ (skin,
z-score = −1.690, p = 0.046). Conversely, RERFLCAI (LUSC, Z-score = 1.672, p = 0.047)
and SNU1544 (COAD, Z-score = 1.732, p = 0.042) showed increased viability (Figure 7A);
We created a visualization of the guide RNA-level screening to demonstrate the knockout
efficiency of each gRNA along with the background distribution (Figure 7B,C). We retrieved
drugs targeting NCS1 from ChEMBL (Figure 7D) and DrugBank (Figure 7E,F). Furthermore,
we identified other targets of DB110933 and DB11348 that might also play a role in cancer
development.

Figure 7. CRISPR screening score of NCS1 and potential compounds targeting NCS1. (A) Cell
proliferation rate after CRISPR knockout of NCS1. Violin plots show batch-corrected z-scores by
the gene for each cell line and screen. Positive Z-scores indicate that gene knockout will promote
cell proliferation and survival, whereas negative Z-scores indicate that gene knockout will inhibit
it. (B,C) A gRNA-by-gRNA view shows the knockout efficiency for each guide RNA (red line) with
background distribution. The genomic alignment of the gRNA displays the alignment of the gRNA
and the z-score of the gRNA effect by color for each screen. (D) Drugs targeting NCS1 via the chEMBL
databases. (E,F) Drugs targeting NCS1 via the pharmacogenetics Drugbank and TISIDB database.

4. Discussion

Research has demonstrated that dysregulation of the Ca2+ pathway plays a role in
promoting cancer invasion and metastasis. Molecules that bind Ca2+ and mediate the
expression of downstream effector molecules may serve as potential therapeutic targets for
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cancer treatment [50]. NCS1 overexpression has been shown to enhance invasiveness in
breast and lung squamous cancers. Alterations in the expression levels of key components
or complexes involved in cellular Ca2+ transduction can lead to malignant transformation,
tumor progression, abnormal tumor cell proliferation, and resistance to cell death. These
factors also play a crucial role in immunotherapy sensitivity [51]. The dysregulation of the
Ca2+ pathway contributes to the promotion of cancer invasion and metastasis. Molecules
that bind Ca2+ and mediate the expression of downstream effector molecules may hold
promise as potential therapeutic targets for cancer treatment. Research has demonstrated
that NCS1 overexpression promotes invasion and proliferation in various cancers, such as
prostate, breast, glioma, ovarian, and hematologic malignancies [52].

Given that NCS1 plays a vital role in regulating immune tolerance and tumor devel-
opment across various histological types in pan-cancer, we thought it might be routinely
applied to various tumors. The findings revealed that high expression levels of NCS1 were
associated with reduced overall survival (OS) and disease-free survival (DFS), indicating
significant tumor heterogeneity. To validate the expression of NCS1 in pan-cancer at the
histological level, the researchers used TMA microarray and HPA data, which showed
significant differences in NCS1 in LIHC, BRCA, KIRC, and SKCM compared to normal tis-
sues. Genetically unstable cancers exhibit increased genetic diversity and mutational load,
leading to the generation of novel antigens and enhanced immune infiltration, resulting
in amplification, profound deletions, missense mutations, and other genetic changes in
several types of cancers. As per the findings of the ENCODE project, protein heterodimers
are thought to be prevalent in important cancer genes [53]. Switching of heterodimers
promotes hepatocellular carcinoma cell proliferation and tumor formation [54,55], while
variable splice switching of cancer genes uncovers novel characteristics of cancer that
exhibit strong predictive power for patient survival [56,57]. The discovery that NCS1 can
reduce cross reactivity with other proteins and exhibits tumor-specific protein isoforms has
stimulated fundamental mechanistic studies focused on NCS1.

Pan-cancer differentially methylated CpG sites (PDMCs) in tumors play a role in regu-
lating tumor suppressor genes or oncogenes, contributing to tumor growth and impacting
patient survival [58]. DNA methylation can alter the chromatin structure to maintain the
balance between transcriptional activation and repression. The same gene can exhibit
distinct DNA methylation patterns across different tumors, which correlates with its gene
expression pattern [58]. NCS1 demonstrates differential methylation across at least eight
tumor types, making it a pan-cancer-wide differentially methylated CpG site capable of
delineating distinct functional groups. These functional groups are implicated in vari-
ous tumor-related signaling pathways [59]. We examined the correlation between NCS1
methylation levels and overall survival in patients with different cancer types, revealing its
significant prognostic value in more than four cancer types. This study lays the foundation
for further research on the impact of NCS1 methylation on cancer. The objective of tumor
immunotherapy is to reactivate and sustain the tumor–immune cycle, restoring a normal
antitumor immune response in the body to effectively control and eliminate tumors. By
considering the cellular characteristics of immune infiltration, tumor genotype, immune
phenotype, and tumor escape mechanisms, one can determine the interplay between these
factors. Different tumor genotypes have different patterns of immune infiltrating cells.
T cells are considered to be an important institution responsible for the antitumor effect
in immunotherapy. Tumor-infiltrating T cells can be used to factor the patient’s immune
background into the tumor prognosis, which is of interest. It is important to note that the
immune score does not exclude other screening indicators, which can help to improve
the accuracy of patient prognosis assessment. Understanding and acknowledging the
immune background can potentially alter the approach to tumor treatment, leading to a
more comprehensive therapeutic strategy [60].

