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Abstract: Over the past few decades, recognition of early lung cancers was researched for effective
treatments. In early lung cancers, the invasiveness is an important factor for expected survival
rates. Hence, how to effectively identify the invasiveness by computed tomography (CT) images
became a hot topic in the field of biomedical science. Although a number of previous works were
shown to be effective on this topic, there remain some problems unsettled still. First, it needs a large
amount of marked data for a better prediction, but the manual cost is high. Second, the accuracy
is always limited in imbalance data. To alleviate these problems, in this paper, we propose an
effective CT invasiveness recognizer by semi-automated segmentation. In terms of semi-automated
segmentation, it is easy for doctors to mark the nodules. Just based on one clicked pixel, a nodule
object in a CT image can be marked by fusing two proposed segmentation methods, including
thresholding-based morphology and deep learning-based mask region-based convolutional neural
network (Mask-RCNN). For thresholding-based morphology, an initial segmentation is derived by
adaptive pixel connections. Then, a mathematical morphology is performed to achieve a better
segmentation. For deep learning-based mask-RCNN, the anchor is fixed by the clicked pixel to reduce
the computational complexity. To incorporate advantages of both, the segmentation is switched
between these two sub-methods. After segmenting the nodules, a boosting ensemble classification
model with feature selection is executed to identify the invasiveness by equalized down-sampling.
The extensive experimental results on a real dataset reveal that the proposed segmentation method
performs better than the traditional segmentation ones, which can reach an average dice improvement
of 392.3%. Additionally, the proposed ensemble classification model infers better performances than
the compared method, which can reach an area under curve (AUC) improvement of 5.3% and a
specificity improvement of 14.3%. Moreover, in comparison with the models with imbalance data,
the improvements of AUC and specificity can reach 10.4% and 33.3%, respectively.

Keywords: biomedical science; lung cancer; invasiveness recognition; semi-automated segmentation;
imbalance data
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1. Introduction
1.1. Background

Cancer was the second top cause of deaths in 2018 according to reports by the World
Health Organization (WHO) [1]. Among different cancers, lung cancer ranks first whether
for male and female people. Therefore, the treatment and prevention of lung cancer
attracted many researchers’ concentration in recent years. Until now, the best treatment
for lung cancer was surgical removal of the tumor at the early stage. Even with surgeries,
a recurrence will occur to cause death for around 20% to 30% of patients. Consequently,
recent studies made on clinical medicine try to identify the recurrence factor, such as
invasiveness, so as to perform necessary treatments in advance and further reduce the
recurrence or mortality. Figure 1 demonstrates examples of an invasive nodule and a non-
invasive nodule. In practice, the invasiveness is a critical reference that is highly related to
the diagnosis, staging, treatment recommendation, and prognosis for lung cancer. With
an adequate surgical resection, the patients with non-invasive nodules have 100% or near
100% disease-free survival, and those with localized invasive nodules were associated with
a 5-year survival rate of 70–90%. As a result, how to effectively identify the invasiveness of
early lung cancers is a very important issue researched in the field of biomedical science
over the past few years. In real applications, irregular shape, solid component, and tumor
size are three important considerations for identifying the invasiveness.

Biomedicines 2023, 11, x FOR PEER REVIEW 2 of 22 
 

1. Introduction 
1.1. Background 

Cancer was the second top cause of deaths in 2018 according to reports by the World 
Health Organization (WHO) [1]. Among different cancers, lung cancer ranks first whether 
for male and female people. Therefore, the treatment and prevention of lung cancer at-
tracted many researchers’ concentration in recent years. Until now, the best treatment for 
lung cancer was surgical removal of the tumor at the early stage. Even with surgeries, a 
recurrence will occur to cause death for around 20% to 30% of patients. Consequently, 
recent studies made on clinical medicine try to identify the recurrence factor, such as in-
vasiveness, so as to perform necessary treatments in advance and further reduce the re-
currence or mortality. Figure 1 demonstrates examples of an invasive nodule and a non-
invasive nodule. In practice, the invasiveness is a critical reference that is highly related to 
the diagnosis, staging, treatment recommendation, and prognosis for lung cancer. With 
an adequate surgical resection, the patients with non-invasive nodules have 100% or near 
100% disease-free survival, and those with localized invasive nodules were associated 
with a 5-year survival rate of 70–90%. As a result, how to effectively identify the invasive-
ness of early lung cancers is a very important issue researched in the field of biomedical 
science over the past few years. In real applications, irregular shape, solid component, and 
tumor size are three important considerations for identifying the invasiveness. 

  

 

 
(a) (b) 

Figure 1. (a): Example of an invasive nodule; (b): example of a non-invasive nodule. 

