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Abstract: Human pluripotent stem cells have the potential for unlimited proliferation and controlled
differentiation into various somatic cells, making them a unique tool for regenerative and personalized
medicine. Determining the best clone selection is a challenging problem in this field and requires
new sensing instruments and methods able to automatically assess the state of a growing colony
(‘phenotype’) and make decisions about its destiny. One possible solution for such label-free, non-
invasive assessment is to make phase-contrast images and/or videos of growing stem cell colonies,
process the morphological parameters (‘morphological portrait’, or signal), link this information
to the colony phenotype, and initiate an automated protocol for the colony selection. As a step
in implementing this strategy, we used machine learning methods to find an effective model for
classifying the human pluripotent stem cell colonies of three lines according to their morphological
phenotype (‘good’ or ‘bad’), using morphological parameters from the previously published data
as predictors. We found that the model using cellular morphological parameters as predictors
and artificial neural networks as the classification method produced the best average accuracy of
phenotype prediction (67%). When morphological parameters of colonies were used as predictors,
logistic regression was the most effective classification method (75% average accuracy). Combining
the morphological parameters of cells and colonies resulted in the most effective model, with a
99% average accuracy of phenotype prediction. Random forest was the most efficient classification
method for the combined data. We applied feature selection methods and showed that different
morphological parameters were important for phenotype recognition via either cellular or colonial
parameters. Our results indicate a necessity for retaining both cellular and colonial morphological
information for predicting the phenotype and provide an optimal choice for the machine learning
method. The classification models reported in this study could be used as a basis for developing
and/or improving automated solutions to control the quality of human pluripotent stem cells for
medical purposes.

Keywords: human pluripotent stem cells; human embryonic stem cells; machine learning; best clone;
morphological phenotype

1. Introduction

Assessment of the cellular morphology of biological samples has a long history, as it
provides essential information on many underlying cellular processes and cellular states. In
cell cultures, morphology is usually employed as a measure of cell classification; in clinical
practice, morphological criteria are applied for diagnosis, prognosis, and treatment of
human diseases. In recent years, quantification of cell morphology has seen great advances
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due to the development of new techniques and software that allow classification of cellular
morphology from fluorescence or bright-field images at the single-cell level on both 2D and
3D cultures of cells on different substrates [1–4]. While fluorescent dyes may interfere with
cellular functions, the live cell imaging under phase-contrast offers a great opportunity
for label-free, non-invasive cell characterization and quantitative assessment of different
parameters of cell morphology.

Nowadays, morphology-based high-content analysis of cellular phenotypes is in-
creasingly recognized as a core methodology for the identification and analysis of cellular
heterogeneity [1,5]. This is supported by the emergence of new software packages for
high-dimensional image-based cell analysis with trained classifiers, such as CellProfiler
Analyst, Enhanced Cell Classifier, and similar [5–8].

It has now been more than 15 years since machine learning (ML) and deep learning
(DL) have granted us the computational power to understand questions in the field of
cellular biology, drug development, medicine, etc. Without a doubt, research in the area
of pluripotent stem cells, especially human embryonic stem cells (hESCs) and human
induced pluripotent stem cells (hiPSCs), comprising human pluripotent stem cells (hPSCs),
could benefit from the advances in ML and DL methods. These cells have the remarkable
capability to differentiate to all the cell types of the human body, and these cells serve as
a useful tool in regenerative medicine, disease modeling, drug testing, and the study of
embryonic development. Two main types of hPSCs are very close in their morphology but
have different origins. hESCs are derived from the inner cell mass of the preimplantation
blastocysts, while hiPSCs originate through somatic cell reprogramming by overexpressing
core pluripotency transcription factors [9,10]. Often, hPSCs are further differentiated into
cell types that are useful for the researchers by subjecting them to a certain differentiation
protocol. During this process, hPSCs undergo a global morphological transformation, in
which the highly compact hPSC colonies give rise to more loosely organized cells with
completely different morphological appearances and structures. Importantly, before the
colonies from a single clone of the hiPSCs can be selected for further propagation followed
by differentiation, these cells must be kept in culture in an undifferentiated state, without
any signs of spontaneous differentiation.

