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Simple Summary: The authors conducted this research to improve the prediction of how patients
with esophageal cancer respond to a treatment called neoadjuvant chemoradiotherapy, which can
enhance survival rates. However, doctors struggle to accurately predict how well a patient will
respond to this treatment using existing imaging methods. To address this, the researchers developed
a computer-based method called DCRNet, that not only analyzes medical images but also considers
the distribution of radiation therapy doses on the radiotherapy treatment plans to make more
accurate predictions. They tested this method on 80 patients with esophageal cancer and found that
the HRNetV2p model with DCR performed the best, significantly improving prediction accuracy
compared to other models. This breakthrough has the potential to help doctors better anticipate
patient responses to treatment, which could lead to more personalized and effective care, and
improving the treatment planning of radiotherapy.

Abstract: Esophageal cancer is a deadly disease, and neoadjuvant chemoradiotherapy can improve pa-
tient survival, particularly for patients achieving a pathological complete response (ypCR). However,
existing imaging methods struggle to accurately predict ypCR. This study explores computer-aided
detection methods, considering both imaging data and radiotherapy dose variations to enhance
prediction accuracy. It involved patients with node-positive esophageal squamous cell carcinoma
undergoing neoadjuvant chemoradiotherapy and surgery, with data collected from 2014 to 2017,
randomly split into five subsets for 5-fold cross-validation. The algorithm DCRNet, an advanced
version of OCRNet, integrates RT dose distribution into dose contextual representations (DCR),
combining dose and pixel representation with ten soft regions. Among the 80 enrolled patients (mean
age 55.68 years, primarily male, with stage III disease and middle-part lesions), the ypCR rate was
28.75%, showing no significant demographic or disease differences between the ypCR and non-ypCR
groups. Among the three summarization methods, the maximum value across the CTV method
produced the best results with an AUC of 0.928. The HRNetV2p model with DCR performed the best
among the four backbone models tested, with an AUC of 0.928 (95% CI, 0.884–0.972) based on 5-fold
cross-validation, showing significant improvement compared to other models. This underscores
DCR-equipped models’ superior AUC outcomes. The study highlights the potential of dose-guided
deep learning in ypCR prediction, necessitating larger, multicenter studies to validate the results.
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1. Introduction

Esophageal cancer presents a grim prognosis with a 5-year survival rate below 25% [1].
Particularly prevalent in Asia, esophageal squamous cell carcinoma (ESCC) predominates
over other forms, defying the Western trend where adenocarcinoma predominates [2].
Despite surgical advancements, disease recurrence remains a pressing concern, prompting
exploration into neoadjuvant chemoradiotherapy (nCRT) as a means to bolster long-term
survival in locally advanced ESCC patients [3,4]. Recent meta-analysis results indicate that
at least 24–32% of patients attain a pathological complete response (ypCR) following nCRT,
setting the stage for a “watch-and-wait” strategy as an alternative to surgery, aimed at
reducing adverse events [5]. Regrettably, present imaging techniques, including computed
tomography, positron emission tomography, endoscopic ultrasound, and magnetic reso-
nance imaging, suffer from inadequate sensitivity (0.35, 0.62, 0.01, and 0.80, respectively) in
detecting ypCR [5]. Consequently, there is a growing interest in computer-aided detection
methods, like radiomics and machine learning, to facilitate ypCR prediction, aiding both
patients and physicians in treatment planning.

While prior research has delved into various machine learning models to predict treat-
ment responses in esophageal cancer centering on imaging features [6–12], these studies
have chiefly focused on imaging data, overlooking the potential ramifications of varia-
tions in radiotherapy dose planning practices on treatment responses. Notably, previous
published studies have demonstrated that a good response after chemoradiotherapy, partic-
ularly a ypCR is prognosticated for excellent overall survival and recurrence-free survival
in ESCC patients [13–15]. Thus, the capability to predict a ypCR after nCRT in individual
patients remains a crucial yet unmet need.

Our study introduces an innovative approach to predicting esophageal cancer patient
responses to nCRT. We employ a deep learning methodology that transcends conventional
reliance on imaging data alone, incorporating the variances in radiotherapy dose mapping.
Specifically, we propose a radiotherapy dose map-guided deep learning model that predicts
a ypCR after nCRT in patients with ESCC.

2. Materials and Methods
2.1. Patients

This study was conducted with the approval of the institutional review boards at
Chang Gung Memorial Hospital. To safeguard patient privacy, the data used were de-
identified, obviating the need for informed consent. The study adhered to the Standards
for Reporting of Diagnostic Accuracy (STARD) guidelines.

The data employed in this research were derived from patients diagnosed with node-
positive ESCC who underwent nCRT followed by surgery from January 2014 to December
2017. To ensure robustness, the patient cohort was randomly divided into five subsets for
5-fold cross-validation, with each subset maintaining an equivalent ratio of patients who
achieved a ypCR and those who did not, as illustrated in Figure 1.