Our findings revealed significant differences in immune infiltration-associated cells
with respect to NCS1 expression across different tumor types. These differences were
influenced by specific genomic mutations that impacted the level of immune cell enrich-
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ment. Furthermore, the stromal score, tumor microenvironment score, and immune score
exhibited distinct expression patterns of NCS1 across various tumor types. To comprehend
the impact of NCS1 on the immune system, it is essential to consider immune-related
gene ontologies, encompassing immune checkpoint gene expression, tumor mutation bur-
den (TMB), microsatellite instability (MSI), T cell activation, T cell proliferation, T cell
differentiation, chemokines, and B cell receptor signaling pathways. In addition, immune
infiltration is associated with the expression levels of immunosuppressants, immune ag-
onists, and MHC molecules. Tumor-infiltrating lymphocytes (TILs) have been identified
as independent predictors of tumor prognosis and immunotherapeutic efficacy [61,62].
Studies have demonstrated correlations between the levels of NCS1 expression and the
numbers of TILs, immunosuppressants, immunostimulants, MHC molecules, chemokines,
and chemokine receptors in different tumor types. Additionally, co-expression of NCS1 and
immune checkpoint genes, which exhibit significant variations in immune infiltration and
immunogenicity, provides a theoretical foundation for combined molecular targeted im-
munotherapy. Tumors exhibit diverse immune subtypes and molecular subtypes, leading
to variations in the expression and prognosis of immune-regulated genes within these sub-
types. These differences offer new perspectives for tumor treatment [63]. NCS1 is involved
in immune regulation and has the potential to become a pan-cancer diagnostic biomarker,
exhibiting significant differences in various immune subtypes and molecular subtypes of
tumors. To understand the relationship between NCS1 and immunogenicity, as well as
immune infiltration, researchers utilized a precise immuno-oncology framework. The TIDE
database was employed to determine how NCS1 responds to immune checkpoint inhibitors.
Due to its high expression in cancer cells, NCS1 demonstrates a resistance profile against T
cell dysfunction and immunosuppressive therapies, which can promote resistance to the
killing effect induced by T cells during ICB treatment. This reveals that NCS1 may function
as a modulator of tumor immune escape and contribute to ICB resistance. After confirming
the role of NCS1 in immunotherapy, univariate and multivariate COX regression analyses
were conducted to construct KM curves, further determining the effect of NCS1 on the sur-
vival of tumor patients. NCS1 showed a negative correlation with the prognosis of SKCM,
LIHC, BRCA, COAD, and KIRC and could be used as an independent prognostic factor in
SKCM, LIHC, and KIRC. It exhibits good predictive accuracy and correlates with clinical
features of various tumors. Pathway enrichment and principal component analysis of
NCS1-like genes were performed to elucidate the mechanism of NCS1 action. Additionally,
NCS1 is considered a potential biomarker for COVID and could be utilized in exploring
therapeutic immune vaccine studies based on NCS1 mRNA neoantigens [64]. According to
the ICSDB database, NCS1 knockdown after CRISPR inhibited the proliferation of PRAD,
PAAD, and GBM cell lines, providing a reference for subsequent cytological experiments
to test the effect of NCS1 knockdown on tumor cell proliferation. Evidence suggests that
NCS1 mutations can lead to drug resistance [65].

Limitations of the Study

Firstly, it is important to acknowledge potential data bias due to racial factors when
expanding the study, as the databases used for analysis and processing are derived from
publicly available sources. Secondly, to gain a deeper understanding of the impact of
NCS1, it would be beneficial to explore its effects on the proliferation and invasion of
various tumor cell lines at the cellular and histological levels, in addition to detecting NCS1
expression levels solely through immunohistochemical staining of tumor tissues. Lastly,
conducting clinical drug trials is necessary to evaluate the efficacy of potential compounds
targeting NCS1.

5. Conclusions

In summary, our investigation encompassed NCS1 expression patterns, correlation
with tumor immune infiltration and immune infiltrating cells, prognostic value, enrichment
pathways, and potential targeting drugs from multiple perspectives. Histological validation
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using tissue microarrays (TMAs) confirmed the association of NCS1 expression with poor
prognosis in patients with SKCM. Our study sheds light on the potential value of NCS1 in
cancer prognosis and immunotherapy and contributes to a deeper understanding of the
mechanisms underlying NCS1’s interaction with various immune cells in tumors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11102765/s1. Figure S1: Reliable stromal score,
microenvironment score, immune score, and Tumor immune infiltration-associated cells evaluation
of NCS1 presented by (A) CIBERSORT, (B) EPIC, (C) MCP-counter, (D) QuanTIseq, and (E) TIMER.
Figure S2: (A) Heatmap of Gene Ontology (GO) enrichment between NCS1 and NCS1-like genes, with
enriched terms colored by p-values. (B) Analysis of Gene Ontology biological processes enrichment
for NCS1 and NCS1-like genes. Figure S3: (A) Protein–Protein Interaction network of NCS1-like
genes. (B) Hub genes from the PPI network. (C) Main biological processes from MCODE network.
Table S1: The TPM expression of NCS1 in 32 kinds of tumors from the TCGA database. Table S2: The
most similar genes to NCS1 obtained from GEPIA 2.0.
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