Our group has a long-standing interest in developing an ML model for the best clone
recognition based on the morphological parameters of the cells and colonies from hPSCs
with different morphological phenotypes [11–13]. Although morphological changes can be
quite evident to the trained human eye when colonies start to differentiate in an unwanted
direction, this is inherently subjective and, thus, not applicable for the efficient translation
of the laboratory methods to automated cell production for clinical purposes. Traditional
manual cell culture is variable and labor-intensive, posing challenges for high-throughput
applications. Moreover, the selection quality depends on the professional knowledge
and practical experience of an expert, which limits the application of the manual feature
selection method for cell culture assessment. In this regard, it is important to emphasize
that the effective definition of morphological parameters and the evaluation of the extent
of morphological heterogeneity within hPSC populations remain challenging.

Due to the huge expansion and wide use of hiPSCs in recent years [14], there is a
need for new technologies to not only standardize the evaluation of iPSCs to allow the
objective comparison of results across different groups, but also to ensure safe translation
of these cells towards clinical use. Nowadays, regenerative medicine products are at the
forefront of scientific research and clinical translation, but their reproducibility and large-
scale production are compromised by poor automation, monitoring, and standardization
issues, resulting in an increased batch-to-batch cell culture variability. To overcome these
limitations, new technologies have been proposed at both software and hardware levels.
Software solutions include algorithms and artificial intelligence models and are combined
with imaging software and ML techniques, whereas hardware is presented by automated
liquid handling devices, automated cell expansion bioreactor systems, automated colony-
forming units, counting and characterization units, and scalable cell culture plates.
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As an example of such technologies, we illustrate in Figure 1 a conceptual schema
for a device designed to select the best clone by controlling the quality of the hPSCs. The
experimental part (‘hardware’) contains a microscope making phase-contrast images or
videos of growing hPSC colonies on a substrate. The software consists of two parts. The
first part extracts informative morphological features of cells and colonies from the images
or videos, thus providing the morphological portrait of a colony. The second software part
processes this morphological signal by applying to it pretrained ML-based models, yielding
the assessment of the colony phenotype. Finally, using this information, a decision is made
about whether the colony should be kept in culture for further propagation or terminated.
Our work contributes to an important step in this schema related to the development of the
phenotype prediction models.
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There have been many efforts to utilize ML and DL methods to predict a hPSC pheno-
type and, thus, to provide the selection of the best clone [13]. These studies can roughly be
split into two major classes. The first one comprises the phenotype classification models
based on two-stage processing of the imaging data, in which biologically interpretable
morphological features are first extracted from the hPSC images and then classification
methods are applied with the extracted features as predictors [11,15–18]. Studies from the
second class apply DL methods (e.g., convolutional neural networks) directly to the colony
images to infer the phenotype, or some less biologically interpretable features are auto-
matically extracted using image processing methods followed by ML-based classification
with these features as predictors [12,19–24]. Despite the fact that the second approach often
provides higher phenotype prediction accuracy, the first approach has an advantage in
a clear biological interpretation of valuable morphological parameters found during this
study, thus providing insights for possible new biological experiments. Various authors
used different ML methods for phenotype prediction models, and their performance varies.
Therefore, a search for a method that is optimal for a given datum is an important task.

The aim of our study was to identify the best classification method for predicting
the hPSC colony phenotype based on morphological parameters of cells and colonies
from three hPSC lines, given in the previously published data set [11,25]. As a further
step, we proposed a model based on the combination of cellular and colonial parameters
and showed that this model provided the best performance. Finally, we analyzed the
importance of the morphological parameters in the resulting classification models.
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2. Materials and Methods
2.1. Data

For model training, we used previously published data containing values of mor-
phological parameters of cells and colonies extracted from phase-contrast images of three
cell lines: human embryonic stem cell line H9 (WiCell, Madison, WI, USA), hiPSC line
AD3, and patient-specific hiPSC line HPCASRi002-A (CaSR) [11,25]. The morphological
parameters were as follows: area of the cell or colony (‘Area’), length of the cell or colony
boundary (‘Perimeter’), length of the minor axis of the ellipse fitted to the cell or colony in
the image (‘Minor axis’), largest distance between two points on the cell or colony boundary
(‘Feret’s diameter D’), smallest distance between two points on the cell or colony boundary
(‘Minimal Feret’s diameter D’), area divided by squared perimeter and multiplied by 4π
(‘Shape factor’, a measure of circularity and compactness), and total area of the free inter-
cellular space in the colony (‘Area of intercellular space’, a measure of compact cell packing
within a colony). These parameters could be considered as standard shape descriptors in
2D image analysis using ImageJ software, version 1.54g [26]. The parameter values were
obtained for 53 colonies and 1602 cells of hESC line H9, 49 colonies and 1569 cells of control
hiPSC line AD3, and 48 colonies and 1315 cells of patient-specific hiPSC line CaSR [11].