In general methods, the invasiveness recognition can be decomposed into two stages, 
namely nodule segmentation and invasiveness classification. For nodule segmentation, 
few recent works are very successful in partitioning the nodule automatically and pre-
cisely. This is because a precise partition needs big training data and the manual annota-
tion cost is relatively high. Further, the invasiveness classification is not easy to pursue 
without precise partitions. In addition, another difficulty for traditional classifiers is to 
conduct an effective classification model as facing the imbalanced invasiveness data. In 
the imbalance data, majority samples will highly dominate the prediction, leading to bi-
ased results, such as the result with a high accuracy and a low specificity. To aim at these 
issues, in this paper, an effective method for recognizing the invasiveness of lung nodules 
is proposed via a semi-automated segmentation. The major intent behind the semi-auto-
mated segmentation is to provide the doctors with an easy way to mark the lung nodules 
more precisely. Just by clicking the target, the proposed method will segment the nodule 
automatically. Afterwards, the proposed classifier recognizes the invasiveness by boost-
ing ensemble learning. On the whole, the main contribution can be summarized into the 
following aspects; 

I. For technique, it further consists of two following sub-contributions, related to seg-
mentation and classification, respectively. 

(1.) In terms of semi-automated segmentation, a hybrid segmentation is proposed by 
fusing thresholding-based morphology and deep learning-based mask-RCNN. 

Figure 1. (a): Example of an invasive nodule; (b): example of a non-invasive nodule.

In general methods, the invasiveness recognition can be decomposed into two stages,
namely nodule segmentation and invasiveness classification. For nodule segmentation,
few recent works are very successful in partitioning the nodule automatically and precisely.
This is because a precise partition needs big training data and the manual annotation cost
is relatively high. Further, the invasiveness classification is not easy to pursue without
precise partitions. In addition, another difficulty for traditional classifiers is to conduct an
effective classification model as facing the imbalanced invasiveness data. In the imbalance
data, majority samples will highly dominate the prediction, leading to biased results, such
as the result with a high accuracy and a low specificity. To aim at these issues, in this paper,
an effective method for recognizing the invasiveness of lung nodules is proposed via a
semi-automated segmentation. The major intent behind the semi-automated segmentation
is to provide the doctors with an easy way to mark the lung nodules more precisely. Just by
clicking the target, the proposed method will segment the nodule automatically. Afterwards,
the proposed classifier recognizes the invasiveness by boosting ensemble learning. On the
whole, the main contribution can be summarized into the following aspects;

I. For technique, it further consists of two following sub-contributions, related to seg-
mentation and classification, respectively.

(1). In terms of semi-automated segmentation, a hybrid segmentation is proposed
by fusing thresholding-based morphology and deep learning-based mask-
RCNN. Basically, the thresholding-based morphology is the one with statistical
thresholding and mathematical shaping, while the deep learning-based mask-
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RCNN is a region-based convolutional neural network with a fixed anchor.
Finally, the better segmentation is derived by switching them.

(2). In terms of invasiveness classification, a boosting ensemble classifier is con-
structed by equalized down-sampling (called BEED). Especially for imbalance
data, the equalized down-sampling generates multiple balanced models, and
then a group decision is performed to effectively recognize the invasiveness of
early lung cancers.

II. For novelty, most existing real systems mark the tumors as an initial segmentation by
fully supervised learning. Then, it still needs to revise the segmentation. Otherwise,
without initially automated segmentations, the manual cost is very high. These
problems motivate us to conduct a semi-automated segmentation for a convenient
usage. In addition to usage convenience, the semi-automated method is more effective
than the fully automated ones because it employs click information to achieve a more
accurate segmentation.

III. For application, the proposed semi-automated segmentation satisfies the real need of
generating a massive training dataset for deep learning. Additionally, the proposed inva-
siveness recognition can be materialized in real medical systems for effective treatments.

IV. For extension, the proposed ideas of semi-automated segmentation and equalized
down-sampling can be extended to other medical fields also with imbalance data such
as liver tumor, brain tumor, and so on.

To realize the contributed effectiveness, the proposed methods were evaluated by
numerous experiments. The experimental results deliver two aspects. First, the proposed
semi-automated segmentation performs more effectively than the compared methods,
measured by precision, recall, F-measure, and dice. Second, the invasiveness classification
integrating equalized down-sampling and boosting ensemble learning is more robust than
the competitors in terms of accuracy, sensitivity, specificity, and AUC. Overall, the semi-
automated segmentation can be viewed as a support for the invasiveness classification.
Technically, the imbalance problem is alleviated. In usage, the ground truth is easy to
generate. In practical terms, a better treatment will be recommended.

The remainder of this paper is organized as follows: A systematic review of past
studies is provided in Section 2. In Section 3, the proposed methods of semi-automated
segmentation and invasiveness recognition are presented in detail. The empirical study
and the research limitation are described in Sections 4 and 5, respectively. Finally, the
conclusions are given in Section 6.

