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Abstract: Adalimumab is a fully human monoclonal antibody used for the treatment of inflammatory
bowel disease (IBD). Due to its considerably variable pharmacokinetics and the risk of developing
antibodies against adalimumab, it is highly recommended to use a model-informed precision dosing
approach. The aim of this study is to develop a population pharmacokinetic (PopPK) model of
adalimumab for patients with IBD based on a literature model (reference model) to be used in the
clinical setting. A retrospective observational study with 54 IBD patients was used to develop two
different PopPK models based on the reference model. One of the developed models estimated
the pharmacokinetic population parameters (estimated model), and the other model incorporated
informative priors (prior model). The models were evaluated with bias and imprecision. Clinical
impact was also assessed, evaluating the differences in dose interventions. The developed models
included the albumin as a continuous covariate on apparent clearance. The prior model was superior
to the estimated model in terms of bias, imprecision and clinical impact on the target population. In
conclusion, the prior model adequately characterized adalimumab PK in the studied population and
was better than the reference model in terms of predictive performance and clinical impact.

Keywords: pharmacokinetics; drug monitoring; adalimumab; monoclonal antibodies; inflammatory
bowel diseases; Crohn’s disease; ulcerative colitis

1. Introduction

Adalimumab is a fully human recombinant immunoglobulin G (IgG) monoclonal anti-
body that inhibits the binding of tumor necrosis factor (TNF) to its receptors, decreasing the
process of inflammation. Adalimumab is increasingly used for the treatment of moderate-
to-severe inflammatory bowel disease (IBD) patients both in induction and maintenance
phases that had an inadequate response to corticosteroids, immunomodulators or other
biologic therapies [1,2].

Numerous studies have demonstrated the association between higher serum drug
levels of adalimumab and better clinical outcomes [3,4]. The exposure target depends
on whether patients are diagnosed with Crohn’s disease or ulcerative colitis and on
the desired therapeutic objective, such as clinical, endoscopic, biochemical or histologic
remission, although the most accepted target is the endoscopic remission [5]. In rela-
tion to this, some studies indicated that 8–12 mg/L trough serum concentrations (TSC)
of adalimumab are required to achieve mucosal healing and endoscopic remission in
80–90% of IBD patients [5,6]. In fact, several studies have shown that after long periods
of subtherapeutic drug levels, approximately 40% of patients with IBD can experience an
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irreversible disease worsening or develop antibodies against adalimumab (AAA) and, there-
fore, require dose escalation or even a switch to another drug [7–14]. A prospective study
evidenced that having an improvement in clinical outcomes from dose escalation is difficult
to achieve once they experience a loss of response [15]. Consequently, a therapeutic range of
8–12 mg/L has been considered as the therapeutic target in the clinical setting.

Model-Informed Precision Dosing (MIPD) is a Bayesian approach based on the use of
population pharmacokinetic (PopPK) models to calculate the individual pharmacokinetic
(PK) parameters for each patient. These individual PK parameters are used to achieve the
optimal dose regimen to balance efficacy and toxicity and improve the treatment outcomes
for each individual patient [16]. A multicenter retrospective study in patients treated with
adalimumab indicated that the MIPD approach can prevent immunogenicity, lowering the
risk of developing AAA and achieving better long-term outcomes in terms of IBD-related
surgery or hospitalization. Moreover, it also proved to be more cost-effective compared to
empirical and/or reactive dose optimization [17].

However, there are six PopPK models for adalimumab and IBD patients published in
the literature. All models had a similar structure (one-compartment model), although the
included covariates and the values of the PopPK parameters differ among them [1,18–22].
Even though a PopPK model implemented from the literature can suit a population in the
clinical setting, it is convenient to adapt this PopPK model to the studied population, to
re-estimate the parameters and to evaluate the inclusion of potential new covariates to
obtain more accurate results in the dose optimization. In a previous study, the predictive
performance of these PopPK models was externally evaluated in the clinical setting [23].
This study, conducted by our research group, concluded that the PopPK model developed
by Ternant et al. (reference model) was better than the others in terms of model adequacy
and predictive performance [18]. However, the EBEs of the individual CL/F were found to
be biased when compared with the mean population values in the models.

