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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a solid tumor characterized by poor prog-
nosis and resistance to treatment. Resistance to apoptosis, a cell death process, and anti-apoptotic
mechanisms, are some of the hallmarks of cancer. Exploring non-apoptotic cell death mechanisms
provides an opportunity to overcome apoptosis resistance in PDAC. Several recent studies evaluated
ferroptosis, necroptosis, and pyroptosis as the non-apoptotic cell death processes in PDAC that play
a crucial role in the prognosis and treatment of this disease. Ferroptosis, necroptosis, and pyroptosis
play a crucial role in PDAC development via several signaling pathways, gene expression, and immu-
nity regulation. This review summarizes the current understanding of how ferroptosis, necroptosis,
and pyroptosis interact with signaling pathways, the genome, the immune system, the metabolism,
and other factors in the prognosis and treatment of PDAC.
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1. Introduction

Pancreatic cancer is a poor-prognosis cancer with an aggressive nature [1]. The
number of cases of pancreatic ductal adenocarcinoma (PDAC), the majorly prevalent form
of pancreatic cancer, is anticipated to increase, mainly due to the average population age
increasing [1,2]. Despite decades of improvement, there is still a low 5-year survival rate
for patients with PDAC, which has only increased to 12% [3]. Furthermore, PDAC is
considered a challenging and poor-prognostic cancer to treat due to its late detection and
resistance to chemotherapy [4].

Of symptomatic PDAC patients, 80% are beyond surgical possibilities because of dis-
tant metastasis or the involvement of vital structures [5–9]. As a result, chemotherapy plays
a crucial role in treating PDAC [6,7]. During advanced stages of PDAC, gemcitabine (GEM)
in combination with nanoalbumin-bound paclitaxel (nab-PTX) or FOLFRINOX (a combina-
tion of leucovorin, 5-FU, irinotecan, and oxaliplatin) is the cornerstone of chemotherapy
based on patients’ conditions [8,10]. Apoptosis-related mechanisms can be modulated
by different immunogenetic factors in PDAC, increasing chemoresistance [9]. Regarding
apoptotic immunogenetic modulators, most PDAC patients harbor at least one of two
frequently mutated genes, KRAS and TP53 [11,12]. The research demonstrated a correlation
between the co-occurrence of KRAS-TP53 alterations and immune-excluded microenvi-
ronments, resistance to chemotherapy, and unfavorable survival outcomes in PDAC [13].
KRAS mutations can inhibit apoptosis by downregulating proteins that promote apoptosis,
such as BAX, and upregulating proteins that inhibit apoptosis, such as BCL-2. TP53 encodes
a checkpoint protein, p53, which functions as a tumor suppressor and is transcriptionally
essential for BAX [11,12]. The BCL-2 protein is also upregulated by activated pancreatic
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stellate cells (PSCs), which are crucial tumor microenvironment (TME) components. By
preventing apoptosis, PSCs play a vital role in PDAC chemoresistance [14].

In addition to PSCs, the TME comprises other immune cells, cancer-associated fi-
broblasts (CAFs), and networks, forming a dense, multilayered structure [15–17]. The
TME, as a double-edged sword in PDAC progression, contributes to PDAC tumor het-
erogeneity in patients [18]. The immune-dense barrier of the TME plays a pro-tumor
role by impeding drug penetration into PDAC and recruiting immune cells, including
M2-polarized macrophages, neutrophils, and exhausted tumor-infiltrating lymphocytes
(TIL) [15–17]. In contrast, the TME demonstrates anti-tumor activity by engaging cytotoxic
T cells or signaling pathways that interact with immune cells (including nuclear factor
kappa-light-chain-enhancers of activated B cells (NF-κB)) [15–17]. However, NF-κB is
known for promoting cancer cell survival by controlling the expression of genes involved
in immune functions, such as cytokines and chemokines, and regulating anti-apoptotic
genes (BCL-2 and BCL-xL) [15,19,20]. A further effect of NF-κB is that it promotes the
migration of CAFs within the TME, increasing the risk of chemoresistance and subsequent
cancer progression [17,21]. Notably, oncogenic KRAS signaling drives NF-κB activation in
PDAC [20].

Additionally, PDAC exhibits hypoxia as a significant aspect of the TME. Through
different mechanisms, hypoxia causes malignant PDAC features, affecting prognosis. These
include triggering genes related to angiogenesis, glycolysis, and various molecules and
signaling pathways that cause invasion and drug resistance in PDAC [22–24]. Based on
these studies, Chen et al. designed a prognostic risk score model in PDAC, including seven
hypoxia- and immune-associated signature genes (S100A16, PPP3CA, SEMA3C, PLAU,
IL18, GDF11, and NR0B1), and classified patients according to their risk level. The high-
risk population exhibited different immunocyte infiltration states and mutation spectra
and lower immune scores, stromal scores, and immune checkpoint expression, such as
anti-Programmed Death 1 ligand (anti-PD-L1). Conversely, immunotherapy may benefit
patients with low-risk scores and high immune checkpoint expression [25].

An astonishing study by Wang et al. indicated that the immune system and metabolic
pathway are closely intertwined, with implications for prognosis and therapeutic response.
Through single-cell RNA sequencing, considerable heterogeneity was detected in CAFs,
immune cells, and ductal cancer cells in two PDAC types, classified as the dense type (high
desmoplasia) and loose type (low desmoplasia). The loose-type PDACs possessed a distinct
subtype of CAFs, called meCAFs, distinguished by a markedly activated metabolic profile.
A high level of glycolysis was observed in meCAFs, while oxidative phosphorylation
was utilized instead of glycolysis in cancer cells. It is important to note that patients
with overexpression of meCAFs were mainly prone to undergo metastasis and faced
a poorer prognosis. However, there was a dramatic improvement in their response to
immunotherapy [26].

It was concluded from these studies that the conversation among genetics, immunity,
metabolism, and signaling pathways contributes to enhanced chemoresistance and ad-
verse prognosis in PDAC, in part through apoptosis-resistance mechanisms. In this regard,
improving our understanding of non-apoptotic cell death processes enables us to over-
come chemoresistance. Therefore, it is imperative to understand the dynamic interaction
among genetics, immunity, metabolism, and signaling pathways in significant types of
non-apoptotic cell death in PDAC, such as ferroptosis, necroptosis, and pyroptosis [27].
This review summarizes how ferroptosis, necroptosis, and pyroptosis interact with critical
factors, including the genome, the immune system, the metabolic system, and signaling
pathways, for the prognosis and treatment of PDAC (Table 1).



Biomedicines 2023, 11, 2792 3 of 30

Table 1. Apoptotic and non-apoptotic cell death.

Cell Death Immunogenic Feature Lytic Feature
Major
Morphological
Change

Involved
Organelles

Pore
Executer Caspase-Dependent Main Signaling Pathway Refs.

Apoptosis
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ultimately leading to iron toxicity [35]. Iron-dependent cell death, ferroptosis, was found 
to play a significant role in iron-rich tumors such as PDAC, based on the tumor stage and 
TME [35,36]. Releasing damage-associated molecular patterns (DAMPs) induced by fer-
roptosis activates immune responses within the TME. Although the DAMPs released by 
ferroptosis were found to promote tumor cell growth through macrophage polarization 
in the TME of PDAC [36], the absence of ferroptosis was found to contribute to PDAC 
tumorigenesis in mouse models [34]. Aside from the dual role ferroptosis plays in PDAC, 
the potential role of drug-induced ferroptosis in controlling PDACs has gained increasing 
attention, making ferroptosis a potentially promising therapeutic strategy [34,36]. There-
fore, addressing ferroptosis-related signaling pathways, the genome, the metabolism, and 
immune systems can open new avenues for improving PDAC prognosis. 
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2. Ferroptosis

The overperoxidation of lipids triggers ferroptosis, a non-apoptotic immune cell
death [34]. Both oxidative and antioxidant mechanisms contribute to lipid peroxidation,
ultimately leading to iron toxicity [35]. Iron-dependent cell death, ferroptosis, was found
to play a significant role in iron-rich tumors such as PDAC, based on the tumor stage
and TME [35,36]. Releasing damage-associated molecular patterns (DAMPs) induced by
ferroptosis activates immune responses within the TME. Although the DAMPs released by
ferroptosis were found to promote tumor cell growth through macrophage polarization
in the TME of PDAC [36], the absence of ferroptosis was found to contribute to PDAC
tumorigenesis in mouse models [34]. Aside from the dual role ferroptosis plays in PDAC,
the potential role of drug-induced ferroptosis in controlling PDACs has gained increasing
attention, making ferroptosis a potentially promising therapeutic strategy [34,36]. There-
fore, addressing ferroptosis-related signaling pathways, the genome, the metabolism, and
immune systems can open new avenues for improving PDAC prognosis.

2.1. Signaling Pathway

Ferroptosis is mainly caused by iron-dependent lipid peroxidation, which depends on
glutathione (GSH) synthesis, reactive oxidative species (ROS) production, lipid peroxida-
tion, and iron accumulation [35]. Several components are involved in the extrinsic pathway,
including System XC−, GSH, glutathione peroxidase 4 (GPX4), and glutathione disulfide
(GSSG), with GSH, ultimately, determining the outcome of ferroptosis. Antiporter protein
System XC− replaces extracellular oxidized cysteine (cystine) with intracellular glutamate.
As a result of the systemic XC− antiporter’s ability to induce ROS production through
GSH synthesis, it promotes ferroptosis. Conversely, the conversion of phospholipid hy-
droperoxides (PLOOH) into corresponding phospholipid alcohols and GSH into GSSG by
GPX4 (the antioxidant enzyme) prevents the production of ROS and lipid peroxidation,
contributing to ferroptosis inhibition [37–41]. Thus, interruption of GPX4 and subsequent
suppression of the system XC−-GSH-GPX4 axis results in ferroptosis [42]. As one of the
primary arms of ferroptosis, iron is crucial for recruiting diverse agents to promote intrinsic
pathways. Iron accumulation produces ROS through the Fenton reaction [43]. Ferroptosis
may also result from the destruction of ferritin, a protein that intracellularly stores iron,
and the subsequent release of this iron by autophagy. It was demonstrated that autophagy
receptors, such as nuclear receptor coactivator 4 (NCOA4) and sequestosome 1 (SQSTM1),
facilitate the degradation of ferritin or SLC40A1 (an iron transporter) in PDAC cells [44–46].
Although PDAC depends on autophagy as a survival mechanism, triggering ferroptosis
mediated by autophagy (ferritinophagy) likely kills established PDAC cells [47].