1.2. Related Work

So far, there is much past literature made on biomedical science, referring to a set
of algorithms learning from medical data on risk assessment, disease recognition, and
treatment recommendation. To aim at the issue of disease recognition, this paper presents
an approach for recognizing the invasiveness of lung nodules by a semi-automated segmen-
tation. Because the core functions are nodule segmentation and invasiveness recognition,
the review of related works is classified by three categories, namely deep learning on object
segmentation, biomedical image recognition, and invasiveness recognition of lung nodules.

1.2.1. Deep Learning on Object Segmentation

In general, image segmentation is sequentially proposed by two types, namely two-
stage segmentation and one-stage segmentation. For two-stage segmentation, selective
search [2] is the earliest one that performed hierarchical grouping to segment the objects.
Afterwards, numerous related works are devoted on object detection. OverFeat [3] fused
recognition, localization, and detection by CNN. Then, R-CNN [4], Fast R-CNN [5], and
Faster R-CNN [6] were sequentially proposed to refine the two-stage object detection. In
addition to object detection, the other paradigms in two-stage segmentation are semantic
segmentation and instance segmentation. FCN [7] focused the semantic segmentation using
a region-based fully convolutional network. Mask R-CNN [8] combined Faster R-CNN and
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FCN to achieve instance segmentation. For one-stage segmentation, based on YOLO [9],
several extended versions with respect to YOLOv2 to YOLOv8 [10–16] were proposed to
improve the segmentation performances in terms of effectiveness and efficiency.

1.2.2. Biomedical Image Recognition and Segmentation

Based on deep learning, many state-of-the-arts methods [17–20] were shown to be
effective on biomedical image recognition and segmentation. For image recognition, Tung
et al. [21] made an empirical study to detect the scaphoid fracture. Vankdothu et al. [22]
provided a brain tumor recognition for magnetic resonance imaging (MRI) images by
integrating K-means and recurrent convolutional neural networks. Hart et al. [23] employed
CNN to recognize the melanocytic lesions in selected whole-slide images. For image
segmentation, U-net is the base proposed by Ronneberger et al. [24]. Zhou et al. [25]
extended U-net as U-net++, connecting multiple U-nets. Roy et al. [26] added the squeeze
and excitation (SE) module into U-net to enhance the segmentation quality. Oktay et al. [27]
presented an extension of U-net called attention U-net, integrating the proposed attention
gate (AG) model. Further, Ni et al. [28] enhanced the attention U-net as a residual attention
U-net. Saumiya et al. [29] modified the residual U-net by residual deformable convolutions
and a split graph network with convolutional spatial and channel features.

1.2.3. Invasiveness Recognition of Lung Nodules

Because tumor invasiveness is a very important guidance for an effective treatment
plan, how to effectively recognize the invasiveness is a hot research topic. For this purpose,
many biomedical works were proposed by machine learning [30]. Qiu et al. [31] compared
morphological and radiomics features for distinguishing invasive adenocarcinomas by
feature selection such as the chi-square test, F1, and LASSO (least absolute shrinkage
and selection operator). Kao et al. [32] aimed at invasiveness of the lung pure ground-
glass nodules (PGGNs) by a radiomics prediction model based on forward sequential
selection and logistic regression. Sun et al. [33] provided multivariate logistic regression
analysis for PGGNs with LASSO. Song et al. [34] compared the results of using logistic
regression (LR), extra trees (ET), and a gradient boosting decision tree (GBDT) with selected
radiomics features.

2. Materials and Methods
2.1. Materials

In the experiments, the data are composed of two sets used for three evaluations,
namely lung segmentation, nodule segmentation, and invasiveness recognition. For lung
segmentation, the data were downloaded from the kaggle competition, namely Data Sci-
ence Bowl 2017 [35]. In these data, there are 50 patients with around 6500 images, which
were randomly split into 5 sets for a five-fold cross validation. For nodule segmentation,
the data came from the Departments of Diagnostic Radiology and Surgery, Kaohsiung
Chang Gung Memorial Hospital (called KCGMH), Taiwan, containing 180 patients with
1819 images. Further, nodules of each image were marked by radiologists through the pro-
posed online marking system. Among 180 patients, 35 patients with 326 images were ran-
domly selected for testing and the others served for training. For invasiveness recognition,
190 nodules were selected from 180 patients of KCGMH data. A total of 160 nodules were
invasive (called positive) and 30 nodules were non-invasive (called negative). A random
five-fold cross validation was also executed for this evaluation. Note that the major reason
for using two different sets in the experiments is interpreted by two points. First, the lung
segmentation is the preprocessing of thresholding-based nodule segmentation, but it needs
much effort to mark the training lungs. To save the effort, we tried to use the existing
kaggle data instead of KCGMH data for training a lung segmentation model. Because the
final nodule segmentation was effective, we did not use the KCGMH data to train the lung
segmentation model. That is, the lung segmentation was completed finally by the kaggle
training model. Yet, it leaves a future issue to be investigated for the effectiveness if using
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the KCGMH data. Second, on the contrary, the kaggle data are not with the invasiveness
information. Therefore, they cannot be used for invasiveness recognition. For these con-
siderations, the kaggle data were used for lung segmentation, and the KCGMH data were
used for nodule segmentation and invasiveness recognition in this paper.