All colonies and cells in the data set contained binary phenotype score obtained via an
expert analysis, as previously described [11]. The binary phenotype score can take one of
two values, ‘good’ or ‘bad’, representing the pluripotency status of the colony. Colonies
with the good phenotype demonstrate a high potential for proliferation, while colonies
with the bad phenotype show signs of spontaneous differentiation.

2.2. Classification Models

We used the data set for training classification models to predict phenotype based
on the morphological parameters as predictors. The following classification methods
were tested: naïve Bayes classifier, k-nearest neighbors, logistic regression, random forest,
support vector machines, and artificial neural networks. We analyzed the classification
problem for the cellular and colonial data separately. In addition, we combined the cellular
and colonial morphological parameters and phenotypic information into a separate data
set, which we call a combined data set, and trained classification models on these data. The
predictors in the models for the combined data included morphological parameters of a
cell and morphological parameters of the colony containing that cell, and the phenotype
of the colony containing that cell was used as the target for classification. All models
were implemented using Python 3.8 (sklearn and keras libraries) and trained using the
nested cross-validation, with 5 folds in both inner and outer cross-validation loops [27]. In
each fold of the outer loop, data were split into training and test sets. Then, the selection
of hyperparameters occurred in the inner loop using cross-validation on the training set
from the outer loop. The classification accuracy of the best model from the inner loop was
estimated on the test set in the fold of the outer loop, which we called the nested cross-
validation accuracy. The mean nested cross-validation accuracy ± s.d. was recorded for
test sets of all outer loop folds. The neural network configuration was tuned manually, and
the hyperparameters of all other methods were selected using the grid search method [28].

In addition to the accuracy, we recorded the Area Under Curve (AUC) for the Receiver
Operating Characteristic (ROC-curve) as another effective measure of binary classification
for the best classification model of each classification method. This measure represents
the area under the curve on a plane with the true positive rate on the ordinate axis and
false positive rate on the abscissa axis, with AUC = 1 representing perfect classification and
AUC = 0.5 representing random classification.
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2.3. Feature Selection

We analyzed the importance of each feature as a predictor in the best classification
models by applying the SHAP method (SHapley Additive exPlanations) [29]. The SHAP
value for each feature represents the contribution of that feature to the prediction value
of the selected model. SHAP are theoretically well justified and unify several previously
suggested methods. This analysis was implemented using shap library in Python 3.8.

2.4. Statistical Methods

We compared the average nested accuracies of the classification models for differ-
ent classification methods using t-test (ttest_rel function, stats module, scipy library in
Python 3.8).

3. Results
3.1. Classification Models for Cellular and Colonial Data

To find out how various classification methods perform on the morphological data for
hPSCs and colonies, we estimated the cross-validation accuracy of phenotype prediction
for each method using the data containing all cell lines pooled together (Table 1).

Table 1. Classification model performance for cellular and colonial data and for various classification
methods. Nested cross-validation accuracy and area under the ROC-curve (ROC AUC) are shown as
measures of performance. Best performance values are highlighted in bold.

Method
Cellular Data Colonial Data

Accuracy ROC AUC Accuracy ROC AUC

Naïve Bayes 58 ± 2% 0.69 60 ± 14% 0.71
k-nearest neighbors 64 ± 3% 0.66 68 ± 12% 0.71
Logistic regression 59 ± 4% 0.63 75 ± 12% 0.90

Random forest 64 ± 2% 0.67 66 ± 10% 0.79
Support vector machines 64 ± 3% 0.68 68 ± 11% 0.86
Artificial neural networks 67 ± 4% 0.70 71 ± 12% 0.89

The results for cellular data showed a similar performance across various models, but
the neural networks outperformed all the methods except the support vector machines
(p < 0.05), with an average accuracy of 67%. Considering that the AUC measure was also
the highest for this method, we can conclude that the neural networks method was the best
model for predicting phenotype based on the morphological parameters of cells.