Heat shock proteins (HSP) are molecular chaperones with a critical function in PDAC
tumor growth by orchestrating endoplasmic reticulum stress, protein modulation, and
ferroptosis [34]. The endoplasmic reticulum (ER) is a vital organelle in ferroptosis, whose
homeostasis is controlled by Heat Shock Protein Family A (HSP70) Member 5 (HSPA5).
Endoplasmic reticulum stress-related transcription factor 4 (ATF4) mediates the expression
of HSPA5, a negative ferroptosis regulator, by enhancing GPX4 stability. Consequently,
suppressing the ATF4-HSPA5-GPX4 pathway enhances ferroptosis in PDAC cells [48,49].
Furthermore, by producing enzymes such as Acyl-CoA synthetase long-chain family mem-
ber 4 (ACSL4), ER enables the augmentation of lipid peroxidation and enhances ferroptosis
susceptibility in PDAC [50]. As another organelle that modulates lipid peroxidation and
produces ROS, mitochondria can also have ferroptotic effects [51–54]. In PDAC cells, pyru-
vate oxidation promotes ferroptosis by activating acetyl- CoA carboxylase alpha (ACACA)-
and fatty acid synthase (FASN)-mediated fatty acid synthesis and subsequent ALOX5-
dependent lipid peroxidation [51] (Figure 1).
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Figure 1. Signaling pathways involved in ferroptosis. After entering, cystine via system XC- anti-
porter GPX4 works as an antioxidant and reduces intracellular ROS. However, HSPA5 enhances 
GPX4 antioxidant activity by stabilizing this enzyme. HSP90 inhibits this antioxidant and subse-
quently increases ROS. On the one hand, ER enhances GPX4 via AFT4, facilitating HSPA5 expres-
sion. On the other hand, it facilitates PLOOH by releasing ACSL4. Mitochondria increases ROS lev-
els via different cycles, including the Fenton reaction and TCA. Iron accumulation, the product of 
ferritinophagy or degradation of SLC40A1, provides an ingredient for the Fenton reaction. Ferri-
tinophagy is also enhanced by autophagy receptors, NCO4, or SQSTM1. Lipid peroxidation results 
in ferroptosis and pore formation, which NUPR1 can inhibit. Abbreviations: SLC32A, Solute Carrier 
Family 32; ASLC7A11, Solute Carrier Family 7A11; AFT4, Adaptive Fourier Transform 4; GSH, glu-
tathione; GSSG, oxidized glutathione; GPX4, glutathione peroxidase 4; HSP90, Heat Shock Protein 
90; HSP5A, Heat Shock Protein 5A; ROS, Reactive Oxygen Species; NUPR1, Nuclear Protein 1; 
ACSL4, Acyl-CoA Synthetase Long-Chain Family Member 4; ACACA, Acetyl-CoA Carboxylase Al-
pha; FA, fatty acid; FASN, fatty acid synthase; PUFA, Polyunsaturated Fatty Acid; ALOX, Arachi-
donate Lipoxygenase; PLOOH, phospholipid hydroperoxide; NCO4, nuclear coactivator 4; 
SQSTM1, sequestosome 1. Created with BioRender.com. Accessed on 30 July 2023. 
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Figure 1. Signaling pathways involved in ferroptosis. After entering, cystine via system XC− an-
tiporter GPX4 works as an antioxidant and reduces intracellular ROS. However, HSPA5 enhances
GPX4 antioxidant activity by stabilizing this enzyme. HSP90 inhibits this antioxidant and subse-
quently increases ROS. On the one hand, ER enhances GPX4 via AFT4, facilitating HSPA5 expression.
On the other hand, it facilitates PLOOH by releasing ACSL4. Mitochondria increases ROS levels
via different cycles, including the Fenton reaction and TCA. Iron accumulation, the product of
ferritinophagy or degradation of SLC40A1, provides an ingredient for the Fenton reaction. Fer-
ritinophagy is also enhanced by autophagy receptors, NCO4, or SQSTM1. Lipid peroxidation results
in ferroptosis and pore formation, which NUPR1 can inhibit. Abbreviations: SLC32A, Solute Carrier
Family 32; ASLC7A11, Solute Carrier Family 7A11; AFT4, Adaptive Fourier Transform 4; GSH,
glutathione; GSSG, oxidized glutathione; GPX4, glutathione peroxidase 4; HSP90, Heat Shock Pro-
tein 90; HSP5A, Heat Shock Protein 5A; ROS, Reactive Oxygen Species; NUPR1, Nuclear Protein
1; ACSL4, Acyl-CoA Synthetase Long-Chain Family Member 4; ACACA, Acetyl-CoA Carboxylase
Alpha; FA, fatty acid; FASN, fatty acid synthase; PUFA, Polyunsaturated Fatty Acid; ALOX, Arachi-
donate Lipoxygenase; PLOOH, phospholipid hydroperoxide; NCO4, nuclear coactivator 4; SQSTM1,
sequestosome 1. Created with BioRender.com. Accessed on 30 July 2023.

2.2. Immunogenetics
2.2.1. Ferroptosis-Related Genes (FRGs) as Risk Models in PDAC Prognosis

The genome, acting as a cell leader, modulates several different pathways (for example,
protein expression, signaling pathways, and the immune system), significantly impacting
PDAC metastasis, prognosis, and resistance to treatment [55]. Thus, it is imperative to
translate the increased knowledge of tumor genetics and genomics into clinically useful
gene signatures. Various ferroptosis-related genes (FRGs) are identified through the Cancer
Genome Atlas (TCGA) and different genome analyses, which are utilized in developing
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risk models for pancreatic cancer (Table 2). Feng et al. developed a risk model based on
five FRGs, where CAV1, DDIT4, SRXN1, and TFAP2C indicate better survival, whereas
SLC40A1 indicates a more adverse outcome [56]. Using ZNF419, TUBE1, STEAP3, SLC1A4,
RRM2, PTGS2, MT1G, MAP3K5, DDIT4, CAPG, CAV1, BAP1, AURKA, and ATG4D, Jiang
et al. designed a prognostic FRGs risk model, in which it was shown that expression levels
of PTGS2, RRM2, AURKA, CAV1, MAP3K5, and STEAPS are higher in tumor samples, and
the upregulation of PTGS2 and the downregulation of MT1G, TUBE1, and ATG4D might
contribute to tumorigenesis and poor outcomes [57]. In another study, a gene signature
was demonstrated to have powerful predictive capabilities for overall and disease-free
survival in PDAC. The genes ASPH, DDX10, NR0B2, BLOC1S3, FAM83A, SLAMF6, and
PPM1H do not overlap with other prognostic gene signatures for PDAC. They could,
therefore, complement the existing staging system for prognosis evaluation and treat-
ment planning [58]. An independent predictive model was constructed based on four
FRGs (ENPP2, ATG4D, SLC2A1, and MAP3K5), in which the high-risk group responded
better to chemotherapy than the low-risk group. Notably, this prognostic model may
affect immune cells and checkpoints, demonstrating the connection between FRGs and
the immune system [59]. According to Chen et al., there was a possible correlation be-
tween FRGs, signaling pathways, and metabolic pathways. Their study demonstrated
that ferroptosis-related long noncoding RNAs are prognostic biomarkers for patients with
PDAC by utilizing SLC16A1-AS1, SETBP1-DT, ZNF93-AS1, SLC25A5-AS1, AC073896.2,
LINC00242, PXN-AS1, and AC036176. It was found that the low-risk subgroup is enriched
in ferroptosis-related pathways (fatty acid metabolism and oxidative phosphorylation),
the survival cancer pathway (PI3K-AKT-mTOR signaling), and organelles (peroxisome
and lysosome) [60]. Considering these studies, there appears to be a connection among
genomes, the metabolism, signaling pathways, and immune systems, which is further
explored in the following sections.

Table 2. Implications of important non-apoptotic cell-death-related genes.

Type of Cell-Death-Related
Genes

Upregulated Genes Correlated
with Better Prognosis

Upregulated Genes Correlated with
Adverse Prognosis Ref.

FRGs

CAV1, DDIT4, SRXN1, TFAP2C,
MT1G, TUBE1, ATG4D, ENPP2,
SETBP1-DT, ZNF93-AS1,
SLC25A5-AS1, AC073896.2,
LINC00242, PXN-AS1, AC036176.1

SLC40A1, PTGS2, ATG4D, SLC16A1-AS1 [56,57,59,60]

NRGs

BCL2, JAK3, PLA2G4C, STAT4,
CAMK2B, PLA2G4C, STAT4,
CASKIN2, TLE2, USP20, SPRN,
ARSG, MIR106B, MIR98,
PLA2G4C, STAT4, SLC25A6,
SLC25A4, METTL14, METTL3

CAPN, CHMP4C, PYGB, PLA2G4F,
CHMP4C, TNFSF10, ACAT2, DHCR7,
SQLE, FDPS, MSMO1, OSBPL5, PLBD1,
PITPNM3, LPCAT2, LPCAT4, PNPLA3,
CPNE3, SLC44A1, SLC2A1, PLA2R1,
ALKBH5, HNRNPC, WTAP, YTHDC2,
CAPN2, CHMP4C

[61–67]

PRGs

MST1, ELANE, NLRP1,
AC090114.2, AC005332.6,
PAN3-AS1, AC087501.4, APIP,
CHMP6, PLCG1, SMAD4,
CDKN2A

GSDME, GSDMC, IL-18, NLRP2,
AC083841.1, LINC01133, AC015660.1,
AIM2, CASP4, CASP6, CHMP4C,
GSDMC, GZMB, CASP4, NLRP1, PLCG1,
IL-18, CASP1, NLRP2, TLR3, BAK1, TP63,
CHMP4C, PD-L1

