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Abstract: Oxidative stress, resulting from the excessive intracellular accumulation of reactive oxygen
species (ROS), reactive nitrogen species (RNS), and other free radical species, contributes to the onset
and progression of various diseases, including diabetes, obesity, diabetic nephropathy, diabetic neu-
ropathy, and neurological diseases, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis
(ALS), and Parkinson’s disease (PD). Oxidative stress is also implicated in cardiovascular disease and
cancer. Exacerbated oxidative stress leads to the accelerated formation of advanced glycation end
products (AGEs), a complex mixture of crosslinked proteins and protein modifications. Relatively
high levels of AGEs are generated in diabetes, obesity, AD, and other I neurological diseases. AGEs
such as Ne-carboxymethyllysine (CML) serve as markers for disease progression. AGEs, through
interaction with receptors for advanced glycation end products (RAGE), initiate a cascade of dele-
terious signaling events to form inflammatory cytokines, and thereby further exacerbate oxidative
stress in a vicious cycle. AGE inhibitors, AGE breakers, and RAGE inhibitors are therefore potential
therapeutic agents for multiple diseases, including diabetes and AD. The complexity of the AGEs
and the lack of well-established mechanisms for AGE formation are largely responsible for the lack of
effective therapeutics targeting oxidative stress and AGE-related diseases. This review addresses the
role of oxidative stress in the pathogenesis of AGE-related chronic diseases, including diabetes and
neurological disorders, and recent progress in the development of therapeutics based on antioxidants,
AGE breakers and RAGE inhibitors. Furthermore, this review outlines therapeutic strategies based
on single-atom nanozymes that attenuate oxidative stress through the sequestering of reactive oxygen
species (ROS) and reactive nitrogen species (RNS).

Keywords: oxidative stress; Alzheimer’s disease; diabetes; reactive oxygen species; reactive nitrogen
species; 4-hydroxy-trans-2-nonenal (HNE); lipid peroxidation; nanozymes; receptors for advanced
glycation end products (RAGE)

1. Introduction

Oxidative stress is a causative factor for the onset of diabetes, obesity, and diabetes-
induced microvascular diseases, including diabetic retinopathy end-stage renal disease,
atherosclerosis, and cardiovascular diseases [1–4]. Oxidative stress results from the exces-
sive intracellular accumulation of reactive free radicals, such as reactive oxygen species
(ROS) and reactive nitrogen species (RNS). Whereas ROS and RNS are an integral part of
normal cellular function and host defense system against the invading bacteria, their exces-
sive amounts contribute to the onset and exacerbation of various pathologies, including
neurological diseases and diabetes [5–8].

Cellular antioxidants, such as glutathione, and antioxidant enzymes, such as super-
oxide dismutase (SOD), catalase (XAT), glutathione peroxidase (GPx), sequestrate ROS
and RNS to maintain an optimal balance of the cellular redox status [9,10]. The imbalance
between the formation and destruction of ROS and RNS contributes to the excessive accu-
mulation of these reactive free radicals. Although ROS and RNS act as signaling molecules
under physiological concentrations, under oxidative conditions, excessive amounts of ROS
and RNS exert cellular damage through their deleterious reactions with proteins, lipids,
and DNA, thereby leading to the pathogenesis of various oxidative stress-related diseases,
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including diabetes, obesity, and neurological diseases, such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD) [11–13].

Oxidative stress also contributes to the formation of advanced glycation end products
(AGEs), and thereby the deleterious structural modifications of proteins and nucleic acids.
AGEs are formed through nonenzymatic reactions of protein amino groups with the
carbonyl groups of the reducing sugars, followed by further protein modifications involving
glycoxidation reactions, and thus the oxidative stress plays a major role in the formation of
AGEs and the onset of AGE-related diseases, including AD, diabetes, atherosclerosis, and
amyotrophic lateral sclerosis (ALS) (vide infra) [14,15]. Relatively high levels of AGEs are
ubiquitously found in diabetes, obesity, AD, and other neurological diseases, and AGEs
are mainly localized in the amyloid beta (Aβ) plaques and neurofibrillary tangles (NFT) in
cases of AD [16,17]. The levels of AGEs are correlated with the extent of oxidative stress
and disease progression in diabetes, obesity, and Alzheimer’s disease (AD).