In the case of colonial data, the difference between methods was more pronounced,
but also showed higher method-specific variation. Based on the average accuracy and the
AUC value, logistic regression appeared to be the best classification method (75% accuracy)
for predicting phenotype from the morphological parameters of colonies. Overall, the
performance measures shown in Table 1 could be estimated as rather moderate, implying
that either combining different cell-line-specific data in one data set or consideration of
only cellular or colonial morphological parameters separately was possibly not an optimal
strategy.

As the unification of various cell lines into one data set might create irrelevant vari-
ability, impeding the classification by phenotype, we tested whether the performance could
be improved by considering each cell line separately. For this purpose, we trained classi-
fication models on the line-specific cellular and colonial data using the best classification
methods from the analysis of the unified data (Table 2). These models incorporated the
same morphological parameters as the models from Table 1 but were trained and analyzed
on data of each cell line separately. The results showed an average performance for H9
that was either comparable to or higher than that for the unified data, but the models
predicted the phenotype with less accuracy for other cell lines. Therefore, constraining the
classification problem to the line-specific data did not improve the performance. These
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results showed that combining morphological data from different cell lines was justified, as
it provided a larger data set without significantly degrading classification performance.

Table 2. Nested cross-validation accuracy in classification models trained on cell-line-specific data.

Accuracy
hESC H9 hiPSC AD3 hiPSC CaSR

Cellular data
(artificial neural networks) 73 ± 7% 60 ± 6% 64 ± 3%

Colonial data
(logistic regression) 75 ± 18% 62 ± 20% 67 ± 17%

3.2. Classification Models for Combined Cellular and Colonial Data

Another way to improve the performance of the classification models in Table 1 was
based on a biological hypothesis that colony phenotype could not be determined solely
based on cellular or colonial morphological parameters. Cells differentiate irregularly
within a colony, sometimes demonstrating a reverse behavior, so the phenotypic status is
rather a collective property, also expressed in a change in the colony morphology. Under
spontaneous differentiation, the morphological perturbations of both single cells and a
colony as a whole should be considered as necessary elements of the true morphological
portrait associated with the pluripotency potential.

Therefore, we tested the same classification methods but for the combined data set,
in which predictors included morphological parameters of cells complemented with the
parameters of the colony containing these cells. The results demonstrated a significant
increase in performance for all methods (Table 3, Figure 2). The discrepancy between
methods was also higher, with a more than 25% difference in the mean accuracy between
the best and worst methods. Random forest and artificial neural networks showed the
highest performance, which was clearly distinguishable from other methods (p < 0.05).
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Table 3. Classification model performance for combined cellular and colonial data and for various
classification methods. Nested cross-validation accuracy and area under the ROC-curve (ROC AUC)
are shown as measures of performance. Best performance values are highlighted in bold.

Method Accuracy ROC AUC

Naïve Bayes 72 ± 7% 0.815
k-nearest neighbors 88 ± 4% 0.818
Logistic regression 80 ± 6% 0.826

Random forest 99 ± 2% 0.997
Support vector machines 96 ± 2% 0.975
Artificial neural networks 98 ± 2% 0.956

3.3. Importance of Morphological Parameters in Classification Models

The classification models that we obtained can be used to understand which mor-
phological characteristics of individual hPSCs and colonies are the most informative in
representing the morphological signal as a manifestation of phenotype. We used the SHAP
method to find the features that were the most important in all types of classification models.
In the best cell-data-based model, two parameters clearly segregated from the others: Area
and Perimeter (Figure 3a). In the best model based on the colonial parameters, Area and
Area of intercellular space were the most important for phenotype prediction (Figure 3b).
For the combined data, the analysis showed that the colonial parameters appeared to be
more important in the best classification model than the cellular parameters (Figure 3c). The
colonial Feret’s D showed the highest impact on the classification, while other parameters
exhibited a rather shallow distribution of their importance score. In other words, colonial
Feret’s D can be considered as the most influential parameter in the classification models
on the combined data, but other parameters also contributed. The cellular area had the
highest importance score among the cellular parameters in this case (Figure 3c).
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4. Discussion