Therefore, the aim of this study is to optimize a PopPK model of adalimumab for
IBD, previously selected from the literature, considering its improvement in predictive
performance and clinical impact, with the subsequent application in the clinical setting
for MIPD.

2. Materials and Methods
2.1. Study Design

A retrospective observational study was conducted at the Dr. Balmis General Univer-
sity Hospital of Alicante on patients with IBD in treatment with adalimumab who followed
an MIPD program between 2014 and 2022.

2.2. Patients and Data Collection

This study included patients with IBD who underwent adalimumab treatment at
the Dr. Balmis General University Hospital of Alicante, Spain. Participants with at least
two adalimumab TSC were eligible for inclusion. Patients treated with monoclonal antibod-
ies other than adalimumab, such as infliximab, vedolizumab or ustekinumab, and subjects
who were diagnosed with autoimmune diseases other than IBD, such as rheumatoid
arthritis, psoriasis or ankylosing spondylitis, were excluded from this study.

The covariates evaluated in this study included age, sex, height, body weight, body
mass index, IBD type, serum albumin, serum C-reactive protein, fecal calprotectin, AAA
status and AAA serum concentration, use of concomitant immunomodulators, previous
anti-TNF treatment and whether adalimumab originator or biosimilar was used. For
missing covariates, the mean value of this covariate for a given patient was imputed. If any
patient had no available value of a covariate, the mean value of that covariate of the rest of
the patients was imputed.

TSC and AAA were determined using an enzyme-linked immunosorbent assay LISA
TRACKER Duo Drug + ADAb (TheraDiag®, Paris, France). The limits of quantification for
SC and AAA were 0.1 mg/L (range 0.1–16 mg/L) and 10 ng/mL (range 10–2000 ng/mL),
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respectively. Patients were considered as positive for AAA if titers were above 10 ng/mL
on at least one occasion.

2.3. Model Development and Evaluation

The reference model was the one selected among all available models in the literature,
according to a predictive performance evaluation published elsewhere [18,23]. Briefly,
the model, developed with Monolix 4.3.2, comprises a one-compartment model with
first-order absorption and linear elimination and was parameterized in terms of apparent
clearance (CL/F), apparent volume of distribution (V/F) and absorption constant (ka) with
a combined residual error model. The presence of AAA was included as a categorical
covariate on CL/F.

Initially, the reference model was refitted by estimating the PK population parameters
using all the available TSC of patients in Monolix software V.2023R1 [24]. The model
structure was the same as the reference model, including the covariate model. Ka and the
effect of AAA on CL/F were fixed to the published value.

The use of informative priors in the model was also considered by using the option
of maximum a posteriori estimation in Monolix. The estimated values and the relative
standard error (RSE) of the estimation of the parameters of the reference model were used
to define the prior. To evaluate the appropriateness of the prior for each parameter, priors
were set individually using an informative prior, whereas the rest of the parameters were
kept as noninformative. The informative priors that reduce the RSE of the parameter
estimations and result in better predictive performance would be retained in the model.

2.4. Covariate Analysis

Covariate analysis was based on physiological plausibility and visual graphical inspec-
tion of the relationships between Empirical Bayes Estimates (EBEs) of the PK parameters
and the covariates. Statistical significance (p < 0.01) was further evaluated individually
in the PK model using a stepwise forward addition and backward elimination covariate
model-building methodology.

2.5. Model Selection

The improvement in predictive performance was the criterion for model selection. A
decrease in the RSE of the parameter estimation was also considered for the inclusion of
informative priors.

To evaluate predictive performance, the individual predictions of the last TSC were
estimated for each patient, using EBEs of the individual PK parameters. These last TSCs,
named the “last observed TSC”, were left out and not used to calculate the EBEs of
the individual PK parameters. Bias and imprecision were then calculated using the last
observed TSC by comparing them with their individual predictions.

The mean prediction error (MPE, Equation (1)) and root mean square prediction error
(RMSPE, Equation (2)) were calculated for bias and imprecision, respectively.

MPE =
∑
(
Ŷ − Y

)
n

(1)

RMSPE =

√
∑
(
Ŷ − Y

)2

n
(2)

In both equations, Y-hat represents the individual-predicted adalimumab concentra-
tion, Y represents the observed adalimumab concentration, and n is the number
of observations.