2.2. Methods
2.2.1. Overview of the Proposed Approach

To achieve the contributions mentioned above, in this paper, an effective method
for classifying the invasiveness of lung cancers is proposed by using a semi-automated
segmentation. Figure 2 shows the framework of the proposed method, including offline
preprocessing and online recognition.
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I. Offline preprocessing: In this stage, lungs are partitioned from the known computed
tomography (CT) images first. Next, the necessary components are generated for on-
line recognition, including adaptive threshold, the anchor-fixed Mask-RCNN model,
and invasiveness recognition model. For the adaptive threshold, it is determined by
two statistical regressions. For Mask-RCNN, it is trained with a fixed anchor. For the
invasiveness recognition model, the features are extracted and filtered first. Then, a
set of balanced classification models is trained by equalized down-sampling.

II. Online recognition: If the offline preprocessing is completed, the online recognition
starts with a submission of unknown CT images. Next, the user will click the target
nodules. Then, the system attempts to segment the nodules from unknown images by
thresholding. If the result is null, the segmentation will be finished by Mask-RCNN.
Finally, based on the segmented nodules, the invasiveness will be recognized by the
boosting an ensemble classification model called BEED.

2.2.2. Lung Segmentation

This is an essential operation for offline preprocessing or online recognition. In this
operation, the kernel function is an extension of the well-known Unet [24], namely SeRe-
sUnet [36]. As shown in Figure 3, it is a symmetry network consisting of a four-level encoder
and a four-level decoder. At each level, the output of the encoder will be concatenated
to the input of the decoder. The additional core ideas to Unet are attention mechanism
and squeeze-and-excitation block, which can be referred to as Attention Unet [27] and
SeNet [26], respectively. Figure 3 shows the architecture of SeResUnet where the squeeze-
and-excitation block (named se_block) and the attention mechanism are embedded in the
encoder and decoder, respectively.
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2.2.3. Offline Preprocessing
Determining the Threshold Formula

In the proposed method, the first segmentation component is the thresholding-based
segmentation with an adaptive threshold. This is because the difference between the
nodule and non-nodule is not easy to discriminate. To overcome this problem, a formula
to determine the adaptive threshold is necessary. In this stage, the threshold formula is
derived by five steps. First, the CT-stored values are transformed into Hounsfield units
(called hu in this paper) from the known nodules by Equation (1):

Hu = B + M × SV, (1)

where Hu denotes the Hounsfield unit, B denotes the rescale intercept, M denotes the
rescale slope, and SV denotes the CT stored value. Second, for each nodule, the average
and standard deviation of Hus are calculated. Third, a linear function for online estimating
the average of unknown nodule hu values is approximated. Equation (2) is the linear
function with two coefficients, which can be defined as:

Avg =β0 +β1 × Start, (2)

where β0 and β1 are coefficients, Avg stands for the estimated average, and Start stands
for the pixel (hu) clicked by the user. Based on the known averages and user clicks, the β0
and β1 are approximated as −173.34 and 0.71, respectively, by a simple linear regression in
this paper. Fourth, a function for online estimating the unknown standard deviation Std is
derived, which is defined as:

Std = Regression(Start, Avg), (3)

where Regression(*,*) is the multiple regression model trained by known Starts, averages,
and standard deviations. Fifth, the threshold formula is thereby derived, which is defined as:

Threshold = Avg − α × Std, (4)

where Avg is calculated by Equation (2), Std is calculated by Equation (3), and α is the
weight of Std. The larger the α, and the smaller the threshold, the larger the segmented area.
Finally, three results with respect to simple linear formula, regression model, and threshold
formula are ready for online thresholding-based segmentation. Note that the α is set as 2 in
this paper.
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Training the Anchor-Fixed Mask-RCNN

The other segmentation component in addition to thresholding is the revised Mask-
RCNN. In fact, it is more efficient and effective than the original Mask-RCNN because
the anchor is fixed by the clicked pixel. That is, without scanning the whole image, the
search space is located around the fixed anchor. Figure 4 shows an example of anchor-fixed
Mask-RCNN, which indicates that the anchor is fixed to generate multiple potential rgion
of interests (ROIs). Thus, it is more precise and fast than the original Mask-RCNN, which
can be referred to in the experimental results in Section 4.
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Figure 5 shows the framework of Mask-RCNN [7], consisting of fully convolutional
networks (FCN) and Faster R-CNN (region-based CNN). In the original Mask-RCNN,
the images are processed into ROIs with a size of 7 × 7 through the convolutional neural
network (CNN), region proposal network (RPN), and region of interest align (ROI Align).
Then, the FCN generates the mask, and the Faster R-CNN performs the class prediction
(Class pred.) and bounding box prediction (BBox pred.). Finally, the objects will be
segmented semantically by fusing results of FCN and Faster R-CNN. Because it needs a
number of anchors to predict, the computational cost is high. To deal with this problem,
in this paper, we modify the Mask-RCNN as a revised Mask-RCNN from anchor-free to
anchor-fixed. This is because the object information is given by the user click, so as to
reduce the prediction cost without scanning all anchors. In this paper, for each feature
map, 3 × 3 anchors around the clicked pixel will be calculated. The complexity of revised
Mask-RCNN over that of the original one reaches 21824/45 ≈ 473 times.
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Training the Invasiveness Recognition Model