Diabetes is also one of the major causative factors for the onset of Alzheimer’s disease
(AD), and they have common biomarkers, including elevated amounts of AGEs and other
oxidative stress markers, such as 4-hydroxy-trans-2-nonenal (HNE), a lipid peroxidation
product [18–21]. Because of the common biomarkers of AD and type 2 diabetes, AD is
sometimes referred to as diabetes 3 [22–27].

Excessive amounts of AGEs and their binding to receptors for AGEs (RAGE) induce
signaling cascades that can further exacerbate oxidative stress, in a vicious cycle. The
interactions of AGEs with RAGE (AGE–RAGE interactions) are also involved in the onset
of pancreatic cancers under hyperglycemic conditions, especially in cases of diabetes and
obesity [28]. AGE–RAGE interactions and the resulting oxidative stress are causative factors
in the onset of diabetic kidney disease (vide infra).

Oxidative stress also generates a complex mixture of lipid peroxidation products, some
of which, such as malondialdehyde (MDA) and 4-hydroxy-trans-2-nonenal (HNE) are pri-
marily responsible for DNA modifications and the resulting carcinogenesis (vide infra) [29].
There is a renewed interest in developing therapeutics targeted at the sequestration of lipid
peroxidation products and antioxidants that would attenuate lipid peroxidation [30].

There is also an emerging interest in developing RAGE inhibitors as potential thera-
peutics for cancers and neurological diseases, as well as other AGE-related diseases. There
have been no FDA-approved RAGE inhibitor-based therapeutics to date because RAGE
is a multi-ligand binding receptor, and achieving selectivity for RAGE binding is still a
challenge. However, there are potentially useful therapeutics that are currently in clinical
trials for treating cancers and neurological diseases (vide infra) [14,17,31–34].

Nanozymes that are engineered to selectively enter neuronal cells are effective in
attenuating the oxidative stress, and this area has attracted emerging interest toward devel-
oping effective therapeutics for treating various neurological diseases. One recent trend in
this area is to embed single-atom-based nanozymes on the surface of near-infrared probes
for the purposes of imaging the sites of neuroinflammation. Nanozyme materials made
from redox-active metals, such as Mn, Co, Zn and Pt, attenuate the neuroinflammation,
annihilate tumor cells, and mediate diabetic wound healing by sequestering ROS or acting
as antibacterial agents [5,35–39]. These nanozymes can also be engineered such that they
permeate through the blood–brain barrier (BBB) and show high selectivity for entry into
the neuronal cells when targeting neurological diseases, such as traumatic brain injury
(TBI) (vide infra) [39,40].

2. Reactive Oxygen Species (ROS)

Reactive oxygen species (ROS) are formed physiologically during the mitochondrial
respiratory cycle, as well as during the cellular metabolism and nonenzymatically through
transition-metal-ion-catalyzed redox reactions (Fenton reaction). The mitochondria are a
major source of ROS formation, and mitochondrial antioxidant enzymes—Mn superoxide
dismutase (MnSOD), catalase, and ascorbate oxidase—control the levels of mitochondrial
ROS in order to maintain the optimal balance of ROS necessary for normal physiological
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activity. ROS and the ensuing oxidative stress are involved in the onset of various diseases,
including diabetes, cardiovascular disease, diabetic neuropathy, and diabetic nephropathy.
Hyperglycemia, a primary cause of diabetes, activates various signaling pathways, leading
to the overexpression of ROS and oxidative stress. Increased oxidative stress leads to
endothelial dysfunction and atherosclerosis in cases of diabetes [41]. In transgenic animal
models overexpressing MnSOD, it was shown that the attenuation of mitochondrial ROS in
endothelial cells improves coronary angiogenesis and cardiac function in non-reperfused
mitochondrial infarction [42].