Additionally, a Predicted-Corrected Visual Predictive Check (pcVPC) for the reference
and the final model was performed to evaluate predictive performance. Graphical evalua-
tion, e.g., residual vs. predicted, observed vs. predicted and NPDE, was also evaluated.
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A bootstrap of the data was performed to compare statistical significance of the
differences between bias and imprecision of the different models.

2.6. Model Validation

A numerical Predictive Check (NPC) was performed as an internal validation of the
model adequacy of each model. NPC quantitatively compares the cumulative observed
adalimumab concentrations that correspond to the model-simulated percentiles with their
expected concentrations that represent the 50th percentile of the observed concentrations, as
well as the 95% confidence interval (CI) for the 50th percentile of the predicted concentrations.

The accuracy and robustness of parameter estimates were evaluated using a bootstrap
with 500 replicates constructed by sampling individuals with replacements from the original
dataset. Model parameters were estimated for each bootstrap replicate and were used to
estimate the mean and 95% CI from the individual replicates.

These databases generated with the bootstrap were also used to validate predictive
performance by calculating the mean and 95% CI of bias and imprecision of each model for
each of the 500 replicates.

2.7. Clinical Impact

The evaluation of the clinical impact of PopPK models was performed by calculating
the true positives and false positives of the predictions of the last TSC for each model
compared to the last observed TSC. It is worthwhile to mention again that the last TSCs were
left out to calculate the EBEs of the PK parameters for each model. Three different scenarios
were considered to calculate true and false positives, assuming three concentration ranges:
below the target; within the target; and above the target. The last observed TSC was
considered the standard reference for each concentration range. True and false positives
were calculated by comparing the coincidences and discrepancies with the predicted TSC
with each PopPK model, corresponding to such last observed TSC. The target interval of
the TSC that was considered in this study was within 8–12 mg/L for clinical response or
remission [6,15].

The 95% CI of true and false positives in each scenario for each model was calculated
with the bootstrap.

2.8. Software

The software used for model development was Monolix 2023R1® [24]. The statistical
analysis, data visualization and validation were performed using R software v4.2.2 [25],
implemented in RStudio 2022.07.2 + 576 [26].

3. Results
3.1. Patient Characteristics

The resulting dataset comprised 54 IBD patients in treatment with adalimumab with
at least two TSCs. Approximately 85% of the patients were diagnosed with Crohn’s
disease and 15% with ulcerative colitis. The summary of the characteristics of the studied
population compared to the population of the reference model is listed in Table 1.
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Table 1. Summary of the characteristics of the included patients in the reference and the final model.

Characteristics Population of the
Reference Model Population of the Final Model

Patients 65 54
Age (yr) † 37 (17–61) 43.5 (11–89)

Sex, male, n (%) 16 (25%) 30 (55.6%)
Weight (kg) † 68 (43–109) 66.5 (34.8–94.0)

Body mass index (kg/m2) † NA 22.84 (14.1–32.03)
Albumin (g/dL) † NA 3.86 (1.97–4.96)

Prealbumin (mg/dL) † NA 24.2 (9.0–37.0)
CRP (mg/L) † NA 0.770 (0.0575–6.680)
FCP (mg/kg) † NA 513 (25–3600)

IBD type, CD, n (%) 65 (100%) 46 (85.2%)
Adalimumab originator (Humira®), n (%) NA 38 (70.4%)

Prior treatment with infliximab NA 35 (64.8%)
Concomitant immunomodulator, n (%) NA 22 (40.7%)

6-Mercaptopurine NA 1 (4.6%)
Aminosalicylate NA 3 (13.6%)

Azathioprine NA 6 (27.3%)
Corticosteroids NA 5 (22.7%)
Methotrexate NA 2 (9.1%)

Combined NA 5 (22.7%)

Adalimumab serum samples 341 148
Adalimumab serum concentrations

(mg/L) † NA 4.90 (0.10–27.4)

AAA positive, n (%) 9 (13.8%) 9 (16.7%)
AAA serum concentrations (mg/L) †,‡ NA 115 (15–459)

NA = not available; CRP: C-reactive protein; FCP: fecal calprotectin; IBD: inflammatory bowel disease; CD:
Crohn’s disease; AAA: antibodies against adalimumab. † Median and range of population used to develop
the reference model and the final model. ‡ Median and range of patients with presence of antibodies against
adalimumab.