On the basis of ground truths, the proposed invasiveness recognition model is con-
structed by a set of balanced models, which can be viewed as an ensemble model. Because
the minority data are much smaller than the majority data, the primary intent of the pro-
posed method is to cover all potential cases, where each case combines the minority set
with different majority subsets. Actually, it can also be regarded as a group decision with
ensemble learning. Oriented from this idea, the majority data are randomly divided several
equalized subsets and each subset is equivalent to the minority data size. Such processing
is called equalized down-sampling in this paper, which can be defined as that; assume there
are m majority elements and n minority elements. There will be (m/n) subsets generated
where the ratio of majority to minority is n:n. After down-sampling, this stage will be
decomposed into several steps. First, the radiomics features [37,38] are extracted from the
nodules. Second, the feature selection will be performed to approximate nearly optimal
features. Third, a set of collaborative classifiers will be trained for effectiveness assessments.
Fourth, each classifier is assigned a weight. The procedure of assigning weights is shown in
Figure 6. Lines 1–7 depict that the AUC of each classifier is derived by classifying the other
training sets. Lines 8–9 depict that the maximum and minimum AUCs are determined.
Lines 10–13 depict that the classifier weight is derived by the minimum to maximum
normalization. Finally, a number of weighted classification models are constructed for
online recognition.
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2.2.4. Online Recognition

The online recognition is triggered with a submission of unknown images. For each
image, the lung is segmented first. Thereupon, the nodule segmentation and invasiveness
recognition are executed sequentially. The details of online recognition will be presented in
the following subsections.

Thresholding-Based Morphology for Semi-Automated Segmentation

This is the first stage for nodule segmentation, which is based on the segmented lung
and a user click named Start. That is, the search space in this stage is limited in the lung
and the click. As shown in Figure 7, this stage can be decomposed into two phases, namely
thresholding and morphology. In the first phase, the hu features are extracted from the
image first. Next, the user click is input to Equation (2) and the average is thereby derived.
Then, with the user click and estimated average, the standard deviation is calculated
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by Equation (3). Finally, based on the estimated average and standard deviation, the
threshold is approximated by Equation (4). According to the approximated threshold
and Start, the initial segmentation is derived by binary thresholding. The main idea of
binary thresholding is to perform the pixel connection under the threshold constraint. In
this method, the binary thresholding uses eight neighbors surrounding the central cell
as the connection shape. Although the threshold is adaptive, there still exist possible
connections between the nodule and non-nodule. Figure 8b shows an example of this
problem. Therefore, a set of morphology operations is necessary. First, the erodge is
performed to split the nodule and non-nodule. Afterwards, the nosie removal and dilate
are performed to reshape the result. In this paper, the noises indicate the areas do not
include the user click. Figure 8a is an example of the input image, and Figure 8b–e shows
the related results of all operations. In the morphology, the kernel size is 3 × 3 and the
number of iterations is 1.
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Deep Learning-Based Mask-RCNN for Semi-Automated Segmentation

In the proposed segmentation, Mask-RCNN is proposed as a complementary solution
while the thresholding-based morphology cannot find the nodules; that is, no result is
segmented. To make Mask-RCNN more effective and efficient, the Mask-RCNN is modified
as an anchor-fixed version, called revised Mask-RCNN. Even fixing the anchor, an issue
to cope with is the determination of candidate segmentation results. For this issue, the
final segmentation for revised Mask-RCNN is the one with the maximum overlap with all
segmentations results. Figure 9 is an example of determining the final results of revised
Mask-RCNN. In this example, there are three candidate results, including A, B, and C.
Given that the union of intersections is U = ∪{D, E, F, G}, the final result is B because the
overlap between B and U is maximum.
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Invasiveness Recognition

As shown in Figure 2, the workflow comprises steps of radiomics features extraction,
feature filtering, and classifying. Based on the selected features, the collaborative models
classify the unknown nodule. Next, the weighted positive results are summed. Finally,
if the summed result exceeds the criteria, it will be predicted as positive. Otherwise, it
will be recognized as negative. Thereupon, the classification result will be a treatment
consideration for the doctor. Note that the criterion in this paper is 0.5.