TBI involves extensive impairment of the BBB accompanied by the excessive pro-
duction of ROS, such as superoxide radical anions (O2·−), hydroxyl radicals (·OH), and
hydrogen peroxide (H2O2). ROS-induced neuronal cell damage leads to long-term effects
on health and leads to the onset of AD in some cases.

Oxidative stress disrupts the BBB, thereby further exacerbating neuronal damage
in AD and TBI cases [43]. Sequestration of ROS by a single-atom Mn catalyst alleviates
neuroinflammation and promotes reconstruction of the BBB, accompanied by the recovery
of neurological function [40]. This single-atom Mn catalyst was embedded in a near-
infrared-II (1500–1700 nm) silver telluride (Ag2Te) quantum dot as an imaging probe for
monitoring the neuroinflammation induced by ROS. In this nanozyme-type catalytic system,
the redox-active Mn transforms the superoxide radical anions (O2·−) to dioxygen (O2), and
the hydroxyl radicals (·OH) to hydroxyl anions (−OH), which are subsequently transformed
into H2O by abstracting a proton from the neighboring acidic sites (Figure 1). A similar
approach using Mn doped onto the near IR-II (1500–1700 nm) active PbS/CdS quantum
dot (QD) imaging agent inhibits the release of pro-inflammatory factors and sequestrates
the excessive ROS in TBI brains, thereby affording neuroprotective effects [39]. Therapeutic
candidates using single-atom based catalytic nanozymes are currently in development for
the treatment of neurological diseases, including AD and TBI [38]. Furthermore, nanozymes
can be designed such that they cross the BBB and eliminate the misfolded proteins, and
therefore may serve as effective therapeutics, in particular for the neurological diseases [37].
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interfering with the α-glycerophosphate shuttle pathway and malate-aspartate shuttle 
pathway, thereby attenuating ROS re-generation [44]. Naturally occurring antioxidants, 
such as lycopene, are potentially useful for the sequestration of ROS. However, the use of 
naturally occurring antioxidants in the treatment of Parkinson’s disease (PD) is hampered 
owing to the technical challenges involved in their incorporation into the PD neuronal 
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Figure 1. Single-atom Mn catalyst embedded in a Ag2Te near-infrared probe for the sequestration of
intracellular ROS; the redox-active Mn2+/3+, through a single-electron transfer to a hydroxyl radical
and superoxide radical anion, forms the non-harmful hydroxide anion and dioxygen, respectively.

Single-atom catalysts consisting of Pt/CeO2, in addition to breaking down the ROS,
contribute to the blocking of the source of ROS generation in the mitochondria. Thus,
these single-atom catalysts achieve the self-clearance of dysfunctional mitochondria by
interfering with the α-glycerophosphate shuttle pathway and malate-aspartate shuttle
pathway, thereby attenuating ROS re-generation [44]. Naturally occurring antioxidants,
such as lycopene, are potentially useful for the sequestration of ROS. However, the use of
naturally occurring antioxidants in the treatment of Parkinson’s disease (PD) is hampered
owing to the technical challenges involved in their incorporation into the PD neuronal
cells. In this context, biocompatible lycopene-based anti-ROS nanodots, when engineered
to target the neuronal mitochondria, induce the efflux of the pathogenic α-synuclein and
aid in the survival of the dopaminergic neurons in PD [45].

A lipoic acid-derived methacrylate co-polymer was shown to scavenge lipid peroxi-
dation products, such as acrolein, and H2O2. Such compounds, when used as therapeutic
candidates, may provide protective effects in TBI and other neurodegenerative diseases,
as multiple lipid peroxidation products and excessive ROS are generated in cases of TBI
and AD (Figure 2) [30]. Presumably, toxic levels of H2O2 are quenched through oxida-
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tion of the dithiol moiety in the polymer to the disulfide. These polymers were also
integrated with Gd-DOTA-based MRI-imaging agents toward monitoring their potential
therapeutic effects.
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Figure 2. Lipoic-acid-based polymer and proposed mechanism for the sequestration of ROS and lipid
peroxidation products; such multi-target-based therapeutics candidates, when conjugated to imaging
agents, could serve as theranostics for treating TBI.