As an induction phase, 43 patients were treated subcutaneously with 160/80 mg and
2 patients with 80/40 mg at weeks 0/2. The information regarding the induction phase of
the other nine patients was not available in their medical histories. Following this phase, all
patients were treated with 40 mg of adalimumab every other week. A total of 148 TSC, 19 of
them in the induction phase, were available for analysis. 68.2% of TSC were below 8 mg/L,
16.2% between 8 and 12 mg/L and 15.6% over 12 mg/L. AAA were detected in nine
patients (17%). 22 patients were on a concomitant immunomodulator (6-mercaptopurine,
aminosalicylate, azathioprine, corticosteroids, methotrexate or combined). 39 patients
were treated with adalimumab originator (HUMIRA®), and 15 patients were treated with
biosimilars (10 patients with HYRIMOZ® and 5 patients with IDACIO®).

3.2. Model Development, Covariate Analysis and Evaluation

Due to the lack of serum concentrations in the absorption phase in the dataset and the
small number of AAA-positive patients, ka and the covariate of AAA on CL/F were fixed
to the values of the reference model, 0.00625 1/h and 4.5, respectively.

In the first step, all the parameters were estimated, keeping the model structure of the
reference model.

Figure 1 shows the relationship between EBEs of CL/F and albumin with a statistically
significant slope (p < 0.001). In the forward inclusion step of the covariate modeling, only
albumin was found to be a significant covariate influencing CL/F, with an improvement in
the Objective Function Value (OFV) of 12 (p < 0.001).

CL/F = CLpop·(1 + AAA·covAAA−CL/F)·
(

ALB
mALB

)covALB−CL/F

(3)
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CL/F is defined according to Equation (3), where AAA is a categorical covariate repre-
senting the absence and presence of AAA, and albumin is a continuous covariate weighted to
the mean value (3.77 g/dL) in the studied population (mALB). In addition, the inclusion of al-
bumin as a covariate on CL/F resulted in better performance in terms of bias and imprecision.
Model structure and code have been added as a Supplementary File (Figure S1).

In the second step, the use of priors in different parameters was evaluated. The
inclusion of informative priors in the IIV of CL/F and the IIV of V/F resulted in a substantial
reduction in RSE, not only on these parameters but also in the parameters estimated without
priors. The resulting RSE using priors decreased from 30.6% to 3.4% for the IIV of CL/F
and from 114.5% to 1.4% for the IIV of V/F, compared to the model where all parameters
were estimated. For the remaining parameters, the inclusion of priors did not improve the
fit, neither in terms of RSE nor predictive performance. Additionally, residual unexplained
variability was modeled using a proportional error model due to the high RSE of the
additive error (83.8%). This model would be considered the final model.

The final model shows a considerable reduction in bias compared to the reference
model and a similar dispersion of Individual Residuals (IRES), as is shown in Figure 2.
Table 2 shows bias and imprecision for the reference and the final model and the differences
between them. The final model behaves better in terms of bias and imprecision. The 95%
CI of the differences, calculated with the bootstrap, shows statistical differences in bias but
not in imprecision.

Table 2. Bias and imprecision with the 95% confidence interval for the reference and the final model.

Models Bootstrap Results (n = 500)

Model Bias (95% CI) Imprecision (95% CI) Bias (95% CI) Imprecision (95% CI)

Reference Model −1.79 (−2.82 : −0.793) 4.14 (3.11 : 5.09) −1.78 (−2.76 : −0.804) 4.10 (3.12 : 5.09)
Final Model −0.849 (−1.86 : 0.160) 3.99 (2.43 : 5.33) −0.854 (−1.87 : 0.160) 3.90 (2.52 : 5.28)
Difference −0.939 0.150 0.927 (0.353 : 1.46) 0.200 (−0.670 : 1.08)

CI: Confidence Interval.
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Figure 2. Individual residual (IRES) versus the individual predicted of the last observed trough
serum concentrations (TSC) for the reference and the final model. The mean IRES (black solid line)
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blue dotted line the line corresponding to 0.

The pcVPC for the reference and the final model, represented in Figure 3, shows
that the final model performs better than the reference model. The same results are
observed in Observed vs. Predicted (Figure S2) and NPDE (Figure S3) plots, available in
the Supplementary File.