3. Results

After presenting the proposed method in the preceding section, what we want to
show next is the justification of contributed effectiveness. Because the proposed method
is composed of two main stages, namely semi-automated segmentation and invasiveness
recognition, the experiments were made on these two topics. In this section, the details
of experimental settings and empirical results will be shown by a number of comparative
evaluations. At last, an insightful discussion will be lifted. Via the experimental results, the
contributions on two topics can be clarified clearly.

3.1. Experimental Settings

Two types of experimental measures are employed for segmentation and recognition.
One is measuring the segmentation quality based on spatial intersections, such as Dice,
Precision, Recall, and F-measure, which can be defined as:

Dice =
2 × |Predicted ∩ Truth|
|Predicted|+|Truth| (5)

Precision =
|Correct|
|Predicted| (6)
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Recall =
|Correct|
|Truth| , and (7)

F−measure =
2(Precision ∗ Recall)

Precision + Recall
(8)

where Predicted denotes the set of segmentations, Correct denotes the set of correctly seg-
mented ones, and Truth denotes the set of ground truths. The other experimental measures
were employed for validating the recognition quality based on a confusion matrix. Basi-
cally, this matrix includes four elements, namely true positive (TP), false positive (FP), false
negative (FN), and true negative (TN), representing the successful predictions and failed
predictions for positives and negatives, respectively. According to this matrix, measures of
Accuracy, Sensitivity, and Specificity are defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Sensitivity =
TP

TP + FN
, and (10)

Speci f icity =
TN

TN + FP
(11)

In addition to Accuracy, Sensitivity, and Specificity, the other recognition measure
is AUC, indicating the area under the curve of receiver operating characteristic (ROC),
presenting the classification performance under different thresholds of true positive rates
and false positive rates. In general, Accuracy represents the overall prediction quality and
Precision represents the successful rates of prediction results. In contrast, Sensitivity and
Specificity represent true positive rates and true negative rates, respectively, for ground
truths, which are sensitive to balance data.

3.2. Experiments on Semi-Automated Segmentation
3.2.1. Results of Lung Segmentation

As we can recall from Figure 2, lung segmentation is the fundamental component
before thresholding-based morphology. Table 1 depicts the results of a five-fold cross
validation by using SeResUnet. On average, the dice reaches 98.6% with an insignificant
standard deviation of 0.168, representing a robust recognition result. Accordingly, the best
one in these five models was selected as the lung segmentation model in the succeeding
binary thresholding segmentation. In this model, the related parameters of epoch, batch
size, and learning rate are 100, 2, and 0.0001, respectively.

Table 1. Five-fold validation for lung segmentation.

Fold # Dice Standard Deviation

Fold 1 0.991 0.104842

Fold 2 0.982 0.241201

Fold 3 0.984 0.247245

Fold 4 0.990 0.046181

Fold 5 0.983 0.198752

Average 0.986 0.167644
# denotes the number of the fold.

3.2.2. Ablation Study

In the semi-automated segmentation, it comprises components of thresholding-based
morphology (termed TM in the experiments) and deep learning Mask-RCNN (termed MR
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in the experiments). Hence, clarifications for the impacts of individual components are
necessary. Figure 10 shows the ablation study, presenting that the segmentation fusing
two components achieves the best dice in contrast to individual ones. Figure 11 is the
further analysis, showing that around 82.2% of ground truths can be detected and 75.4%
of predictions are correct. Note that in this evaluation, the parameters of Mask-RCNN for
epoch, batch size, and learning rate are 30, 1, and 0.001, respectively.
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3.2.3. Comparisons with Existing Semi-Automated Segmentation Methods

From the ablation study above, we can know that the proposed thresholding-based
morphology and deep learning Mask-RCNN are complementary components for a better
fusion. The final issue to address for semi-automated segmentation is: what if it is compared
to that of other existing methods? For this issue, a number of existing methods were
compared with the proposed fusion method (named SSTM, semi-automated segmentation
of fusing TM and MR). Table 2 shows the compared methods, including five existing
methods. In these methods, level set is a segmentation that shapes the object by numerical
calculations on a Cartesian grid. Static threshold fixes the optimal threshold by experiences,
which was set as−750 in this paper. The other three methods dynamically set the thresholds
by mean, Gaussian, and standard deviation of objects, respectively. Note that all compared
methods are based on the pixel named Start clicked by the user.

Figure 12 shows the comparison among the compared methods in terms of dice. This
comparison delivers some aspects. First, the level set is better than binary thresholding
methods. Second, the method with a static threshold is much better than that with adaptive
thresholds. The potential reason is that the feature difference between nodule and non-
nodule is not derived by these methods. Third, in contrast to the compared methods, the
proposed method SSTM takes advantages of both TM and MR to achieve a better result.
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Here, the main advantage of TM is to approximate a robust threshold by two regression
models, while MR is superior to distinguish the feature difference by region-based CNN.

Table 2. Compared methods for semi-automated segmentation.