Superoxide radical anions (O2·−) are generated either enzymatically, catalyzed by
nicotinamide adenine dinucleotide (NADH or NAD-phosphate, NADPH) oxidase, glu-
cose oxidase, or xanthine oxidase [46–48], or through the non-enzymatic Fenton reaction,
catalyzed by metal ions, such as Fe(II) and Cu(I) [2]. The superoxide radical anion, O2·−,
is relatively less reactive and thus, by itself, is not a major contributor to the initiation of
oxidative stress. However, the superoxide radial anion forms a highly reactive hydroxyl
radical species (HO·) upon further reductive transformation via SOD into H2O2, followed
by a metal-ion-catalyzed Fenton reaction. The hydroxyl radical is substantially more reac-
tive than the superoxide radical anion and reacts with proteins and nucleic acids to form
various protein and nucleic acid aggregates, which are implicated in a broad variety of
pathologies, including diabetes, obesity, and neurological diseases. Catalase transforms the
relatively toxic hydrogen peroxide into dioxygen and H2O (Figure 3). Other antioxidant
enzymes that attenuate ROS include glutathione peroxidase, CuZn-SOD, and Mn-SOD.
Excessive amounts of ROS, such as the hydroxyl radical, accumulate and initiate oxidative
stress when there is an imbalance in the formation and sequestration of ROS. In cases of
diabetes, the pancreas has relatively low levels of antioxidant enzymes and a high glucose
concentration, and therefore is prone to ROS-induced damage of the insulin-producing B
cells [49].
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Figure 3. Intracellular formation of ROS (superoxide radical anion and hydroxyl radical); a superoxide
radical anion (O2·−) is formed from molecular oxygen either through an Fe(II)-catalyzed Fenton
reaction or through an enzyme-catalyzed single electron transfer from NADPH (or NADH). The
Fenton reaction of O2·− forms the highly reactive hydroxyl radial (HO·) through the intermediate
formation of H2O2, which is also classified as a ROS.

3. Lipid Peroxidation

The reaction of the hydroxyl radicals with lipids forms lipid hydroperoxides through
chain-propagating events. HNE, formed from the lipid peroxidation of linoleic acid, exerts
cytotoxicity through binding to nucleic acid bases and proteins. The nucleic acid adducts of
HNE contribute to mutagenesis and carcinogenicity, and the protein modifications result in
the loss of protein function or enzyme deactivation. Lipid peroxidation of polyunsaturated
fatty acids generates MDA, which forms nucleic acid-base adducts. In solution, MDA
exists in the enol tautomeric form. Deoxy-guanosine forms adducts with MDA on the
pyrimidine ring to give pyrimido[1,2a]purin-10(3H)-one as the major product (Figure 4).
MDA also forms adducts with deoxyadenosine and deoxycytidine, which in the absence of
intracellular DNA repair mechanisms would result in mutagenicity and carcinogenicity [50].
MDA levels are elevated in type 2 diabetes cases with coronary artery disease, and MDA is
also used as a marker of oxidative stress and lipid peroxidation [51].
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Some of the lipid peroxidation products, such as HNE, are abundantly found in cases
of diabetes and Alzheimer’s disease, meaning that HNE is used as a biomarker for the
progression of disease [52]. HNE reacts with proteins and nucleic acids to produce covalent
adducts, and these protein and nucleic acid modifications can lead to the onset of various
pathologies, including AD and diabetes. Hyperglycemia elevates the levels of HNE in
diabetic patients. HNE correlates with the production of Aβ peptide aggregates and may
trigger the onset of AD in cases of hyperglycemia [53]. HNE acts as a cell-signaling molecule
and thereby plays a role in the onset of hepatocellular carcinoma, pancreatic cancer, and
colorectal cancer in diabetic patients [54]. HNE is also involved in the onset and progression
of pulmonary fibrosis, a disease in which there is an excessive accumulation of extracellular
matrix in the lung tissues [55]. HNE levels are elevated in osteoarthritis cases, and it was
hypothesized that HNE induces transcriptional and posttranslational modifications of
collagen II and matrix metalloproteases 13 in chondrocytes, thereby affecting collagen
homeostasis and collagen degradation [56,57].