Biomedicines 2023, 11, x FOR PEER REVIEW 7 of 13 
 

 
Figure 2. Individual residual (IRES) versus the individual predicted of the last observed trough se-
rum concentrations (TSC) for the reference and the final model. The mean IRES (black solid line) 
represents the bias of each model; red dashed line represents the 5th and 95th percentile for IRES; 
blue dotted line the line corresponding to 0. 

Table 2. Bias and imprecision with the 95% confidence interval for the reference and the final model. 

 Models Bootstrap Results (n = 500) 
Model Bias (95% CI) Imprecision (95% CI) Bias (95% CI) Imprecision (95% CI) 

Reference Model −1.79 (−2.82 : −0.793) 4.14 (3.11 : 5.09) −1.78 (−2.76 : −0.804) 4.10 (3.12 : 5.09) 
Final Model −0.849 (−1.86 : 0.160) 3.99 (2.43 : 5.33) −0.854 (−1.87 : 0.160) 3.90 (2.52 : 5.28) 
Difference −0.939 0.150 0.927 (0.353 : 1.46) 0.200 (−0.670 : 1.08) 

CI: Confidence Interval. 

3.3. Model Validation 
The NPC of the reference and the final model are represented in Figure 3. The final 

model shows a better performance compared to the reference model. 

 
Figure 3. (a) NPC of the reference and the final model. Blue solid line depicts the empirical distri-
bution. Blue shaded area represents the 95% confidence interval for the median of the predictions, 
Figure 3. (a) NPC of the reference and the final model. Blue solid line depicts the empirical distribu-
tion. Blue shaded area represents the 95% confidence interval for the median of the predictions, and
the red shaded areas represent the outliers. (b) pcVPC of the reference and the final model. Blue solid
lines represent the 5th, 50th and 95th percentiles of the observed concentrations; Blue shaded areas
represent the 95% confidence interval of the 5th and 95th percentiles of the predictions; pink shaded
area represents the 95% confidence interval for the 50th percentile of the predictions, and red shaded
areas represent the outliers. The RSE of the estimated PK parameters in the final model was below
50% in the bootstrap analysis. No significant differences were observed between the mean values of
the PK parameters in the bootstrap analysis of the final model. Moreover, estimated PK parameters
were within the 95% CI of the parameters obtained in the bootstrap.
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The values of each parameter of the final model compared to the reference model are
listed in Table 3.

Table 3. Population pharmacokinetic parameters of the reference model and the final model.

Reference Model Final Model Bootstrap Results (n = 500)

Estimate (%RSE) Estimate (%RSE) 95% CI Mean Value (%RSE) 95% CI

CL/F (L/h) 0.0175 (9%) 0.0312 (10.9%) 0.0246 : 0.0378 0.0314 (12.4%) 0.0234 : 0.0391
ALB_CL/F - −2.33 (2.8%) −2.46 : −2.21 −2.36 (43.8%) −4.39 : −0.335

V/F (L) 13.5 (10%) 7.76 (24.1%) 4.09 : 11.42 7.70 (19.9%) 4.69 : 10.7
IIV_CL/F 0.65 (10%) 0.667 (15.5%) 0.464 : 0.869 0.666 (3.4%) 0.623 : 0.710
IIV_V/F 0.48 (19%) 0.477 (33.9%) 0.160 : 0.794 0.474 (1.4%) 0.460 : 0.487

Proportional error 0.15 (16%) 0.547 (8.4%) 0.458 : 0.637 0.543 (8.7%) 0.451 : 0.636
Additive error

(mg/L) 1.8 (8%) - - - -

%RSE, relative standard error; CI: confidence interval; CL/F: apparent clearance; V/F: apparent volume; ALB:
albumin; IIV: interindividual variability.

3.3. Model Validation

The NPC of the reference and the final model are represented in Figure 3. The final
model shows a better performance compared to the reference model.