For numerous cell types of the human body, their morphological appearance is mainly
known and often described in terms of the cell size, cell form, its granularity, cytoskeletal
architecture, etc. In many ways, these features of the cell morphology result from the
spatiotemporally regulated activity of signaling proteins. However, the components of
these signaling networks and the precise role they play in regulating the cell shape and
other morphological parameters remain largely unclear. How and which signaling cascades
govern the transition of the small pluripotent stem cell into a specialized and often much
bigger cell type is still in question. In this regard, morphological profiling and identification
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of genes and clusters of genes which are important for maintaining hPSC morphological
identity, as well as genes involved in the conversion of these cells into differentiated spe-
cialized cells, is undoubtedly important for both understanding hPSC biology and for the
development of efficient protocols for directed differentiation. In this way, morphological
data from our assay, together with novel computer-based assessment, can provide a further
step toward discovering new biological connections that determine a hPSC’s identity.

Our results showed that cellular and colonial data required different classification
methods, emphasizing the inherent data dependency of ML approaches. The classification
quality of artificial neural networks for the cellular data was comparable with a value
previously obtained by us for the same data using a similar method [11]. However, in
contrast to that study, we found that logistic regression was more efficient when the
morphology of hPSC colonies was considered. For the combined cellular and colonial data,
random forest appeared as a promising approach, and the resulting classification model
showed the best performance. This indicates that the true morphological portrait associated
directly with the hPSC pluripotency should be assembled from both the morphological
parameters of pluripotent cells forming the colony and the parameters of the colony as
a whole.

We demonstrated that parameters such as Area and Perimeter provided the most
important and informative input in the phenotype classification based on cellular morphol-
ogy. For classification based on the colonial data, we found that colonial Area and Area of
intercellular space were the most informative. When the cellular and colonial parameters
were combined, colonial Feret’s diameter, colonial Minimal Feret’s diameter, and colonial
Shape factor had the greatest impact on classification.

This information can be used in two ways. Firstly, new biological knowledge can
be obtained by focusing on the molecular mechanisms associated with the change in the
important features under spontaneous differentiation. Secondly, simplified classification
models can be trained to confine the predictors to only the important ones. This can be
especially useful when a much larger amount of data are involved, so that the computational
efficiency becomes a bottleneck.

The analysis of feature importance on the combined cellular and colonial data suggests
that the morphological properties of colonies play a major role in assessing the phenotype.
The shallow distribution of the importance score for cellular parameters in the best model
based on the combined data indicates that each cellular morphological feature adds some
information to the whole picture, but no single parameter can be singled out as drastically
more informative.

The high classification accuracy of 98–99% that we have obtained approaches and
sometimes exceeds the performance scores of previously reported classification models ap-
plied to pluripotent stem cells [11,12,15–24]. Morphological parameters of cells and colonies
used as predictors in our models are biologically interpretable but require methods for
their extraction from the images prior to classification. Other morphological characteristics,
including morphological features of intracellular objects, have previously been considered
and resulted in a classification accuracy of 80–89% [16,18]. Methods for automated feature
extraction from images and videos of hPSCs with the subsequent application of super-
vised ML algorithms constitute another approach, with the reported classification accuracy
values higher than 87% [19–21,24]. DL-based classification models applied directly to the
images of hPSCs have been reported to perform at about 90% accuracy [12,23].

Despite the good performance shown by the classification models on the combined
data, our approach has several limitations. We used data from three cell lines, and this
number should be increased to make the models more applicable. This requires further
studies on collecting morphological and phenotypic information for various hPSC lines,
since previous efforts in developing classification models involved similar numbers of cell
lines [13]. To make classification even more general, multiple hPSC growing conditions,
including various experimental matrices and media, should also be tested. Another limita-
tion concerns the necessity of extracting the morphological features prior to the application
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of our classification models, as this extraction is not a part of the models reported here.
As a possible alternative, DL-based image classification can be utilized, in which no prior
feature extraction is usually required [12,23].