[68–79]

2.2.2. Interactions among Genomes, Immune System, Metabolism, and Signaling Pathways
in PDAC

PDAC is characterized by the interplay among genomes, inflammation, and metabolic
reprogramming, which are linked to cancer progression, tumor stages, and response to
treatment [35,36,80]. For example, Shang et al. demonstrated that TRIM11, which regulates
immune-related signaling pathways, significantly contributes to ferritinophagy and gem-
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citabine resistance in PDAC [81]. A significant role of the genome concerning signaling
pathways, metabolic pathways, and the immune system is revealed by the differences
in these pathways within KRAS- or TP53-mutated PDAC cells. KRAS-mutant cancer
cells inhibit ferroptosis by regulating metabolic pathways, which includes modulating
the metabolism of fatty acids, amino acids, or glucose [82–85]. In PDAC cell lines harbor-
ing either KRAS and TP53 double mutations or TP53 single mutations, MMRi62, a novel
ferroptosis-inducer molecule, inhibits tumor growth and migration. As a result of modu-
lating ferritinophagy-related factors (the downregulation of NCOA4 and the degradation
of FTH1) and mutant TP53, MMRi62 stimulates ferroptosis and anticancer effects [86]. In
KRAS-mutant PDAC, inflammatory mediators (e.g., cytokines, DAMPs, and immune cells)
are involved in pro- or anti-tumor gene modulation to sustain a favorable inflammatory
TME for tumor growth and development [87]. Autophagy influences iron metabolism and
immunity, contributing to the progression of PDAC [88,89]. According to Mukhopadhyay
and colleagues, the administration of a low-iron diet in vivo enhanced the response to
autophagy inhibition therapy in PDAC [89]. Iron homeostasis is sustained by autophagy
in PDAC. Therefore, autophagy suppression by reducing labile iron concentrations leads
to modifications in mitochondrial metabolism in PDAC [89]. Furthermore, CAFs in the
TME provide bioavailable iron to PDAC cells, which promotes resistance to autophagy
suppression. A high level of autophagy in PDAC helps them survive in the dense TME [89].
Furthermore, ferritinophagy mediated by NCOA4 is also upregulated in PDAC [88].

DNAJB11 is a co-chaperone for HSPA5 with a dual effect on PDAC progression [90].
DNAJB11 could regulate epidermal growth factor receptor (EGFR) expression and initiate
the subsequent mitogen-activated protein kinase (MAPK) signaling pathway, ultimately
promoting cancer. However, DNAJB11 regulates ER stress and negatively controls the
unfolded protein response (UPR) signaling pathway [90]. As a result of the UPR regula-
tion of cytokines and PSCs, an optimal TME could be shaped for PDAC progression [91].
Although HSP90 generally induces ferroptosis through the degradation of GPX4 [92], it
enhances the pro-tumor resistance of the TME in PDAC by directly improving the growth
of PSCs and CAFs in vitro [93]. By inhibiting HSP90, it may be possible to reduce inflam-
matory signals within the TME, thereby enhancing its sensitivity to immunotherapy [93].
Mitochondrial-mediated ROS production plays a crucial role in the tumorigenicity of KRAS-
dependent tumors such as PDAC. Despite the dual dose-dependent role of ROS in pro- and
anti-tumor progression, toxic levels suppress tumor growth by inducing cell death [52–54].
PDAC cells upregulate metabolic programs that prevent the reduction in intracellular ROS
or detoxify lipid ROS to inhibit ferroptosis [82,94]. Aspartate aminotransferase (GOT1)
plays an essential role in PDAC as a vital member of the metabolic pathway. Aside from
maintaining ROS levels to promote KRAS-mutant PDAC, GOT1 inhibits ferroptosis by
detoxifying levels of ROS in PDAC [82,83]. Eliminating cystine import, GSH synthesis,
or GPX4 in synergy with GOT1 could cause ferroptosis. GOT1 inhibition impairs the
ferroptosis–inducer–mitochondrial metabolism in the PDAC cell line [95]. Lipid ROS are
cleaned by one of the XC- system members, solute carrier family 7 member 11 (SLC7A11),
with cysteine uptake. In CAFs, SLC7A11 is upregulated, promoting PDAC cell growth by
suppressing ferroptosis [96]. In addition, the correlation between the signaling pathway
and gene expression is predominant by showing that tumorigenesis in KRAS-mutant PDAC
in vitro can be inhibited by deleting ferroptosis-related signaling pathway factors such as
SLC7A1 or GPX4 [36].

2.3. Treatment
2.3.1. Drugs That Modulate Signaling Pathways through Ferroptosis

Ferroptosis-related treatments include drugs that alter ferroptosis substances, signal-
ing pathways, the immune system, and the function of organelles (Table 3). The system
XC-GSH-GPX4 axis can be affected by different experimental drugs. Cysteinase is an XC-

system inhibitor that depletes cysteine and cystine [40]. Small molecules that activate ferrop-
tosis through intrinsic pathways are important signaling pathway modulators. Imidazole
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Ketone Erastin (IKE), a member of the ferroptosis intrinsic pathway, is another XC- system
inhibitor [40]. In addition to RSL3, another ferroptosis activator that promotes autophagy,
Sirolimus (also known as rapamycin), induces ferroptosis through the autophagy-mediated
degradation of GPX4 in vivo and in vitro [97]. Naturally derived ferroptosis-inducer drugs
increasing intracellular ROS and/or iron accumulation in PDAC include Artesunate (ART)
(ROS and intracellular iron), Piperlongumine (PL) (ROS), and Ruscogenin (iron) [98–100].

Table 3. List of drugs modulating ferroptosis.

Agent Mechanisms of Function Development Stage Ref.

Cysteinase XC- system inhibitor In vivo [40]
IKE XC- system inhibitor In vitro [40]
Rapamycin GPX4 depletion In vivo/in vitro [97]
RSL3 GPX4 depletion In vivo/in vitro [97]
ART Increasing intracellular ROS and iron accumulation In vitro [98]
PL Increasing intracellular ROS In vitro [100]
Ruscogenin Increasing iron accumulation In vitro [99]

ZZW-115

NUPR1 inhibitors, modulation of organelle function (ER
and mitochondria), metabolic shifts to glycolysis,
suppressing GPX4 and SLC7A11, increasing lipid
peroxidation

In vivo/in vitro [101–103]

Zalcitabine Ferritinophagy In vivo/in vitro [104,105]

GEM + chrysin Inhibition of CBR1, increasing the accumulation of ROS,
ferritinophagy In vivo/in vitro [106]

GEM + lesinurad Inhibitor of pan-SLC22A, reduces metastasis In vivo [107]
GEM + docosahexaenoic acid Induced oxidative stress and cell death In vivo/in vitro [108]
GEM + EGCG Inhibition of HSPA5, destabilizing GPX4 In vivo/in vitro [48]
GEM + SSZ Inhibition of HSPA5, destabilizing GPX4 In vivo/in vitro [48]
SSZ + PL + cotylenin A Accumulation of ROS In vivo/in vitro [100]

SSZ + docosahexaenoic acid Inhibition of SLC7A11, modulating the GSH level,
restricting nucleotide synthesis In vivo/in vitro [108]

DHA + DDP
Interruption of mitochondrial hemostasis, catastrophic
accumulation of free iron, unrestricted lipid peroxidation,
degradation of GPX4 and FTH

In vivo/in vitro [109]

XL888 + anti-PD-1 Inhibition of HSP90, promoting anti-PD-1 inhibitory In vivo/in vitro [93]

RSL-3@PVs Tumor embolisms, inhibiting nutrient delivery, excessive
lipid peroxidation, mitochondrial dysfunction In vivo/in vitro [110]

2.3.2. Drugs That Modulate Organelle Functions through Ferroptosis

ER and mitochondria, as two vital organelles for ferroptosis cell death, are affected by
different preclinical and clinical drugs in PDAC. In addition to the conventional triggers of
ferroptosis (erastin and RSL3) resulting in autophagy, Zalcitabine (an HIV drug) stimulates
autophagy-mediated ferroptosis (ferritinophagy) by affecting ER and mitochondria. The
degradation of mitochondrial transcription factor A (TFAM) in response to Zalcitabine
generates an increase in mitochondrial DNA stress and ROS levels. As a result of ROS accu-
mulation, ferritin is degraded via autophagy, which, in turn, leads to the formation of lipid
peroxides and ferroptosis. Mitochondrial stress is detected by the ER protein (stimulator
of interferon genes (STING)) as well as elevated ROS, resulting in lipid peroxidation and,
eventually, autophagy-mediated ferroptosis [104,105].

2.3.3. Combination Therapy

Although inducing ferroptosis improved cancer treatment in animal models, many
open questions remain. The deletion of GPX4, one of the primary anti-ferroptosis arms,
in PDAC precursor lesion pancreatic intraepithelial neoplasia (PanIN) did not result in
ferroptotic cell death, indicating that KRAS-mutated cells possess a protective arm that
prevents ferroptosis [111,112]. According to the most recent study, ferroptosis suppressor
protein 1 (FSP1) is an important protective factor upregulated in KRAS-mutant cells. Thus,
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combination therapy strategies were shown to improve outcomes with ferroptosis activator
and FSP1 inhibitor in PDAC, indicating the importance of combination therapy [112].