Method Terminology

Proposed Fusion of TM and MR SSTM

Level-Set [39] LS

Static Threshold ST

Adaptive Threshold by Mean [40] ATM

Adaptive Threshold by Gaussian [41] ATG

Adaptive Threshold by OTSU [42] OTSU
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3.2.4. Illustrative Examples of Segmentation Results

Figure 13 shows illustrative examples of better results made by thresholding-based
morphology and deep learning-based Mask-RCNN, respectively. In Figure 13b, deep
learning-based Mask-RCNN is better than thresholding-based morphology in segmenting
the complicated nodule. This is because the thresholding-based morphology cannot deal
with the nodules out of the lung. In this case, the pixels of nodules and non-nodules will be
connected in the thresholding-based morphology. On the contrary, deep learning-based
Mask-RCNN searches the nodules without limiting the search space in the lung. It is good
at feature filtering while recognizing complicated nodules. This is why the segmentation
switches between these two methods, which can be evidenced by experiments.
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3.3. Experiments on Invasiveness Recognition
3.3.1. Effectiveness of Feature Selections for Compared Classifiers without Data Balancing

In this subsection, three feature selection methods, namely the chi-squared test,
ANOVA [43], and information gain and Pearson correlation are evaluated with six clas-
sifiers. Table 3 shows the compared methods. Figures 14–17 demonstrate the resulting
AUCs under different features selected, which can be summarized into a set of points.
First, the chi-squared test and ANOVA perform pretty close, which is slightly better than
information gain and slightly worse than the Pearson correlation. Second, four feature se-
lection methods do not bring out an obvious improvement over that using the full features.
Third, on average, the best settings of the chi-squared test, ANOVA, information gain, and
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3.3.2. Comparisons of Balancing and Unbalancing Methods for Selected Classifiers

On the basis of the feature selection performances, RF, LDA, and XGBoost with 300
information gain features, full features, and 1200 ANOVA features, respectively, were
evaluated further. In this evaluation, the compared methods contain the synthesized
minority oversampling technique (SMOTE) [44,45] and imbalanced, where SMOTE is a
well-known up-sampling method and imbalanced indicates no balancing operation is
performed for classifiers.

Table 4 elaborates the comparative result. From this result, we can know that, first,
the best accuracy, AUC, sensitivity, and specificity are derived by imbalanced, BEED, and
imbalanced and BEED, respectively. Second, RF plays the role of better kernel classifier
in contrast to the other ones. Third, the proposed BEED is more promising than SMOTE.
Fourth, although imbalanced performs better than BEED, it is weaker in terms of AUC and
specificity. In this paper, AUC and specificity are the main attention in this paper. That is,
the experimental results reveal that the goal of dealing with imbalance data is achieved
by the proposed method. Finally, the recommended model is Random Forest with 300
information gain features.

Table 4. Effectiveness comparisons of balancing and unbalancing methods for RF, LDA, and XGBoost
with specific feature selections.

Accuracy AUC Sensitivity Specificity

RF
(Information

Gain 300)

BEED (proposed) 0.9 0.859 * 0.919 0.8 *

SMOTE 0.895 0.816 0.931 0.7

Imbalanced 0.9 0.778 0.956 * 0.6
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Table 4. Cont.

Accuracy AUC Sensitivity Specificity

LDA
(Full

Features)

BEED (proposed) 0.853 0.764 0.894 0.633

SMOTE 0.663 0.624 0.681 0.567

Imbalanced 0.879 0.82 0.906 0.733

XGBoost
(ANOVA

1200)

BEED (proposed) 0.884 0.782 0.931 0.633

SMOTE 0.874 0.79 0.913 0.667

Imbalanced 0.911 * 0.811 0.956 * 0.667
* denotes the best performance in the column.

4. Discussion

In the above experiments, the technical contributions on semi-automated segmentation
and boosting ensemble classification were examined. Yet, there actually remain a number
of issues to clarify further. In this subsection, an insightful discussion will be provided for
a more solid concern.