Overall, our study confirms the utility of ML methods for the automated phenotype
prediction for various hPSC lines. We consider our research as the first step towards
developing software-guided analytical tools (Figure 1) that will automate the selection of
the best iPSC clone for further research, namely for targeted differentiation of a patient-
specific iPSC line towards the desired tissue-specific cell type. One of the bottlenecks in the
use of iPSCs is the fact that not all obtained patient-specific clones are able to differentiate
in the desired tissue-specific direction with equal efficiency. We previously showed the
relationship between the morphological parameters of clones with different morphological
phenotypes and the ability to differentiate along three germ layers [11]. In this study, we
further refined our models to improve the efficiency of selecting the best clone. Based on
these data, we are currently testing our model on clones that are unable to differentiate
efficiently into mesenchymal stem cells and cardiomyocytes to improve model sensitivity.

Author Contributions: Conceptualization, I.N. and V.G.; methodology, E.V. and V.G.; investiga-
tion, E.V., I.N. and V.G.; data curation, I.N.; writing—original draft preparation, V.G. and I.N.;
writing—review and editing, E.V. and M.S.; supervision, M.S. All authors have read and agreed to
the published version of the manuscript.

Funding: Development of computational algorithms for training classification models was funded
by the Ministry of Science and Higher Education of the Russian Federation as part of the World-class
Research Center program: Advanced Digital Technologies (contract No. 075-15-2022-311 dated 20
April 2022). The Russian Science Foundation, grant number 21-75-20132 for I.N., funded the research
of the classification models and model training results.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data with values of morphological parameters of cells and colonies
extracted from phase-contrast images of three cell lines (H9, AD3, and HPCASRi002-A) were down-
loaded from the Zenodo public repository (https://doi.org/10.5281/zenodo.7150644, accessed on 1
February 2023) [25]. Programs implementing the classification models developed in this study were
uploaded to the Zenodo public repository (https://zenodo.org/records/10052095, accessed on 30
October 2023).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Mousavikhamene, Z.; Sykora, D.J.; Mrksich, M.; Bagheri, N. Morphological Features of Single Cells Enable Accurate Automated

Classification of Cancer from Non-Cancer Cell Lines. Sci. Rep. 2021, 11, 24375. [CrossRef] [PubMed]
2. Gosnell, M.E.; Anwer, A.G.; Mahbub, S.B.; Menon Perinchery, S.; Inglis, D.W.; Adhikary, P.P.; Jazayeri, J.A.; Cahill, M.A.; Saad, S.;

Pollock, C.A.; et al. Quantitative Non-Invasive Cell Characterisation and Discrimination Based on Multispectral Autofluorescence
Features. Sci. Rep. 2016, 6, 23453. [CrossRef]

3. Basu, S.; Kolouri, S.; Rohde, G.K. Detecting and Visualizing Cell Phenotype Differences from Microscopy Images Using Transport-
Based Morphometry. Proc. Natl. Acad. Sci. USA 2014, 111, 3448–3453. [CrossRef]

4. Di, Z.; Klop, M.J.D.; Rogkoti, V.-M.; Le Dévédec, S.E.; van de Water, B.; Verbeek, F.J.; Price, L.S.; Meerman, J.H.N. Ultra High
Content Image Analysis and Phenotype Profiling of 3D Cultured Micro-Tissues. PLoS ONE 2014, 9, e109688. [CrossRef]

5. Stanley, N.; Stelzer, I.A.; Tsai, A.S.; Fallahzadeh, R.; Ganio, E.; Becker, M.; Phongpreecha, T.; Nassar, H.; Ghaemi, S.; Maric, I.; et al.
VoPo Leverages Cellular Heterogeneity for Predictive Modeling of Single-Cell Data. Nat. Commun. 2020, 11, 3738. [CrossRef]

6. Jones, T.R.; Carpenter, A.E.; Lamprecht, M.R.; Moffat, J.; Silver, S.J.; Grenier, J.K.; Castoreno, A.B.; Eggert, U.S.; Root, D.E.; Golland,
P.; et al. Scoring Diverse Cellular Morphologies in Image-Based Screens with Iterative Feedback and Machine Learning. Proc.
Natl. Acad. Sci. USA 2009, 106, 1826–1831. [CrossRef]