Naturally occurring polyphenols sequester HNE and, to some extent, attenuate the
toxicity effects of HNE. Thus, phloretin, a polyphenolic constituent of apples, undergoes the
Friedel–Crafts-type reaction with the activated aromatic ring to produce benzylic alcohol
along with other hemiacetal compounds, as shown in in vitro experiments (Figure 5) [58].
A dose-dependent trapping of HNE in phloretin-fed mice was also demonstrated [58].
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Figure 5. Sequestration of HNE by phloretin, a polyphenolic antioxidant found in apples; other
naturally occurring polyphenolic compounds, such as resveratrol, also sequester HNE and other
lipid peroxidation products, such as acrolein and MDA.

N-acetylcysteine, acting as an antioxidant, may also help to decrease the levels of HNE
and potentiate the antiarthritic effect of epalrestat, an aldose reductase inhibitor, when used
as a combination drug [59]. Similarly, glutathione also undergoes Michael addition to HNE
to form a nontoxic adduct, which is reduced in vivo to the corresponding alcohol [60,61].
Michael addition of HNE to the N2-amino group of deoxyguanosine, followed by cyclic
hemiaminal formation, forms the dG-HNE adduct (Figure 6) [62]. These observations
indicate that the cellular toxicity of HNE is due to the conjugate addition (Michael addition)
of the amino groups of proteins and nucleic acids (i.e., the nucleophilic addition of the amino
groups at the β-carbon of HNE), and thereby affecting their normal physiological functions
and nucleic acid replication and transcription. HNE also forms Michael adducts with
proteins through reactions with the histidine sidechains, as evidenced in high-performance
liquid chromatography-tandem mass spectroscopy (LC-MS/MS) studies. The Michael
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addition product of histidine reversibly undergoes cyclization to form the corresponding
hemiacetal (m/z 312), and the adduct is enzymatically reduced to the corresponding alcohol
(m/z 314) and oxidized to the corresponding carboxylic acid (m/z 328; Figure 6) [63]. These
compounds serve as biomarkers for lipid-peroxidation-derived carbonyl stress.
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HNE forms adducts with all four nucleic acid bases and alters their transcriptional
properties, resulting in cancerous mutations [64]. These nucleic acid–HNE adducts, together
with the oxidative stress-mediated factors, contribute to the onset of liver cancer. The DNA-
base adducts of HNE may be used as biomarkers for lipid-peroxidation-mediated DNA
damage in human cancers.

The antioxidants N-acetylcysteine (NAC) and glutathione have relatively high reactiv-
ities with Michael additions on HNE as compared to those of proteins and nucleic acids
and effectively sequester the HNE, thereby attenuating the toxicity of HNE (Figure 6).
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ROS, generated through cigarette smoking, upregulate angiotensin-converting enzyme 2
(ACE2) in the alveolar macrophages (AMs) and thereby increase the susceptibility of AMs
to SARS-CoV-2 infection. NAC decreases ACE2 expression by suppressing intracellular
ROS, and thus NAC and other ROS-sequestrating antioxidants may show a preventive
effect for the pulmonary complications of COVID-19 [65].

4. ROS and DNA Damage

ROS oxidizes 2′-deoxy-guanosine to 8-hydroxy-2′deoxyguanosine (8-oxo-dG; Figure 7),
thereby causing site-specific DNA damage. 8-oxo-dG is used as a marker for oxidative
stress and DNA damage. It was shown that myricetin, a constituent of tea and berries, may
cause DNA damage induced by H2O2, in the presence of Cu(I), presumably through the
in situ formation of Cu(I)-hydroperoxide [66]. Cancer drugs, such as diosgenin, promote
DNA damage in cancerous cells, mediated by ROS. Co-treatment using diosgenin and cis-
platin resulted in increased DNA damage, increased levels of ROS, and decreased cellular
antioxidant enzymes, thereby inducing apoptosis in the tumor cells [67].
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5. Reactive Nitrogen Species (RNS)

Reactive nitrogen species (RNS) include the free radical nitric oxide (NO) and peroxyni-
trous acid (ONOOH). Nitric oxide synthase (NOS) catalyzes the oxidative transformation of
L-arginine into NO, using NADPH as a cofactor. NO serves as a signaling molecule under
physiological concentration. However, the aberrant formation of excessive NO through
overactivation of NOS leads to oxidative stress. The reaction of NO with superoxide forms
peroxynitrous acid. Peroxynitrous acid is involved in the nitration of the tyrosine residues
of the proteins, thereby altering the protein function (nitrative stress) (Figure 8) [68].