I. For the mathematical morphology, a further concern needs to be clarified here. In
the morphology, the object is reshaped by an erode and a dilate. The primary idea is
to delete the noises and to restore the original shape. However, a potential question
might thereby be caused: what if varying the numbers of erodes or dilates? Figure 18
shows the answer that the morphology fusing of one erode and one dilate is better
than the others. This is because two dilates are too many for one erode. In contrast,
for two erodes, two dilates recover the deleted but not complete. Additionally, the
morphology with one erode and one dilate is cheaper than the others.
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II. In Equation (4), the parameter α determines the threshold highly related to the initial
segmented area in binary thresholding. A small threshold might lead to a high recall
and low precision. Otherwise, high precision and a low recall might be caused.
Therefore, an extended issue for the impact of α is investigated here. Figure 19 shows
the effectiveness of the proposed method under different settings of α in terms of
precision, recall, and dice, which reaches the best dice as α = 2, with a balance between
precisions and recalls. It is obvious that the recall increases as α increases. This is
because the segmented area increases simultaneously. However, a larger α will cause
a lower precision. This is why the α is set as 2 in this paper.
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IV. The final issue to discuss in this paper is the scalability of the proposed methods, 
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two categories, namely nodule segmentation and invasiveness recognition. Whether 
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III. The goal of semi-automated segmentation is to provide the doctors with an efficient
and effective tool for marking the nodules. Actually, most existing marking systems
perform the fully automated segmentation as an initial mark. Then, it is revised by
the doctor. Hence, a potential question for effectiveness differences of the proposed
semi-automated segmentation and fully automated ones needs to be replied. For
this question, three recent fully automated segmentation methods, including Mask-
RCNN [7], Unet [24], and SeResUnet [34] were compared with the proposed method
SSTM. Figure 20 reveals that the proposed SSTM achieves much better dice than the
fully automated methods, reaching a dice improvement of 392.3%. The first potential
reason is that the training data for the compared methods are not enough. Second,
additional click information is very helpful to segmentation. In summary, this result
says that the proposed idea is robust if facing small data. Moreover, it is easy and
cheap. Note that all methods were executed with the same experimental settings.
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IV. The final issue to discuss in this paper is the scalability of the proposed methods,
showing the capability of handling the data size variation. It can be interpreted by
two categories, namely nodule segmentation and invasiveness recognition. Whether
for nodule segmentation or invasiveness recognition, the training data sizes were set
from 70% to 90% in this evaluation. Figures 21 and 22 show the related results in
terms of dice, AUCs, accuracies, sensitivities, and specificities, respectively. Although
the larger training data sizes for all measures achieve the better results, the differences
are not significant. It delivers an aspect that the proposed method is not very sensitive
to the training data size.
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5. Research Limitation

Although the proposed methods are demonstrated to be effective by numerous eval-
uations, there still exist some limitations to address here. First, the experiments were
conducted on a personal computer with Intel(R) Core(TM) i7-10700 K CPU @2.9 GHz
2.9 GHz, 16 GB RAM and NVIDIA GeForce RTX 3070 GPU, 1.73 GHz, 8 GB memory. This
specification is highly related to the deep learning performance. Second, the experimental
data were gathered from Kaohsiung Chang Gung Memorial Hospital, Taiwan. Third, the
settings of Equations (2) and (3) are approximated by the proposed experimental data.
Fourth, the data size is limited in the number of experimental data. Fifth, the image type is
limited in CT. Sixth, the aim is the lung nodule.

6. Conclusions

Artificial intelligence in biomedical science was actually studied for a long time. Es-
pecially for advances of deep learning, a significant success in risk assessment, disease
recognition, and treatment recommendation were also approached in recent years. Al-
though there were a number of previous studies proposed on lung tumor segmentation and
invasiveness recognition, the results leave room for improvement. First, the segmentation
needs a high-priced manual cost for marking the data. Otherwise, the automated segmenta-
tion cannot cater to the need of high quality. Second, it is not easy to overcome the problem
of imbalance data in recognizing the invasiveness. To alleviate such problems, in this paper,
a boosting ensemble classifier is presented by the proposed semi-automated segmentation.
In terms of semi-automated segmentation, an effective method named semi-automated
segmentation of fusing TM and MR (SSTM) integrating thresholding-based morphology
(TM) and deep learning Mask-RCNN (MR) is proposed. The creativity of SSTM in contrast
to conventional methods can be summarized into three aspects. First, for TM, an adaptive



Biomedicines 2023, 11, 2938 19 of 21

threshold is inferred by two statistical regressions. Then, the initial segmentation is refined
by morphology operations. Second, for MR, the anchor is specified to narrow the search
space into the potential area. Third, the complementary results improve the performance
significantly. In terms of invasiveness recognition, the proposed boosting ensemble clas-
sifier named BEED enhances the imbalanced recognition by equalized down-sampling.
An empirical study made on real data demonstrates that the performance of the proposed
methods is more promising than compared methods in nodule segmentation and inva-
siveness recognition. From the usage point of view, marking the ground truth is no longer
difficult and expensive. Moreover, effective treatments can be made according to the better
recognition results. In the future, there are some unsettled problems to handle. First, the
threshold will be approximated adaptively by other optimizers in addition to regressions.
Second, the proposed ensemble learning is limited in one classifier. In the future, different
classifiers will be incorporated into an enhanced classifier. Third, to investigate the sensitiv-
ity of the proposed method for different data, we will look for international collaborations
to evaluate the proposed method by global data. Fourth, the weighted loss function will
be tested to address the imbalance problem. Fifth, in practical use, applying the proposed
method was requested from the hospital divisions such as gastroenterology, chest, and so
on. Therefore, it will be materialized into the existing biomedical system in the hospital in
the future.
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