7. Misselwitz, B.; Strittmatter, G.; Periaswamy, B.; Schlumberger, M.C.; Rout, S.; Horvath, P.; Kozak, K.; Hardt, W.-D. Enhanced
CellClassifier: A Multi-Class Classification Tool for Microscopy Images. BMC Bioinform. 2010, 11, 30. [CrossRef]

https://doi.org/10.5281/zenodo.7150644
https://zenodo.org/records/10052095
https://doi.org/10.1038/s41598-021-03813-8
https://www.ncbi.nlm.nih.gov/pubmed/34934149
https://doi.org/10.1038/srep23453
https://doi.org/10.1073/pnas.1319779111
https://doi.org/10.1371/journal.pone.0109688
https://doi.org/10.1038/s41467-020-17569-8
https://doi.org/10.1073/pnas.0808843106
https://doi.org/10.1186/1471-2105-11-30


Biomedicines 2023, 11, 3005 10 of 10

8. Singh, S.; Carpenter, A.E.; Genovesio, A. Increasing the Content of High-Content Screening: An Overview. J. Biomol. Screen. 2014,
19, 640–650. [CrossRef]

9. Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell
Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [CrossRef] [PubMed]

10. Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells
from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [CrossRef]

11. Krasnova, O.A.; Gursky, V.V.; Chabina, A.S.; Kulakova, K.A.; Alekseenko, L.L.; Panova, A.V.; Kiselev, S.L.; Neganova, I.E.
Prognostic Analysis of Human Pluripotent Stem Cells Based on Their Morphological Portrait and Expression of Pluripotent
Markers. Int. J. Mol. Sci. 2022, 23, 12902. [CrossRef]

12. Mamaeva, A.; Krasnova, O.; Khvorova, I.; Kozlov, K.; Gursky, V.; Samsonova, M.; Tikhonova, O.; Neganova, I. Quality Control of
Human Pluripotent Stem Cell Colonies by Computational Image Analysis Using Convolutional Neural Networks. Int. J. Mol. Sci.
2023, 24, 140. [CrossRef] [PubMed]

13. Gursky, V.; Krasnova, O.; Sopova, J.; Kovaleva, A.; Kulakova, K.; Tikhonova, O.; Neganova, I. How Morphology of the Human
Pluripotent Stem Cells Determines the Selection of the Best Clone; IntechOpen: London, UK, 2023; ISBN 978-1-83769-262-0.

14. Ludwig, T.E.; Kujak, A.; Rauti, A.; Andrzejewski, S.; Langbehn, S.; Mayfield, J.; Fuller, J.; Yashiro, Y.; Hara, Y.; Bhattacharyya, A.
20 Years of Human Pluripotent Stem Cell Research: It All Started with Five Lines. Cell Stem Cell 2018, 23, 644–648. [CrossRef]
[PubMed]

15. Wakao, S.; Kitada, M.; Kuroda, Y.; Ogura, F.; Murakami, T.; Niwa, A.; Dezawa, M. Morphologic and Gene Expression Criteria for
Identifying Human Induced Pluripotent Stem Cells. PLoS ONE 2012, 7, e48677. [CrossRef] [PubMed]

16. Maddah, M.; Shoukat-Mumtaz, U.; Nassirpour, S.; Loewke, K. A System for Automated, Noninvasive, Morphology-Based
Evaluation of Induced Pluripotent Stem Cell Cultures. J. Lab. Autom. 2014, 19, 454–460. [CrossRef]

17. Kato, R.; Matsumoto, M.; Sasaki, H.; Joto, R.; Okada, M.; Ikeda, Y.; Kanie, K.; Suga, M.; Kinehara, M.; Yanagihara, K.; et al.
Parametric Analysis of Colony Morphology of Non-Labelled Live Human Pluripotent Stem Cells for Cell Quality Control. Sci.
Rep. 2016, 6, 34009. [CrossRef]

18. Wakui, T.; Matsumoto, T.; Matsubara, K.; Kawasaki, T.; Yamaguchi, H.; Akutsu, H. Method for Evaluation of Human Induced
Pluripotent Stem Cell Quality Using Image Analysis Based on the Biological Morphology of Cells. J. Med. Imaging 2017, 4, 044003.
[CrossRef]

19. Tokunaga, K.; Saitoh, N.; Goldberg, I.G.; Sakamoto, C.; Yasuda, Y.; Yoshida, Y.; Yamanaka, S.; Nakao, M. Computational Image
Analysis of Colony and Nuclear Morphology to Evaluate Human Induced Pluripotent Stem Cells. Sci. Rep. 2014, 4, 6996.
[CrossRef]