Nitric oxide is involved in the nitrosylation of the thiol residues of proteins, thereby
exerting nitrosative stress. Under normal physiological conditions, S-nitrosylated proteins
mediate redox signaling and control the cellular metabolism. However, under oxidative
stress conditions (i.e., excessive production of NO), nitrosative stress contributes to the
pathophysiology of various diseases, including AD, Parkinson’s disease, and Huntington’s
disease [69–71]. In the case of AD and Parkinson’s disease, there is a correlation between
the S-nitrosylation of the redox enzyme protein disulfide isomerase (PDI) and endoplasmic
stress [71]. Peroxynitrous acid also generates the highly reactive hydroxyl radical through
the metal-ion-catalyzed Fenton reaction, further increasing oxidative stress (Figure 8).

Nitrotyrosine was found in cases of AD, amyotrophic lateral sclerosis (ALS), and
multiple sclerosis, and is used as a marker of these diseases, although there is no clear
evidence of whether these markers are the cause or epiphenomena of these diseases [72].
Nitrosative and nitrative stress are contributing factors to the neurodegeneration observed
in multiple sclerosis [73]. Therapeutics targeted at the modulation of NOS have not yet
been approved for clinical use, although selective NOS inhibitors may be developed for
treating multiple diseases, such as AD and diabetes [74].
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6. Oxidative Stress and Advanced Glycation End Products (AGEs)

AGEs are abundantly formed in a multitude of diseases, including diabetes, and
neurological disorders, such as AD and Parkinson’s disease. AGEs are formed through
nonenzymatic reactions of the reducing sugars with the primary amino groups of pro-
teins, followed by a series of oxidative transformations. These oxidative transformations,
called glycoxidations, are exacerbated under oxidative stress conditions, i.e., when reactive
oxygen species (ROS) and RNS are formed in excessive amounts through aberrant cell
metabolism [15,75,76]. The intermediary 1,2-dicarbonyl products of the Maillard reaction,
such as methylglyoxal, glyoxal, and 2-glucosone, are highly reactive with the protein
amino groups to form protein crosslinks, thereby inactivating the enzymes. The excessive
accumulation of these 1,2-dicarbonyl compounds (α-dicarbonyl compounds), also referred
to as carbonyl stress, contributes to the formation of AGEs and protein crosslinks. The
accumulation of AGEs, and in turn AGE–RAGE interactions, exacerbates oxidative stress,
carbonyl stress, and other pathogenic factors, including the imbalance of the gut microbiota.
Cereal polyphenolic compounds, through their antioxidative effects, provide a means of
nonpharmacological intervention in attenuating oxidative stress and carbonyl stress, and
thereby represent a preventive approach for the treatment of diabetes and neurological
diseases [77].

AGEs may be formed as intramolecular or intermolecular protein crosslinks (e.g.,
pentosidine, a lysine and arginine crosslink) or protein modifications involving lysine or
arginine side chains (e.g., argpyrimidine, Ne-carboxymethyllysine (CML)) (Figure 9). AGE
levels are correlated with an increasing severity of diabetes, diabetic neuropathy, diabetic
nephropathy, and neurological diseases, including AD and PD.

AGEs accelerate diabetes-related atherosclerosis by activating RAGE-NF-kB signaling,
thereby promoting low-density lipoprotein (LDL) transcytosis in endothelial cells [78]. AGE
inhibitors, such as pyidoxamine, sequester the intermediary AGE precursor methyl glyoxal
and other 1,2-dicarbonyl compounds, and thereby prevent atherosclerosis formation [79].
In vitro studies have shown that AGEs enhance the activation of NADPH oxidase and
thereby ROS generation in the endothelial cells. Losartan, ramipril, resveratrol, and N-
acetylcysteimiine (NAC) attenuated AGE-induced endothelial dysfunction, presumably
through their antioxidant effects and ROS sequestration [80].