GEM is a cornerstone of most combination therapies for PDAC, and other drugs are
evaluated based on their ability to increase GEM sensitivity. As a result of GEM treatment,
carbonyl reductase 1 (CBR1), an antioxidant enzyme, is upregulated. Since CBR1 levels are
directly associated with PDAC chemoresistance and poor prognosis, the administration of
chrysin (a CBR1 inhibitor) enhances GEM chemosensitivity in vitro and in vivo through
the accumulation of ROS [106]. Other agents induce GEM sensitivity by modulating
the SLC family, the HSP family, ferroptosis substances, the system XC—GSH-GPX4 axis,
and organelle function. Lesinurad (an inhibitor of pan-SLC22A) reduces metastasis and
GEM chemoresistance in mouse models of PDAC, thus identifying novel vulnerabilities in
human PDAC [107]. The ability of epigallocatechin gallate (EGCG) and sulfasalazine (SSZ)
to inhibit HSPA5 promotes ferroptosis and improves sensitivity to GEM chemotherapy
by weakening the binding between HSPA5 and GPX4 as well as destabilizing GPX4 [48].
Additionally, incorporating SSZ into the combination of PL and cotylenin A (a growth
regulator), which themselves induce ferroptosis in MiaPaCa-2 and PANC-1 PDAC cells
by increasing ROS production, synergistically hinders these cell lines’ survival [100]. As
a result of inhibiting SLC7A11, SSZ diminished the viability of the HPAF-II PDAC cell
line treated with docosahexaenoic acid. By modulating the GSH level and restricting
nucleotide synthesis, docosahexaenoic acid prevents KRAS/TP53 double-mutant PDAC
cells from multiplying and triggering apoptosis in HPAF-II cells. The combination of
docosahexaenoic acid and GEM in this cell line effectively induced oxidative stress and
cell death [108]. Nuclear protein 1 (NUPR1) is a well-known GEM resistance inducer,
and its subsequent significance in the development of PDAC cannot be overlooked [113].
There is evidence that ZZW-115, one of the most prominent NUPR1 inhibitors, induces
ferroptosis in PDAC through the modulation of organelle function (ER and mitochondria)
and metabolic shifts to glycolysis. Mitochondrial-dependent ferroptosis mediated by ZZW-
115 is induced by decreased expression of TFAM, in addition to suppressing GPX4 and
SLC7A11, and increased lipid peroxidation, subsequently, triggers ferroptosis in MiaPaCa-2
cells [101–103].

Apart from GEM resistance, the sustained exposure to routine drugs results in tol-
erance, which, in turn, increases therapeutic doses. As such, dihydroartemisinin (DHA)
has the potential to minimize cisplatin (DDP) dosage and maximize the cytotoxicity of
cisplatin in PDAC to eliminate cisplatin tolerance. The combination interrupts mitochon-
drial hemostasis and, consequently, induces ferroptosis by increasing mitochondrial ROS
production and the degradation of GPX4 and FTH [109].

In terms of combination therapies, immunotherapy is one of the most prominent ones.
Combined treatment with XL888 (HSP90 inhibitor) and anti-PD-1 (checkpoint inhibitor)
was shown to be highly effective in a mice model bearing syngeneic subcutaneous (Panc02)
or orthotopic (KPC-Luc) tumors, according to Zhang and colleagues [93]. In this study,
HSP90 inhibition impacted PSC/CAF in vitro and promoted anti-PD-1 inhibitory efficacy
in vivo [93]. The TME can also be influenced by the combination of RSL-3 (ferroptosis
inducer) with the novel agents designed by Zhang et al. that disrupt tumor vascular
function. By encapsulating RSL-3 in human platelet vesicles (PVs), RSL-3 is improved
regarding drug delivery and pharmacokinetics in vivo. This combination also indicates that
impairment of tumor vessels can result in tumor embolisms inhibiting nutrient delivery,
excessive lipid peroxidation, and mitochondrial dysfunction, resulting in ferroptosis. As
a combination therapy to improve the prognosis of PDAC, RSL-3@PVs demonstrated
outstanding safety in vitro and in vivo [110]. The research on ferroptosis in conjunction
with radiotherapy, primarily for PDAC treatment, is limited. However, radiotherapy with
ferroptosis-inducing drugs could provide a new approach to managing advanced and
recurrent PDAC [114].
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3. Necroptosis

An important non-apoptotic immune cell death, necroptosis, exhibits a dual effect on
cancer progression. In addition to killing tumor cells, it can promote tumor proliferation,
invasion, and metastasis [115,116]. Even though necroptosis is activated when the apoptotic
pathway is hindered or suppressed, it is physically and chemically similar to necrosis and
apoptosis. Membrane rupture, the cell and its organelles swelling, and the release of
inflammatory mediators are some shared characteristics [117–119]. Although necroptosis
is similar to necrosis and apoptosis, it differs in its ability to be controlled by signaling
pathways, the immune system, and the genome, making it a promising candidate for
treating pancreatic cancer [120]. Due to this, addressing the interplay between necroptosis
and apoptosis, as well as among the necroptosis-related immune system, the genome, and
signaling pathways, may help improve the prognosis and treatment for PDAC.

3.1. Signaling Pathway

Necroptosis is triggered by various intracellular and extracellular immunogenetically
stimuli binding to the Fas (CD95/APO-1) receptor, TNF receptor 1 (TNFR1), and death re-
ceptors TRAIL-R, toll-like receptors (TLRs), and the interferon receptor (IFNR) [119,121–123].
As pivotal mediators, TLRs are activated by viral dsRNA and lipopolysaccharide (LPS),
linking environmental and gene-related factors with immunology in necroptosis [124–126].
In the following steps, receptor-interacting protein kinase 1 (RIPK1), as a key promoting
factor, determines the cell fate by promoting necroptosis or cell survival. RIPK1, directly
or combined with other factors, triggers intracellular necroptosis complexes, including
I, IIa, and IIb. Complex IIb, also known as the necrosomes, plays an ultimate role in the
progression of necroptosis before cell phenotype changes. Activated RIPK1 and RIPK3 (as
necrosome members) lead to the phosphorylation of mixed lineage kinase domain-like
(MLKL), causing the necroptosis cell phenotype, including membrane rupture and the
release of DAMPs [127–130]. ZBP1 is a cytosolic nucleic acid sensor stimulated by sens-
ing Z-nucleic acids, leading to RIPK3 phosphorylation and the subsequent activation of
complex IIb under the supervision of FADD/caspase-8 [131–133]. Caspase-8 and FADD
are critical for the regulation of necroptosis, and their inactivity causes the transcriptional
upregulation of ZBP1, a key factor in spontaneously phosphorylating MLKL [134,135]
(Figure 2).

The crosstalk between different arms of necroptosis and mitochondria transforms mito-
chondria into a vital organelle for driving necroptosis. As a crucial product of mitochondria,
ROS can promote necroptosis by being produced by stimulated RIPK3, inducing RIPK1
autophosphorylation, and activating complex IIb. The level of ROS can be regulated by
various immunological or metabolic factors, including TRADD, oxidative phosphorylation
(OXPHOS), and PARP1 [122,128,136]. The dysfunction of the oxidative phosphorylation
(OXPHOS) in mitochondria can disrupt ATP production and increase ROS levels, both of
which can trigger necroptosis [137–139]. In PDAC, Solute Carrier Family 25 Member 4
(SLC25A4), a mitochondrial carrier protein responsible for ATP transport, can be inhibited
by Poly (ADP-ribose) polymerase 1 (PARP1), resulting in reduced intracellular ATP levels.
The activation of PARP1, a DNA damage-repairing enzyme, occurs because of DNA dam-
age. PARP1 overactivity can also impair mitochondrial OXPHOS, increase ROS production,
and increase ATP depletion, promoting necroptosis in PDAC [140–144]. Furthermore, ROS
are also involved in PDAC cellular migration under the influence of the oncogenic KRAS
mutation through the CCL15/ROS axis [145].
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Figure 2. Necroptosis signaling pathways. Binding death receptor family (Fas receptor, TNFR1, and 
TRAIL-R) and other immunological receptors (TLRs and IFNR) to their ligands leads to the activa-
tion of initiator factors. Complex I members (TRADD, TRAF2/5, cIAP1/2, and RIPK1) are activated 
by TNFR-1 stimulation. This process inhibits the formation of complex II groups, including complex 
IIa (caspase-8, FADD, and RIPK1) and complex IIb (caspase-8, FADD, RIPK1, RIPK3, and MLKL). 
RIPK1 deubiquitylation leads to the formation of complex II groups, promoting downstream events. 
So cell fate depends on how RIPK1 changes, which can also be activated independently of complex 
I. Activating RIPK1 by Fas, TRAIL-R, INFR, and ZBP 1 stimulates complex IIa and IIb independently 
of complex I. Additionally, extrinsic factors like LPS stimulate TLR4, directly resulting in the activa-
tion of complex IIb. OXPHOS dysfunction or PARP1 overactivity by reducing ATP and increasing 
ROS stimulates complex IIb. Activation of RIPK3 by inactivated caspase-8 results in phosphoryla-
tion and oligomerization of MLKL, which translocates to the cell membrane, causing membrane 
rupture and release of DAMPs. Abbreviations: TNFR1, Tumor Necrosis Factor Receptor 1; TRAIL-
R, TNF-Related Apoptosis-Inducing Ligand Receptor; TLRs, toll-like receptors; IFNR, interferon re-
ceptor; TRADD, TNFR1-Associated Death Domain; TRAF2/5, TNF Receptor-Associated Factor 2/5; 
cIAP1/2, Cellular Inhibitor of Apoptosis Protein 1/2; RIPK1, Receptor-Interacting Protein Kinase 1; 
MLKL, mixed lineage kinase domain-like; LPS, lipopolysaccharide; OXPHOS, oxidative phosphor-
ylation; PARP1, Poly(ADP-ribose) Polymerase 1; ATP, Adenosine Triphosphate; ROS, Reactive Ox-
ygen Species; ZBP1, Z-DNA Binding Protein 1. Created with BioRender.com. Accessed on 30 July 
2023. 
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mitochondria into a vital organelle for driving necroptosis. As a crucial product of mito-
chondria, ROS can promote necroptosis by being produced by stimulated RIPK3, induc-
ing RIPK1 autophosphorylation, and activating complex IIb. The level of ROS can be reg-
ulated by various immunological or metabolic factors, including TRADD, oxidative phos-
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Figure 2. Necroptosis signaling pathways. Binding death receptor family (Fas receptor, TNFR1, and
TRAIL-R) and other immunological receptors (TLRs and IFNR) to their ligands leads to the activation
of initiator factors. Complex I members (TRADD, TRAF2/5, cIAP1/2, and RIPK1) are activated by
TNFR-1 stimulation. This process inhibits the formation of complex II groups, including complex
IIa (caspase-8, FADD, and RIPK1) and complex IIb (caspase-8, FADD, RIPK1, RIPK3, and MLKL).
RIPK1 deubiquitylation leads to the formation of complex II groups, promoting downstream events.
So cell fate depends on how RIPK1 changes, which can also be activated independently of complex I.
Activating RIPK1 by Fas, TRAIL-R, INFR, and ZBP 1 stimulates complex IIa and IIb independently of
complex I. Additionally, extrinsic factors like LPS stimulate TLR4, directly resulting in the activation
of complex IIb. OXPHOS dysfunction or PARP1 overactivity by reducing ATP and increasing ROS
stimulates complex IIb. Activation of RIPK3 by inactivated caspase-8 results in phosphorylation and
oligomerization of MLKL, which translocates to the cell membrane, causing membrane rupture and
release of DAMPs. Abbreviations: TNFR1, Tumor Necrosis Factor Receptor 1; TRAIL-R, TNF-Related
Apoptosis-Inducing Ligand Receptor; TLRs, toll-like receptors; IFNR, interferon receptor; TRADD,
TNFR1-Associated Death Domain; TRAF2/5, TNF Receptor-Associated Factor 2/5; cIAP1/2, Cellular
Inhibitor of Apoptosis Protein 1/2; RIPK1, Receptor-Interacting Protein Kinase 1; MLKL, mixed
lineage kinase domain-like; LPS, lipopolysaccharide; OXPHOS, oxidative phosphorylation; PARP1,
Poly(ADP-ribose) Polymerase 1; ATP, Adenosine Triphosphate; ROS, Reactive Oxygen Species; ZBP1,
Z-DNA Binding Protein 1. Created with BioRender.com. Accessed on 30 July 2023.