3.4. Clinical Impact

Figure 4 shows true and false positives of the individual predictions of the last ob-
served TSC of the final model for each scenario. Among all the last observed TSCs in the
dataset, 36 TSCs fell below target, 8 TSCs fell within the target, and 10 TSCs fell above target.
Table 4 shows true and false positives of the predictions of the last TSC and the differences
between the reference and the final model for each scenario. In all cases, the final model
performs better than the reference model in terms of true positives and false positives.
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 Estimate (%RSE) Estimate (%RSE) 95% CI 
Mean Value 

(%RSE) 95% CI 

CL/F (L/h) 0.0175 (9%) 0.0312 (10.9%) 0.0246 : 0.0378 0.0314 (12.4%) 0.0234 : 0.0391 
ALB_CL/F - −2.33 (2.8%) −2.46 : −2.21 −2.36 (43.8%) −4.39 : −0.335 

V/F (L) 13.5 (10%) 7.76 (24.1%) 4.09 : 11.42 7.70 (19.9%) 4.69 : 10.7 
IIV_CL/F 0.65 (10%) 0.667 (15.5%) 0.464 : 0.869 0.666 (3.4%) 0.623 : 0.710 
IIV_V/F 0.48 (19%) 0.477 (33.9%) 0.160 : 0.794 0.474 (1.4%) 0.460 : 0.487 

Proportional er-
ror 0.15 (16%) 0.547 (8.4%) 0.458 : 0.637 0.543 (8.7%) 0.451 : 0.636 

Additive error 
(mg/L) 1.8 (8%) - - - - 

%RSE, relative standard error; CI: confidence interval; CL/F: apparent clearance; V/F: apparent vol-
ume; ALB: albumin; IIV: interindividual variability. 

3.4. Clinical Impact 
Figure 4 shows true and false positives of the individual predictions of the last ob-

served TSC of the final model for each scenario. Among all the last observed TSCs in the 
dataset, 36 TSCs fell below target, 8 TSCs fell within the target, and 10 TSCs fell above 
target. Table 4 shows true and false positives of the predictions of the last TSC and the 
differences between the reference and the final model for each scenario. In all cases, the 
final model performs better than the reference model in terms of true positives and false 
positives.  

 
Figure 4. Clinical impact of the reference (Ref) and the final model (Final) predictions compared to
the last observed trough serum concentrations (Obs TSC) in the different scenarios. Black arrows
represent the 95% CI of the last observed TSC and the true positives of the last TSC predictions, and
red arrows represent the 95% CI of the false positives of the last TSC predictions.
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Table 4. True and false positives of the predictions of the last TSC and the differences between the
reference and the final model for each scenario.

TSC < 8 mg/L TSC = 8–12 mg/L TSC > 12 mg/L

True Positives False Positives True Positives False Positives True Positives False Positives

Reference
model 25.0 (18.1 : 31.9) 2.95 (−0.50 : 6.41) 2.04 (−0.71 : 4.80) 12.1 (5.95 : 18.1) 5.93 (1.53 : 10.3) 6.04 (1.47 : 10.6)

Final model 30.9 (24.0 : 37.8) 3.99 (0.0720 : 7.90) 2.07 (−0.676 : 4.81) 7.00 (1.99 : 12.0) 6.01 (1.62 : 10.4) 3.99 (0.189 : 7.80)
Difference 5.90 (1.50 : 10.4) 1.04 (−0.836 : 2.90) 0.0300 (−2.80 : 2.85) −5.05 (−10.0 : −0.102) −0.0800 (−2.71 : 2.87) −2.04 (−4.74 : 0.660)

TSC: trough serum concentrations.

4. Discussion

The MIPD approach can be a useful tool to optimize the dose of drugs with high
pharmacokinetic variability. To apply this methodology in the clinical routine, it is common
to use PopPK models found in the literature due to the difficulties of building in-house
PopPK models with the available data in hospitals.

The model reference was based on 341 adalimumab serum concentrations derived
from 65 patients during a follow-up of 500 days, although only Crohn’s disease patients
were included in this study. Regarding the analytical assay, ELISA and Double-antigen
ELISA were used to measure adalimumab TSCs and AAA, respectively. However, it is not
specified which limit of titers was used to consider the patients as AAA positives. The
value of this limit is crucial in the estimation of the proportion of positives and, therefore, its
quantitative effect on CL/F. Moreover, biochemical covariates such as albumin, C-reactive
protein or fecal calprotectin were not available.