AGEs are also formed during the high-temperature processing of foods. These dietary
AGEs, when ingested, may also contribute to disease onset and the progression of non-
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alcoholic fatty liver disease (NAFLD) [81], pediatric obesity [82], cancer [83], dementia [84],
and diabetes [85].
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7. AGE Inhibitors as Therapeutic Targets

Thiazolium-based compounds, such as ALT-711 (Alagebrium; Alteon, Inc., San Jose
CA, USA), break pre-formed AGE-protein cross links. Such AGE-crosslink breakers are
potentially useful as therapeutics for treating AGE-related diseases (Figure 10). Clinical
trials of ALT-711 showed that it is effective in attenuating systolic blood pressure and has a
positive outcome in cases of diastolic heart failure [86,87].
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Aminoguanidine (pimagedine), in vitro, showed anti-glycating and AGE-inhibitory
effects. However, in clinical trials, this compound showed little positive outcome, and
clinical trials were terminated because of the unfavorable risk-to-benefit ratio [88,89].

Although the concept of AGE breakers and AGE inhibitors in attenuating AGEs and
AGE-related diseases is promising for the future development of therapeutics for diabetes
and other AGE-related diseases, currently there are no FDA-approved candidates based
on AGE inhibitors or breakers. This may be attributed to the complexity of the structures
of AGEs and the poorly established mechanistic pathways of their formation to date.
Targeting oxidative stress resulting from AGE–RAGE interactions, as described below,
may be an alternative approach for developing therapeutics based on the AGE-induced
oxidative stress.

8. AGE–RAGE Interactions and Oxidative Stress

AGEs, through interactions with receptors for AGEs (RAGE), initiate further oxida-
tive stress through a series of signaling cascades [14,90]. AGE–RAGE interactions lead
to the activation of NADPH oxidase, and thereby increased ROS production and lipid
peroxidation. AGE–RAGE interactions also result in the activation of nuclear factor kappa
beta (NFkB), and thereby lead to gene activation for the upregulation of proinflammatory
cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor
alpha (TNF-α) [91].

AGE–RAGE interactions lead to the elevated production of matrix metalloproteinases,
which are involved in the progression of aortic aneurisms. The increased oxidative stress
resulting from AGE–RAGE interactions thus plays a role in aortic aneurysms [92]. In
accordance with this correlation between AGE–RAGE interactions and aortic aneurysms,
AGE–RAGE stress, cytokines and matrix metalloproteinases are elevated in cases of
aortic aneurisms.

Increased oxidative stress leads to AGE accumulation, which in turn can exacerbate
oxidative stress through their binding to RAGE. High AGE levels are correlated with RAGE
expression. RAGEs also exacerbate oxidative stress through binding to High Mobility
Group Box-1 (HMGB-1) proteins. The AGE-RAGE/HMGB-1 signaling pathway is involved
in the onset of type 2 diabetic cardiomyopathy. About two-thirds of type 2 diabetic patients
develop diabetic cardiomyopathy. Artemisinin, an antimalarial drug, was shown to attenu-
ate oxidative stress induced by the AGE-RAGE/HMGB-1 signaling pathway and improve
diabetic cardiomyopathy [93].

Dietary polyphenols scavenge ROS and thereby attenuate the formation of the reactive
α-dicarbonyl compounds, whose high reactivity with the protein amino groups leads to the
formation of intramolecular and intermolecular protein crosslinks and AGEs. Polyphenolic
antioxidants also regulate the AGE–RAGE axis and the microbiota–gut–brain axis, thereby
preventing neurodegenerative diseases, including AD, ALS, and PD [94,95].