3.2. Immunogenetics
3.2.1. Necroptosis-Related Genes (NRGs) as a Risk Model in PDAC Prognosis

There is a complex interplay among the immune system, signaling pathways, and
gene expression in PDAC, which holds immense potential for therapeutic interventions
and prognostic assessments [61,62,65,66]. For instance, evaluating the function of LPS,
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a double-edged sword factor in PDAC, superbly shows the crosstalk between these fac-
tors. Regarding the signaling pathways, studies showed that LPS accelerates PDAC tu-
mor progression and invasion by modifying the NF-kB pathway [146]. LPS activates the
PI3K/AKT/mTOR pathway, an oncogenic driver, in PDAC. LPS also has a dual tran-
scriptional effect on PDAC. LPS causes differential expression of various genes, some of
which show increased oncogenicity (WAC, PXN, INTS6, GFPT1, ZNF692, SNX6, PLCD1,
and PRUNE), while others show decreased oncogenicity (ZFAND5, RPL22, Birc-2, SNRPA,
GEMIN4, EIF4E, TUSC2, and ADAMTS13) [147]. Regarding the LPS immunological effect,
gut-derived LPS can suppress PDAC tumor growth by remodeling the tumor microenvi-
ronment and checkpoint transcription [148]. Thereby, by utilizing databases such as TCGA
and Gene Expression Omnibus (GEO), multiple models were constructed to forecast the
role of necroptosis-related genes (NRGs) in PDAC samples.

A risk model relevant to necroptosis was created to predict the survival and response
to treatment of PDAC patients. The genes in the model were found to be upregulated in
PDAC compared to normal tissues, including MYEOV, HDAC4, TLDC1, PITPNA, FNDC3B,
HMGXB4, and BAX, some of which have potential roles in PDAC [149]. MYEOV, an
oncogene of PDAC, is evaluated in different studies alone or in combination with other
genes. The expression level of MYEOV and combined methylation and expression lev-
els of the gene FOXI2 and MYEOV were potential prognostic and therapeutic markers
for PDAC [150]. HDAC4 correlated with the proliferative capacity and metastases of
smoking-induced PDAC [151]. TLDC1 can also facilitate PDAC proliferation and migra-
tion [152]. BAX downregulation decreased gemcitabine sensitivity [65]. Although BAX
was upregulated in the Tang et al. risk model [149], in another risk model developed by
Fang et al., this particular factor was placed in the protective factors group for PDAC [65].
This study collected transcriptomic data on PDAC from TCGA, PACA-AU, and PACA-CA
cohorts. Various genes (SPATA2, AIFM1, SLC25A4, BCL2, SPATA2L, TYK2, SMPD1, STAT5B,
SLC25A6, USP21, STAT4, VPS4A, RIPK1, PLA2G4C, IL33, CAMK2B, MAPK10, and BAX)
were protective factors of PDAC prognosis, while 14 genes (TNFRSF10B, HSP90AA1, BIRC3,
TNFRSF10A, CHMP4C, CASP8, FADD, CAPN2, GLUD1, PYGL, BIRC2, CAPN1, CHMP2B,
and IFNA13) were risk factors of prognosis. Consensus clustering analysis identified five
necroptosis subtypes for PDAC (C1-C5). These subtypes were found to significantly differ
in terms of survival outcomes. The C1 and C2 subtypes demonstrated highly activated
tumorigenic pathways, while the C3 subtype exhibited the poorest survival rates [65].
Xie et al. conducted a study in which 22 different NRGs were evaluated regarding gene
expression and risk prognosis of PDAC [61]. Four genes (CAPN, CHMP4C, PYGB, and
PLA2G4F) were upregulated, and 18 genes (IFNA6, IFNA2, IFNA13, BCL2, TNF, CYBB,
FASLG, JAK3, STAT4, TNFAIP3, PLA2G4C, TLR4, NLRP3, IFNGR1, STAT5A, TYK2, JAK1,
and SLC25A6) were downregulated in PDAC tissues. At the same time, only CAPN2 had
higher mRNA levels in PDAC cell lines compared to the normal pancreatic ductal epithelial
cell line HPDE6-c7. All the upregulated genes were deemed high risk, while some down-
regulated genes were deemed low risk (BCL2, JAK3, PLA2G4C, and STAT4). Regarding the
interplay between gene expression level and overall survival, the worse overall survival
was seen in patients with high CAPN2 and CHMP4C and low expression of PLA2G4C and
STAT4 in PDAC tissues [61]. These studies suggested that genes known for their role in
apoptosis may also function as NRGs. BCL2, PLA2G4C, and STAT4 are considered low-risk
NRGs, whereas CAPN2 and CHMP4C are considered high-risk NRGs. Additionally, a study
discovered that BCL2, CHMP4C, IFNA1, and TNFAIP3 were regulators prone to mutations
in necroptosis-related processes in PDAC [62].

3.2.2. Correlation between NRGs, Immune System, Metabolism, and Signaling Pathways
in PDAC

Widmann et al.’s gene set enrichment analysis identified several downregulated
metabolic pathways in PDAC, including the metabolism of fatty acids and cholesterol.
Conversely, they observed the upregulation of pathways associated with TNFα/NF-κB
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signaling and the associated process triggered by stress. In PDAC, overall survival is
inversely correlated with expression of genes involved in cholesterol synthesis (ACAT2,
DHCR7, SQLE, FDPS, and MSMO1), as well as phospholipid production, modification, and
translocation (OSBPL5, PLBD1, PITPNM3, LPCAT2, LPCAT4, PNPLA3, CPNE3, SLC44A1,
and PLA2R). This study also showed the upregulation of TNFα/NF-κB signaling pathways
and the associated process triggered by stress [63]. Consistent with previous research,
Wu et al.’s findings suggested that most NRGs are involved in tumor-related pathways
in PDAC. KEGG analysis revealed that NRGs are primarily engaged in the PI3K-AKT
signaling pathway, while the p53 signaling pathway is prominently present in PDAC.
This finding suggests that NRGs may have the ability to influence PDAC cell invasion
and growth by modulating the p53 signaling pathway. The study found that ALKBH5,
HNRNPC, WTAP, and YTHDC2 were more significantly expressed in the high-risk group,
while CASKIN2, TLE2, USP20, SPRN, ARSG, MIR106B, and MIR98 showed substantial
expression in the low-risk group [64].

One of the most important roles of NRG emerges through controlling factors associated
with the immune system. In keeping with previous studies indicating the positive role of
the presence of immune factors, including various types of T cells [153–155] and type II
interferon IFN-γ [156] in the prognosis and immunotherapy of PDAC, Xie H et al. evaluated
the presence of these factors in their suggested NRGs-based risk model (high-risk genes =
CAPN2 and CHMP4C; low-risk genes = PLA2G4C and STAT4). The investigation supported
the correlation between NRGs and Necroptosis-Related Immune Factors, with a higher
level of T cell infiltration and type II interferon IFN-γ in low-risk groups [61]. Expression
of immune checkpoint genes indicates that HNRNPC may act as an oncogene, whereas
METTL14, WTAP, METTL3, ALKBH5, and YTHDC2 may act as tumor suppressors [64].
Chemokines, another immune system member, play a crucial role in PDAC progression,
prognosis, and immune response by regulating several pathways, including necroptosis.
The number of neutrophils, a key prognostic and therapeutic factor in the TME of PDAC, is
tightly regulated by factors such as CXC-chemokine receptor 4 (CXCR4) signaling [157].
CXCL5 induces immunosuppressive cell infiltration, including neutrophils, leading to
poorer outcomes in PDAC [158]. Necroptosis shows a different face in PDAC by releasing
CXCL5 from necroptotic cells and promoting cancer cell migration and invasion via CXCR2,
indicating the dual role of necroptosis in PDAC [159]. A recent study demonstrated that
the tumor-infiltrating myeloid cells (TIMs) level in PDAC affects clinical outcomes. A
scRNA-seq analysis of PDAC patients identified 10 upregulated genes associated with
necroptosis in PDAC tumors and 5 upregulated genes in the surrounding area of the tumor
and selected blood samples. Additionally, different myeloid cell sub-clusters had different
prognostic clinical values in PDAC [160].