20. Joutsijoki, H.; Haponen, M.; Rasku, J.; Aalto-Setälä, K.; Juhola, M. Machine Learning Approach to Automated Quality Identifica-
tion of Human Induced Pluripotent Stem Cell Colony Images. Comput. Math. Methods Med. 2016, 2016, 3091039. [CrossRef]

21. Perestrelo, T.; Chen, W.; Correia, M.; Le, C.; Pereira, S.; Rodrigues, A.S.; Sousa, M.I.; Ramalho-Santos, J.; Wirtz, D. Pluri-IQ:
Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software. Stem Cell Rep. 2017, 9, 697–709.
[CrossRef]

22. Nishimura, K.; Ishiwata, H.; Sakuragi, Y.; Hayashi, Y.; Fukuda, A.; Hisatake, K. Live-Cell Imaging of Subcellular Structures for
Quantitative Evaluation of Pluripotent Stem Cells. Sci. Rep. 2019, 9, 1777. [CrossRef] [PubMed]

23. Witmer, A.; Bhanu, B. Generative Adversarial Networks for Morphological-Temporal Classification of Stem Cell Images. Sensors
2021, 22, 206. [CrossRef]

24. Wakui, T.; Negishi, M.; Murakami, Y.; Tominaga, S.; Shiraishi, Y.; Carpenter, A.E.; Singh, S.; Segawa, H. Predicting Reprogramming-
Related Gene Expression from Cell Morphology in Human Induced Pluripotent Stem Cells. Mol. Biol. Cell 2023, 34, ar45.
[CrossRef]

25. Krasnova, O.A.; Gursky, V.V.; Chabina, A.S.; Kulakova, K.A.; Alekseenko, L.L.; Neganova, I.E. Dataset with Values of Morphological
Parameters and Phenotypes of Cells and Colonies from Three Human Pluripotent Stem Cell Lines; Zenodo: Genève, Switzerland, 2022.
[CrossRef]

26. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675.
[CrossRef] [PubMed]

27. Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-Validation Pitfalls When Selecting and Assessing Regression and
Classification Models. J. Cheminform. 2014, 6, 10. [CrossRef] [PubMed]

28. Zahedi, L.; Mohammadi, F.G.; Rezapour, S.; Ohland, M.W.; Amini, M.H. Search Algorithms for Automated Hyper-Parameter
Tuning. arXiv 2021, arXiv:2104.14677. [CrossRef]

29. Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/1087057114528537
https://doi.org/10.1126/science.282.5391.1145
https://www.ncbi.nlm.nih.gov/pubmed/9804556
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.3390/ijms232112902
https://doi.org/10.3390/ijms24010140
https://www.ncbi.nlm.nih.gov/pubmed/36613583
https://doi.org/10.1016/j.stem.2018.10.009
https://www.ncbi.nlm.nih.gov/pubmed/30388422
https://doi.org/10.1371/journal.pone.0048677
https://www.ncbi.nlm.nih.gov/pubmed/23272044
https://doi.org/10.1177/2211068214537258
https://doi.org/10.1038/srep34009
https://doi.org/10.1117/1.JMI.4.4.044003
https://doi.org/10.1038/srep06996
https://doi.org/10.1155/2016/3091039
https://doi.org/10.1016/j.stemcr.2017.06.006
https://doi.org/10.1038/s41598-018-37779-x
https://www.ncbi.nlm.nih.gov/pubmed/30741960
https://doi.org/10.3390/s22010206
https://doi.org/10.1091/mbc.E22-06-0215
https://doi.org/10.5281/Zenodo.7150644
https://doi.org/10.1038/nmeth.2089
https://www.ncbi.nlm.nih.gov/pubmed/22930834
https://doi.org/10.1186/1758-2946-6-10
https://www.ncbi.nlm.nih.gov/pubmed/24678909
https://doi.org/10.48550/arXiv.2104.14677
https://doi.org/10.48550/arXiv.1705.07874

	Introduction 
	Materials and Methods 
	Data 
	Classification Models 
	Feature Selection 
	Statistical Methods 

	Results 
	Classification Models for Cellular and Colonial Data 
	Classification Models for Combined Cellular and Colonial Data 
	Importance of Morphological Parameters in Classification Models 

	Discussion 
	References