9. RAGE Inhibitors as Therapeutic Candidates

RAGE inhibitors bind to RAGE and thereby attenuate the binding of RAGE to AGEs
and other ligands, including amyloid beta peptide (Aβ). RAGE inhibitors can attenuate
AGE–RAGE interactions, and thereby the resulting oxidative stress effects will be substan-
tially diminished. RAGE inhibitors, therefore, have potential therapeutic effects on multiple
AGE-related diseases, including neurodegenerative diseases and diabetes.

A RAGE inhibitor, FPS-ZM 1 (4-chloro-N-cyclohexyl-N-(phenylmethyl)benzamide),
attenuates AGE-induced neuroinflammation and oxidative stress, as shown in vitro in the
primary microglia of rats (Figure 11) [96]. FPS-ZM 1 attenuated AGE-stimulated NADPH
oxidase and ROS expression, and thereby exhibited neuroprotective effects. FPS-ZM 1 binds
to the V-domain of RAGE, and this RAGE-inhibitory effect resulted in the suppression of
the influx of circulating Aβ1-40 and Aβ1-42 into the brain in a mouse model of AD. This
blockade of RAGE reduced the Aβ1-42 and Aβ1-40 levels in the brain and improved the
cognitive performance in the mouse model [17].
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The RAGE inhibitor azeliragon (IUPAC name: 3-[4-[2-butyl-1-[4-(4-chlorophenoxy)
phenyl]-1H-imidazol-4-yl]phenoxy]-N,N-diethyl-1-propanamine; also called TTP488) sup-
presses metastasis in triple-negative breast cancer, and displayed a favorable safety profile
in Phase II clinical trials. This RAGE-inhibitor strategy may lead to small-molecule-based
therapeutical candidates for treating various oxidative-stress-mediated diseases, including
AD [31,97].

RAGE has several ligands, including Aβ, which is abundantly generated in AD.
Inhibiting RAGE with RAGE inhibitor compounds prevents RAGE-mediated signaling for
the expression of inflammatory cytokines, and therefore RAGE inhibitors may prove to be
clinically useful compounds for treating AD and other AGE-related diseases, including
diabetes and cancer. In animal models, and in clinical trials, azeliragon has been shown to
attenuate multiple pathological pathways in AD [97–99].

10. Conclusions and Outlook

Oxidative stress is the driving force for the onset and progression of multiple diseases,
including diabetes, obesity, and AD. ROS and RNS play a major role in the structural
modification of proteins, nucleic acids, and lipids. The latter structural modifications of
proteins and nucleic acids contribute to the pathological onset of diabetes, cancer, AD, and
cardiovascular diseases. Oxidative stress also leads to the excessive formation of AGEs, and
thereby the over-expression of RAGE. Paradoxically, the binding of AGEs to RAGE further
exacerbates oxidative stress through a series of signaling cascades, and this AGE–RAGE
interaction and the ensuing signaling cascade for the release of inflammatory cytokines
and nuclear transcription factors are leading causes for the onset of pancreatic cancers in
cases of diabetes and obesity.

Current therapeutic approaches involving AGE inhibitors and AGE breaker com-
pounds, such as aminoguanidine and alagebrium (ALT-711), have displayed limited success
in clinical trials. There is an increasing effort to develop RAGE inhibitors as therapeu-
tics for AGE-related diseases, including AD and diabetes. Small-molecule-based RAGE
inhibitors, such as FPS-ZM 1 and azeliragon, are currently in various stages of clinical
trials for treating AD and cancer. As shown in vivo in AD models of mice, FPS-ZM 1
attenuates the influx of circulating Aβ1-40 and Aβ1-42 into the brain and improves cognitive
performance. Therapeutics based on small-molecule-based antioxidants and nanozymes
that can sequestrate ROS and RNS have potential impacts in drug discovery for diabetes
and neurological diseases.

AGE inhibitors and breakers and RAGE inhibitors have potential impacts in treating
oxidative-stress-mediated diseases, including diabetes and AD. There is a renewed interest
in developing small-molecule-based RAGE inhibitors for treating cancers and neurological
diseases, encouraged by recent success in clinical trials. We hope that this review will
stimulate further research in developing effective therapeutics, especially in developing
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selective RAGE inhibitors and antioxidant nanozymes that can permeate the BBB in order
to treat devastating diseases such as AD.
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