The interplay between the genome and TME in cancer cell proliferation, survival,
and resistance to therapy was evaluated in the study conducted by Lu et al. In this
study, a system was designed that combines necroptosis and immunity to predict the TME
and treatment targets in PDAC. The necroptosis-immune (NI) score showed predictive
competence for chemotherapy and immunotherapy. In this study, the high necroptosis–
highimmunity (HNHI) group had the best prognosis, while the low necroptosis–low
immunity (LNLI) group had the shortest survival time. The prognoses of the LNHI and
HNLI groups were between those of the above two phenotypes. In this study, SLC2A1 was
a key component of the NI score, and an oncogene correlated to necroptosis and the TME
in PDAC [66]. According to previous studies regarding the SLC group, SLC2A1 [66] and
SLC44A1 [63] were oncogenes, while SLC25A6 and SLC25A4 [65] had protective roles.

3.3. Treatment
3.3.1. Drugs That Modulate Necroptosis Signaling Pathways

In order to effectively treat PDAC, resistance to apoptosis, a natural process of pro-
grammed cell death, must be overcome. Therefore, it would be worthwhile to investigate
necroptosis as an alternative to inducing cell death in pancreatic cancer cells. Inhibiting
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pancreatic cancer cell invasion and migration with necroptosis can be accomplished by
modulating the immune system, such as SB225002 (Table 4), which inhibits CXCR2 [159].
Other drugs may cause necroptosis in pancreatic cancer cells by modulating signaling
pathways, primarily necrosome formation, and organelle dysfunction. In this way, multiple
cell death is induced due to common factors.

The utilization of light to destroy specific tissue by stimulating a photosensitizer
(PS), which is given intravenously and accumulates in the tumor before being irradiated,
is known as photodynamic therapy (PDT). Selectivity is attained by focusing light on
the desired tissue through various techniques for light delivery. When PDAC cells are
unresectable and have spread to adjacent tissue, PDT can be considered a suitable treatment
option [161,162]. The utilization of methylene blue (MB) as a PS in PDT demonstrated
increased expression of RIPK1, RIPK3, and MLKL in transformed cells. By activating
necroptosis, photodynamic therapy with methylene blue (PDT-MB) can be a valuable
addition to treating PDAC, reducing local and metastatic recurrences and microscopic
residual disease [163]. PDT can enhance treatment efficacy by utilizing different irradiation
regimens and a specific PS to induce diverse cell death responses (apoptosis, parthanatos,
mitotic catastrophe, pyroptosis, necroptosis, and ferroptosis). Nevertheless, for optimal
therapeutic outcomes, PDT must be integrated with other modes of cell death and strive
to stimulate immunogenic cell death pathways, which can enhance the patient’s overall
survival and quality of life [164].

Silver nanoparticles (AgNPs) trigger mixed cell death in PDAC, including apoptosis,
autophagy, necrosis, necroptosis, and mitotic catastrophe. They achieve this by altering
cell or organelle features, signaling pathways, and protein expression [165,166]. AgNPs
also disrupt the antioxidant (SOD1, SOD2, GPX-4, CAT, and SOD3) system in PDAC
cells and induce oxidative and nitro-oxidative mechanisms [167]. Regarding necroptosis,
AgNPs alter two NRG expression levels, increasing BAX and decreasing BCL-2 expression.
Additionally, AgNPs play a necroptosis-induced role by increasing RIP-1, RIP-3, and MLKL
levels. Pancreatic cancer cells are more susceptible to AgNPs-induced cytotoxicity than
non-tumor cells. Furthermore, AgNPs’ cytotoxic effects on pancreatic cancer cells are size-
and concentration-dependent [165,166].

The induction of mixed cell death by IMB5036, a novel pyridazinone compound, is
an effective treatment for pancreatic cancer. Upon exposure to this compound, pancreatic
cancer cells exhibit various changes, including membrane blebbing (a characteristic of
apoptosis and pyroptosis) and swelling (a characteristic of necroptosis). Despite IMB5036′s
ability to partially activate apoptosis and pyroptosis, its primary mode of action is necrop-
tosis, initiated by the upregulation of RIPK1, RIPK3, and largely MLKL in pancreatic cancer
cells [168].

The overexpression of a serine/threonine kinase, called AURA kinase (AURKA), a
negative regulator of necroptosis and apoptosis, correlates with worse overall survival in
PDAC patients [169–171]. As AURKA prevents RIPK3–MLKL activation in PDAC cells,
AURKA inhibitors may be a promising treatment for PDAC [171]. MLN8237 (alisertib), an
AURKA inhibitor, suppresses pancreatic cancer cell proliferation and cellular migration
by promoting various cell death, including apoptosis and necroptosis [172,173]. A highly
selective AURKA inhibitor promoting different cell death activities, CCT137690, induces
necrosome formation via RIPK1, RIPK3, and MLKL in PANC-1 PDAC cells [171].

Table 4. List of drugs modulating necroptosis.

Agent Mechanism of Function Stage of Treatment Ref.

SB225002 Inhibition of CXCR2 In vitro [159]
PDT-MB Increasing expression of RIPK1, RIPK3, and MLKL In vitro [163]

AgNPs
Trigger mixed cell death, disrupt the antioxidant, and
induce oxidative and nitro-oxidative mechanisms,
increasing RIP-1, RIP-3, and MLKL

In vitro/in vitro [165–167]
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Table 4. Cont.

Agent Mechanism of Function Stage of Treatment Ref.

IMB5036 Trigger mixed cell death, increasing expression of
RIPK1, RIPK3, and MLKL In vivo/in vitro [168]

MLN8237 (alisertib) Inhibition AURKA In vivo/in vitro [173]
CCT137690 Inhibition AURKA In vivo/in vitro [171]
AdipoRon Producing superoxide, activating RIPK1 In vivo/in vitro [174,175]

Vanadium compound Inhibition of the cell cycle, increasing ROS upregulating
RIPK1 and RIPK3 In vitro [176]

GEM + MLN8237 Increase GEM sensitivity Clinical (phase I) [177]
GEM + SK Regulating the expression of RIP1/RIP3 In vivo/in vitro [178]
GEM + GAC0003A4 Impair cholesterol and phospholipid metabolism In vitro [63]

BV6 + 2′3′-cGAMP
MLKL phosphorylation, stimulation of NF-κB, type I
interferons (IFNs), TNFα, and IFN-regulatory factor 1
(IRF1) signaling pathways

In vitro [179]

3.3.2. Drugs That Modulate Organelle Function

Several agents for treating PDAC affect necrosome formation and the changing in-
trinsic systems of organelles, such as ROS accumulation, mitochondrial function, and
ER function. In this manner, some drugs that are effective in treating diabetes produce
positive results since there is a connection between obesity, pancreatic cancer progression,
and pancreatic-cancer-related diabetes. PDAC-related diabetes can be differentiated from
type II diabetes through the measurement of both Adiponectin (a hormone secreted by
adipocytes) and the interleukin-1 receptor antagonist (IL-1Ra) [180]. Adiponectin (APN) is
an anti-tumor and anti-angiogenesis agent that inversely correlates with pancreatic can-
cer [174,175]. As a result of increasing mitochondrial Ca2+ levels, which produce superoxide
and, subsequently, activate RIPK1, pancreatic cancer cells undergo necroptosis in response
to agonists of the APN receptor (AdipoRon). In addition, Akimoto et al. demonstrated
that when MIAPaCa-2 cells are injected into nude mice, oral administration of AdipoRon
diminishes proliferation and angiogenic activity in PDAC [174]. Obesity-associated factors,
particularly leptin, reduced the anticancer activity of AdipoRon. Human pancreatic cancer
also exhibited chemoresistance to anticancer drugs due to obesity and leptin signaling [175].
In addition, another anti-diabetic drug, the Vanadium compound, triggered various cell
death in pancreatic cancer by inhibiting the cell cycle, increasing ROS, and upregulating
RIPK1 and RIPK3 in a dose-dependent manner. Quinolones and phenanthrolines, as
vanadium compounds with organic ligands, induced necroptosis in PANC-1 cells [176].

3.3.3. Combination Therapy

In combination therapy, the lower dose of some drugs can be used to achieve a
better outcome and overcome resistance to treatment. The efficacy of combination therapy
with PDT-MB was previously discussed; however, electrochemotherapy (ECT) is another
physical treatment that can enhance the effectiveness of chemical therapies. ECT can
effectively treat pancreatic cancer due to its ability to enhance the chemotherapy response
and reduce drug resistance. Through ECT, cell membrane pores are enlarged, allowing for
better drug absorption and minimizing the damage to healthy tissues. Combining ECT
with bleomycin, cisplatin, and oxaliplatin results in necroptosis rather than apoptosis in
tumor cells [181,182]. Combination therapy proved effective in overcoming drug resistance
caused by apoptosis resistance, particularly in inducing necroptosis in pancreatic cancer. A
notable example is gemcitabine (which predominantly induces apoptosis) combined with
necroptosis-inducing drugs. In some cases, PDAC patients positively responded to the
AURKA inhibitor alisertib (MLN8237), when safely used alongside gemcitabine [177]. It
was reported that SK, a naphthoquinone derivative, reduced the size of PANC-1 tumors
and induced necroptosis. The tumor volume further decreased when combined with
gemcitabine, in support of SK enhancing the anti-tumor effects of gemcitabine [178]. PDAC
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patients may also benefit from targeting liver X receptors (LXR), which impair cholesterol
and the phospholipid metabolism. A small molecule LXR modulator, GAC0003A4 (3A4),
inhibits the expression of LXR downstream genes and pathways in PDAC cells to induce
necroptosis and apoptosis. In addition to the efficacy of 3A4, combinations of 3A4 and
gemcitabine may enhance their cytotoxic effect [63].