The inclusion of AAA and albumin in the final model as covariates of CL/F was found
to statistically improve the OFV and also reduce the interindividual variability in CL/F. The
association between the presence of AAA and the increase in adalimumab CL/F, leading
to lower adalimumab concentrations, has been reported in numerous studies [8–13]. In
our study, the presence of AAA was found to be a determinant covariate. However, the
estimation of the effect of AAA on CL/F was not possible due to the small number of
patients’ positives for AAA and, therefore, it was fixed to the reference model value.

The results of this study suggest that patients with lower albumin have a higher CL/F.
In addition, CL/F increases 12-fold as albumin rises from the lowest value (1.97 g/dL)
to the highest value (4.96 g/dL). Therefore, patients with lower albumin require higher
doses to reach the desired target; otherwise, plasma concentration would fall into the
infratherapeutic range. Several studies demonstrated the correlation of higher albumin
levels with higher response rates to infliximab and adalimumab [27–34]. In fact, albumin
was a significant covariate on CL in a considerable number of previously published PK
models of infliximab for IBD [35]. In contrast, other studies that developed PopPK models
of adalimumab in Crohn’s disease [19,21] or IBD patients [22] observed that higher albumin
levels were associated with lower adalimumab CL/F and higher serum levels, considering
albumin as an influential inflammatory marker of adalimumab clearance, although, finally,
they did not include it as a covariate in the PopPK model. However, albumin is also a well-
known surrogate marker of disease that could exacerbate with an increase in CL. Therefore,
further studies are necessary to establish whether albumin has a direct impact on CL or the
change in CL and, consequently, the change in plasma concentration of Adalimumab has
an impact on the albumin.

Several studies have shown that fecal calprotectin and C-reactive protein are reliable
markers of endoscopic activity and therapeutic response in IBD patients [36–38]. In fact, C-
reactive protein and fecal calprotectin showed a positive influence on adalimumab CL/F in
a PopPK model of adalimumab developed for IBD that included the latter as a continuous
covariate [22]. However, the association of TSC and C-reactive protein or fecal calprotectin
was not found in our data.

Body weight was included as a covariate on CL/F in four PopPK models of adali-
mumab in Crohn’s disease [1,19,21] or IBD patients [22] and on V/F in one of them [19].
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However, body weight, lean body weight and body mass index did not show a significant
relationship with any PK parameter of adalimumab in our population.

A priori information could be used to stabilize the estimation of the model parameters
when the data available are sparse. Several studies showed that the use of priors allowed
a better fit to the new data than fixing the parameters [39–42]. Moreover, the model built
with priors in our study was more stable, provided a better fit of the data and reduced IIV.
In this line, other authors also obtained similar results [43].

In order to mimic the real-world conditions, predictive performance was calculated
with TSCs that were left out for the calculation of EBEs of the PK parameters. The results
of predictive performance in terms of bias and imprecision were −1.79 and 4.14 for the
reference model and −0.849 and 3.99 for the final model, respectively. The bootstrap
analysis of predictive performance showed statistically significant differences in terms
of bias.

Regarding the clinical impact, the final model obtained 15% more true positives
(39 vs. 33) than the reference model. Similarly, the final model obtained 30% less false
positives than the final model. Therefore, the final model better predicts the need for
dose modification.

One of the main limitations of this study is its retrospective design, where patients were
selected for MIPD based on the clinical decision of the physician, which implies a potential
bias related to the disease severity. This potential bias could lead to an underestimation
of the mean values and variance of albumin, C-reactive protein and fecal calprotectin in
the IBD population. Another limitation inherent to the clinical setting is that only TSCs
were available since data were obtained from the clinical setting; therefore, there is a lack of
serum concentrations in the absorption phase and, consequently, ka could not be estimated,
so it was fixed to the value of the reference model.

In conclusion, the developed PopPK model, using informative priors in IIV of CL/F
and IIV of V/F based on the reference model, adequately characterized adalimumab PK in
the studied population and performed better than the reference model in terms of predictive
performance. The main structural difference between both models was the inclusion of
albumin as a meaningful covariate on CL/F. To our knowledge, this is the first PopPK model
of adalimumab in IBD that identified albumin as a covariate on CL/F. Additionally, the final
model significantly improves the clinical impact on the target population and could allow
a more accurate dose optimization and an improvement of adalimumab treatment efficacy.
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