Hannes et al. conducted a study that focused on modulating the immune system to
induce necroptosis, in line with the proven effectiveness of combination therapy. In this
study, the researchers demonstrated a combination of a drug called BV6, which mimics a
protein called Smac, and a ligand called 2′,3′-cyclic guanosine monophosphate–adenosine
monophosphate (2′3′-cGAMP), which activates a protein called STING, to induce necrop-
tosis in pancreatic cancer cells. The researchers found that the combination of BV6 and
2′3′-cGAMP effectively triggered necroptosis in pancreatic cancer through MLKL phospho-
rylation and the stimulation of NF-κB, type I interferons (IFNs), TNFα, and IFN-regulatory
factor 1 (IRF1) signaling pathways [179]. Interestingly, as a key member of the kindlin
family, fermitin family member 1 (FERMT1) was identified as a promising diagnostic and
prognostic indicator for PDAC. FERMT1 is associated with immune cell infiltration and reg-
ulates m6A and necroptosis. The positive correlation between FERMT1 and the three main
genes responsible for necroptosis (RIPK1, RIPK3, and MLKL) indicates that FERMT1 may
serve as NRGs in PDAC. It was shown that individuals with elevated levels of FERMT1
respond more to Palbociclib (CDK4/6 inhibitor), TAE-226 (focal adhesion kinase selective
inhibitor), and AM-5992 (AMG-925; dual inhibitor of CDK4 and FLT3), which can be com-
bined in combination therapy to enhance the treatment of pancreatic cancer [183]. There
is evidence that stimulating necroptosis can be a successful supplementary treatment for
pancreatic cancer.

4. Pyroptosis

Pyroptosis, a caspase-driven non-apoptotic necrotic cell death, is accompanied by
morphological alterations, such as swelling, bubble-like protrusions, and membrane rup-
tures, leading to the secretion of inflammatory mediators [184,185]. There are two types
of cell death, lytic and non-lytic, based on the morphological changes and rupture of the
membrane. As opposed to apoptosis, which is a non-lytic caspase-driven cell death that
does not release pro-inflammatory factors, pyroptosis is a caspase-driven cell death that,
like necroptosis, leads to lytic cell death, producing highly inflammatory factors [30,31,33].
Although the induction of pyroptosis was considered a promising therapeutic strategy,
the release of pro-inflammatory factors was associated with tumorigenesis and drug re-
sistance [186,187]. Pyroptotic-related genes (PRGs) can control the TME, the prognosis,
and pancreatic cancer progression [78]. An essential immune system component, NLRP3
(NOD-like receptor family pyrin domain-containing protein 3), is a pyroptosis-inducer.
The upregulation of NLRP3 can either be pro-tumor (colorectal cancer) [188] or a tumor
suppressor (hepatocellular cancer) [189], indicating the conversation among signaling
pathways, immunity, and genomes in cancer. Additionally, in the context of crosstalk
between the genomes and signaling pathways of pyroptosis in different types of cancer, the
modulation of the pyroptosis-activator gasdermins (GSDM) gene has different effects on
tumor development [190,191]. If GSDM is knocked out in lung cancer, it may act as a tumor
suppressor [190]. However, if GSDM is silenced in gastric cancer, it may be a pro-tumor
factor [191]. As a result, pyroptosis is a double-edged sword in many cancers [186,187]. In
order to develop effective therapies for pancreatic cancer and improve survival rates, it is
essential to explore the different aspects of the interplay between pyroptosis and signaling
pathways, the immune system, and genomes.

4.1. Signaling Pathway

Signaling pathways involved in pyroptosis include both canonical and non-canonical
pathways. Damage- or pathogen-associated molecular patterns (DAMPs or PAMPs) are
the primary initiators of the canonical pathway by stimulating the pattern recognition
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receptors (PRRs). NLRP3, as a member of PRRs, an apoptosis-associated speck-like pro-
tein containing a CARD (ASC), and procaspase-1 form the inflammasome [192–194]. By
activating caspase-1, GSDM, the main executor of pyroptosis, is cleaved. The cleavage
of GSDM leads to membrane pores formation following the separation of the N-terminal
pore-forming segment from the C-terminal repressor segment, thereby releasing inflam-
matory mediators [193,194]. IL-1β and IL-18 are two inflammatory mediators activated by
activated caspase-1; their release is a key characteristic of pyroptosis [33,194–196]. Similarly,
the activation of GSDM by other caspase family members (caspase-4/-5/-11) in a non-
canonical pathway also results in the same pyroptotic phenotype. Bacterial LPS is the main
activator of the non-canonical caspase family [33,196–198]. Furthermore, caspase-1, as the
main driver of the canonical pathway, can be independently activated through Mammalian
STE20-like kinase 1 (MST1) activation. As a result, PDAC can be suppressed by MST1, a
member of the Hippo signaling pathway, through ROS-induced pyroptosis [68] (Figure 3).
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4.2. Immunogenetics
4.2.1. Pyroptosis-Related Genes (PRGs) Risk Model in Pancreatic Cancer Prognosis

Even though our knowledge of the genome concerning pancreatic cancer is still
incomplete, PRGs can be considered a positive aspect of treating pancreatic cancer. Several
studies used PRGs to study different human gene datasets, including the TCGA cohort,
using different analysis methods, such as the most minor absolute shrinkage and selection
operator (LASSO) method, which results in the development of different risk models. It
was demonstrated that MST1, a tumor suppressor, is underexpressed in PDAC cells, which
have a prominent role in tumor progression [68]. Notably, PDAC patients with different
pathological stages were found to have considerably varied expressions of inflammasome-
related genes [199]. Overexpression of two subtypes of GSDM, GSDME and GSDMC,
positively correlated with poor prognosis and chemoresistance in PDAC [69,70].

Tao et al. developed a risk model via five PRGs (ELANE, GSDMC, IL18, NLRP1, and
NLRP2). They demonstrated that the expression level of most PRGs substantially differs
between normal pancreatic tissue and PDAC, indicating an observable alteration in the py-
roptotic function, either through an increase in the copy number or demethylation. Higher
neutrophil-derived active neutrophil elastase (ELANE) and NLRP1 expression predicted an
improved prognosis among these core genes. In this risk model, poor prognosis was also
associated with overexpression of GSDMC, IL-18, and NLRP2 in patients with PDAC [72].
Another study used IL-8 and GSMDC alongside PLCG1 and AIM2 to design a PRG risk
model, in which the expression levels of IL-18, GSDMC, AIM2, and GSDMC were higher
in most of the human PDAC cell lines compared to the hTERT-HPNE cell line [71]. It was
shown in both previous studies that low-risk populations respond better to immunother-
apy and chemotherapy and have better overall survival. This finding emphasizes the
importance of genomes in cancer progression and prognosis.

4.2.2. Correlation among PRGs, Immune System, Metabolism, and Signaling Pathways in
Pancreatic Cancer

Functional enrichment analysis of PRGs revealed that PRGs were mainly involved in
pyroptosis, apoptosis, and other immune signaling pathways (TNF, TLR, and inflammatory
response), indicating a conversation among the genome, signaling pathways, and the
immune system to connect apoptotic cell death with pyroptosis [77].

The seven pyroptosis-related lncRNAs (PRlncRNAs), consisting of AC083841.1,
AC090114.2, AC005332.6, PAN3-AS1, LINC01133, AC087501.4, and AC015660.1, were used
to establish a risk signature in which AC083841.1, LINC01133, and AC015660.1 were catego-
rized as potentially compromising lncRNAs. However, the remaining ones were considered
protective. This study’s risk score directly correlated with poor overall survival and di-
minished immunity. Since the high-risk group had reduced immune infiltration, it did
not benefit from immune therapy as much as the low-risk group with a higher level of
immune infiltration. Accordingly, the prognosis, therapeutic options, the TME design, and
immune cell enrichment are interconnected in pancreatic cancer [73]. Additionally, the
high-risk group had more tumor mutations [73], consistent with the study conducted by Xu
and colleagues using different PRGs to develop risk models [74]. According to this study,
patients with a lower tumor mutation in the low-risk group had an improved survival rate.
Significant differences exist between the high-risk and low-risk groups in differentially
expressed genes engaged in immune-response pathways, suggesting that pyroptosis may
affect the TME of PDAC. In this PRG risk model, the poor-prognostic high-risk group had
poor immunity and an increased tumor purity in the TME. The better survival in this study
was associated with the upregulation of APIP, CHMP6, and PLCG1 and the downregulation
of AIM2, CASP4, CASP6, CHMP4C, GSDMC, and GZMB [74]. Almost similar results were
obtained in another study that utilized different genes. A PRGs prognostic index (PRGPI)
was developed utilizing eight PRGs, of which AIM2, GBP1, HMGB1, IL18, IRF6, and NEK7
exhibited risk effects, while NLRP1 and PLCG1 exhibited protective effects in this study.
The PRGs in this risk model confirmed the previous study results, which showed that
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the risk score had an indirect association with better overall survival, a direct association
with mutation (including oncogene KRAS and tumor suppressor genes involving TP53,
SMAD4, and CDKN2A), and the potential to display immune suppressed characteristics.
Accordingly, high-risk groups exhibited enriched plasma cells and M1 macrophages and
overexpression of immune checkpoints and HLA family genes (such as PD-L1) [75].

A significant increase in most m6A-related genes (except HNRNPC) was observed in
the low-risk group of the Li et al. risk model, suggesting that pyroptosis may be related
to m6A modification. According to this study, PRGs risk models were defined with the
combination of immune and signaling pathways genes (CASP4, GSDMC, NLRP1, PLCG1,
IL-18, CASP1, and NLRP2), among which CASP4, NLRP1, PLCG1, IL-18, and CASP1 are
overexpressed in pancreatic cancers. More characteristics in the low-risk group indicate
that the patients in this group tend to respond more to immunotherapy than patients
in the high-risk group whose chemotherapy (which includes rapamycin, paclitaxel, and
erlotinib) is more effective. The low-risk group in this study showed higher levels of
CD8+ T cells, immune and stroma scores, and immune checkpoint expression (notably
CTLA4 and PD-1) [76]. An additional risk model PRG based on more immune-related
genes (CASP4, GSDMC, IL-18, NLRP1, NLRP2, PLCG1, TIRAP, and TNF) was developed,
which can be used to predict pancreatic cancer prognosis with an accuracy of medium to
high. As described by Li et al., this study revealed that NLRP1, NLRP2, IL18, and CASP4
overexpression may contribute to a lower overall survival rate in pancreatic cancer. In
this study, TNF was also underexpressed in pancreatic cancer cells [77]. Another study
employing almost different PRGs in developing the risk model revealed that the high-risk
group decreased anti-tumor immunity by impairing CD8 T and NK cell infiltration in
the TME of pancreatic cancer. In addition to CASP4, GSDMC, NLRP1, PLCG1, and IL18,
this PRGs risk model also includes other immune- and signaling-related genes, including
TLR3, IFR1, and GPX4. Interestingly, the upregulation of TLR3 was shown to facilitate the
proliferation, migration, and invasion of pancreatic cancer cells [78].

Pyroptosis and apoptosis are likely connected, as a knockdown of GSDME converted
pyroptosis into apoptosis in PDAC [69]. In light of the prognosis-related PRGs that Xu
and colleagues designed, there is a correlation between PRGs and cancer progression by
modulating the immunity and signaling pathways in pyroptosis and apoptosis. As a result,
five highly expressed PRGs, including apoptotic-related genes (BAK1 and TP63), CHMP4C,
IL18, and NLRP2, were categorized as high risk in this prognostic model and provided poor
prognoses for pancreatic cancer. Interestingly, the high-risk group exhibited fewer invading
immune cells and the reduced activation of immune-related pathways [79]. Consequently,
there is a relationship between different types of cell death, and it is difficult to distinguish
the separate roles played by each in shaping the TME. Activating the genes related to
one type of cell death may affect other types, providing pancreatic cancer patients an
opportunity to improve treatment efficacy. In line with this, Yu and colleagues developed a
pyroptosis–ferroptosis (P-F) score for PDAC, in which lower P-F scores were associated
with a more immune-suppressed phenotype, increased genomic mutations, impaired
immunotherapy responses, and the prognosis. Regarding gene modification, the genes
KRAS, TP53, SMAD4, and RNF43 demonstrated substantial co-expression for low P-F
scores, in which ferroptosis plays a major role [200]. Yu et al. also stratified PDAC into
four cell death subtypes, quiescent, pyroptosis, ferroptosis, and mixed, based on the
expression profile of pyroptosis- and ferroptosis-related genes [200]. Tumors with co-
expressed upregulation of pyroptosis- and ferroptosis-related genes (the mixed subtype)
exhibited an adverse prognosis. Regarding the TME, the pyroptosis subtype contained
more activated T cells (CD4+ and CD8+), whereas the mixed subtype contained the least
number of activated NK cells. Zuo and colleagues also revealed that a better prognosis
for PDAC patients is associated with higher T cells, NK cells, and macrophages, which
enhance cytolytic and inflammation levels. According to this study, a risk score was
based on genes involved in signaling pathways, immune systems, and glycolysis as a
metabolic pathway [199]. Additionally, overexpression of GSDMC, a poor prognostic factor,
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correlated with PD-L1 overexpression and poor infiltration of CD8+ T cells in the TME of
PDAC models [70].

Regarding evaluating crosstalk between genomes, metabolism, and signaling path-
ways via pyroptosis, a prognostic PRGs model based on CASP4 and NLRP1 was developed.
CASP4 may contribute to PDAC progression through tumor growth and migration and is
identified as a key regulator of the PDAC lipid metabolism by this study. The knockdown
of CASP4 significantly reduced the number of lipid droplets in PANC-1 and AsPC-1 cells,
in addition to downregulating fatty acid synthesis mediators. In contrast, by modulating
MAPK, mTOR, and JAK/STAT signaling pathways, NLRP1, which is inversely correlated
with KRAS, may serve as a tumor suppressor for PDAC. It should be noted that trametinib’s
efficacy showed direct and inverse correlations with the expression levels of CASP4 and
NLPR1, respectively [67]. By upregulating enzymes that participate in the sphingolipid
metabolic pathway, chemoresistance can be alleviated in pancreatic cancer animal mod-
els [201]. Thus, targeting metabolic pathways may be a promising therapeutic avenue
requiring further investigation.

4.3. Treatment
4.3.1. Drugs That Modulate Signaling Pathways and Other Cell Death through Pyroptosis

As previously mentioned, the canonical pathway of pyroptosis comprises three main
arms: MST1, ROS, and caspase-1. In PDAC, caspase-1 inhibition or ROS removal induces
pyroptosis mediated by MST1. VX-765 (caspase-1 inhibitor) and N-acetyl-cysteine (NAC)
(ROS scavenger) use this method to inhibit PDAC cell proliferation, migration, and invasion
via MST1 (Table 5) [68]. Reduced ROS production due to overexpression of the sphingolipid
metabolic enzyme (ASAH2), preventing chemotherapy-induced pyroptosis, in turn, causes
chemoresistance. The Src-signal transducer initiates this cascade, leading to a decrease
in ceramide levels. In vivo and in vitro, increasing ceramide levels by ASAH2 or the Src
inhibitor, such as ceramidase inhibitor B13 or dasatinib, improved chemosensitivity in
pancreatic cancer [201].

Table 5. List of drugs modulating pyroptosis.

Agent Mechanisms of Effect Stage of Treatment Ref.

VX-765 Inhibition caspase-1 In vivo/in vitro [68]
NAC ROS scavenger In vivo/in vitro [68]
Dasatinib Inhibition Src, increasing ceramide levels In vivo/in vitro [201]
ceramidase inhibitor B13 Increasing ASAH2 and ceramide levels In vivo/in vitro [201]

SEP Damaging DNA, mitochondrial superoxide anion radical
formation induces PANoptosis In vivo/in vitro [202,203]

Steroidal saponins
PPI/CCRIS/PSV Caspase-3-mediated cleavage of GSDME In vivo/in vitro [204]

LY364947 + ultrasound TGF-β receptor inhibitor, produced ROS, caused GSDME to
be cleaved by caspase-3, broke the dense TME In vivo [205]

ALA-lipid/PLGA
MBs-mediated SDT Producing ROS In vivo/in vitro [206]

PDT + TBD-3C Convert cold TME to hot TME In vivo/in vitro [207]

4.3.2. Combination Therapy

Metallodrugs showed the potential to improve pancreatic cancer treatment in various
ways, including the ability to pass the dense TME, improve photosensitivity, and induce the
co-occurrence of different cell death pathways [165–167]. An innovative platinum-based
metallodrug complex, SEP (quinone derivative seratrodast (STD) plus cisplatin (CDDP)),
was developed to eliminate apoptosis-resistant PDAC. In addition to efficiently penetrating
cancer cells and damaging DNA, SEP also caused mitochondrial superoxide anion radical
formation and the subsequent triggering of pyroptosis, necroptosis, and apoptosis [202].
The process is known as PANoptosis, and it plays a significant role in developing strong
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anti-tumor immunity by secreting inflammatory mediators [203]. The evidence showed
that SEP more efficiently suppresses KRAS-mutant PDAC cells than CDDP, supporting the
potential for combination therapy [202].

Although overexpression of GSDME was associated with poor prognoses in PDAC,
its high expression level and ability to promote apoptosis and pyroptosis make it a po-
tential therapeutic target. In response to PDAC chemotherapy (gemcitabine, irinotecan,
5-fluorouracil, paclitaxel, and cisplatin), pyroptosis and apoptosis were concurrently in-
duced through the cleavage of GSDME by caspase-3, followed by the activation of pro-
apoptotic caspase-7/8 [69]. Furthermore, steroidal saponins PPI/CCRIS/PSV (polyphyllin
I (PPI), collettiside III (CCRIS), and paris saponin V (PSV)) induce the caspase-3-mediated
cleavage of GSDME, potentially suppressing PANC-1, AsPC-1, and BxPC-3 PDAC cell
growth [204]. By activating the caspase-3-mediated cleavage of GSDME, the sonodynamic–
immunomodulatory pyroptotic strategy provides a significant immune response against
tumors. LY364947 (a TGF-β receptor inhibitor), the sonosensitizer, produced ROS in re-
sponse to ultrasound exposure and caused GSDME to be cleaved by caspase-3 and broke the
dense TME via collagen degradation, resulting in T-cell infiltration and almost complete tu-
mor eradication in mouse models [205]. Metabolic sonosensitizers in sonodynamic therapy
(SDT) also demonstrated a significant effect on pancreatic cancer treatment. Two metabolic
sonosensitizers were developed by Yang and collaborators by combining 5-aminolevulinic
acid hydrochloride (ALA), a lipid, and poly(lactic-coglycolic acid) (PLGA) microbubbles
(MBs) [206]. These compounds were designated ALA-lipid MBs and ALA-PLGA MBs,
respectively. The combination of ALA-lipid/PLGA MBs-mediated SDT produced signif-
icantly more ROS than ALA-mediated SDT, which resulted in apoptosis and pyroptosis
co-occurring and an enhanced response to therapy in AsPC-1 and BxPC-3 cells [206].

In addition to SDT, PDT converts the immunosuppressive cold TME to the immuno-
genic hot TME in pancreatic cancer by inducing an immune response through pyropto-
sis [203,207]. Combined with PDT, TBD-3C (a membrane-targeted photosensitizer) stimu-
lates pyroptosis and the subsequent hot TME due to M1 polarization and the maturation
and activation of dendritic cells and CD8+ T cells in response to TBD-3C-induced pyroptotic
cells [207].

5. Conclusions and Perspectives

This review emphasizes the importance of non-apoptotic cell death pathways, such
as ferroptosis, necroptosis, and pyroptosis, in prognosis and drug resistance in PDAC.
These pathways can work independently of, synergistically with, or in conjunction with
apoptosis to determine the fate of PDAC cells. Moreover, our review highlights the impact
of immunogenetic factors on ferroptosis, necroptosis, and pyroptosis, providing valuable
insights into their implications for PDAC treatment and prognosis. Future studies can
focus on developing a clinically effective risk model that incorporates a non-apoptotic
gene-related (NAGR) prognostic risk model, including ferroptosis-related genes (FRGs),
necroptosis-related genes (NRGs), and pyroptosis-related genes (PRGs), to further elucidate
the role of these pathways in immunity, metabolic regulation, and signaling cascades.
Ultimately, this knowledge can contribute to improving prognoses and developing effective
treatment strategies for PDAC. Further, it is noteworthy that genomes, immunity, and
metabolic pathways contribute, individually and in combination, to various aspects of
non-apoptotic cell death biology in PDAC. These mechanisms play a critical role in non-
apoptotic cell death signaling and crosstalk with other pathways. Future studies will
be required to determine how to apply this knowledge to the clinical management of
PDAC patients.
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