All patients in the study received platinum-based chemotherapy concurrently with
radiotherapy, with the total radiation dose ranging from 41.4 to 50.4 Gy. The gross tumor
volume (GTV) encompassed both the primary tumor and the involved regional nodes,
as identified through endoscopy, CT, or PET/CT scans. The clinical target volume (CTV)
extended 3–4 cm along the esophagogastric wall, both proximally and distally to the GTV,
with an added 1 cm radial expansion to accommodate potential microscopic periesophageal
spread.

Both planning CT scans and radiation dose maps were obtained for the development
of the model. Following nCRT, enrolled patients underwent radical esophagectomy within
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a window of 4 to 8 weeks. Specialized pathologists, with expertise in ESCC, assessed the
pathological response. The criteria for a ypCR were met when no viable cancer cells were
observed in the primary tumor and regional lymph nodes.
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Figure 1. Patient inclusion and grouping.

2.2. Development of the Algorithm

The ypCR prediction algorithm represents an advancement of the state-of-the-art
OCRNet (object contextual representations network) developed by Yuan et al. [16]. This
algorithm is specifically designed for semantic segmentation tasks employing convolutional
neural networks. To enhance its performance, the ypCR algorithm introduces the concept
of soft regions, which prove particularly useful in approximate auto-planning scenarios. By
integrating information related to radiation therapy dose distribution into the contextual
representations of regions, the ypCR algorithm aims to refine the accuracy of semantic
segmentation, as depicted in Figure 2. In this algorithm, object regions are defined based on
varying levels of radiation isodose. To distinguish it from OCRNet, this variant is referred
to as DCRNet (dose contextual representations network). The improved performance and
distinctive attributes of the ypCR algorithm render it a valuable asset in the realms of
semantic segmentation and radiation therapy planning.
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DCRNet is constructed upon HRNetV2p [17], which was initially pre-trained on the
Cityscapes dataset, serving as the foundational framework for extracting feature maps from
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planning CT images in a 2.5D fashion. The algorithm takes CT data as input, incorporating
three consecutive slices covering the CTV from the radiotherapy (RT) structure set into the
backbone model, as illustrated in Figure 3. Uniform ground-truth labels are assigned to all
input units of the same patient, according to the patient’s pathological response.
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Figure 3. Image preprocessing.

To produce dose contextual representations, we employed channel softmax normal-
ization for 10 soft regions, each corresponding to a 10% radiation isodose level (ranging
from 0% to 100%), akin to dose-volume histogram analysis. In the model training phase,
we utilized the dice loss function to supervise the model, simulating conditions akin to
rough auto-planning. Subsequently, the resulting dose representation was amalgamated
with the pixel representation to establish the dose contextual representations, following a
methodology consistent with prior works [16].

To reflect the pathological outcomes, a fully connected layer was incorporated, con-
sisting of two nodes. The output layer, comprising a single node, was supervised by a
cross-entropy loss function designed to predict the likelihood of residual disease presence
on each CT slice. The results derived from all input CT images for a given patient were
summarized in three distinct manners: (1) the maximum value across the CTV, (2) the
maximum between mean values obtained from every three consecutive slices, and (3) the
mean value across the CTV (Figure 4). Performance comparisons were conducted across
different models and summarization methods.
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For training, we employed an Adam optimizer with a learning rate set at 1 × 10−4,
implementing gradient clipping. To enhance training focus on challenging instances, we
utilized Online Hard Example Mining (OHEM) [18]. Model training took place on a system
equipped with an Intel Xeon E5-2630 v4 2.20 GHz CPU, an NVIDIA Tesla T4 GPU boasting
16 GB of memory, and 128 GB of RAM. The algorithm was implemented in PyTorch,
building upon the OCRNet codebase.

2.3. Statistical Analysis

Categorical variables underwent statistical comparison using the χ2 or Fisher exact
test, while numeric variables were assessed using the Kruskal–Wallis test. The performance
of DCRNet models was gauged using the area under the ROC curve (AUC) through 5-fold
cross-validation, with p values for differences determined through DeLong’s test [19].
Cutoff points for accuracy, sensitivity, and specificity were established using the Youden
Index. Calibration performance and clinical utility were evaluated via calibration curves
and decision curves. Statistical significance was denoted by a 2-tailed p value less than 0.05.
Data visualization was accomplished using Python software version 3.8, while R software
version 4.0.5 was employed for statistical analysis.

2.4. Five-Fold Cross-Validation

Five-fold cross-validation is a widely used technique in machine learning for model
evaluation and performance estimation. It involves the division of a dataset into five equal
subsets or “folds”. The model is then trained and tested five times, where in each iteration,
one fold is designated as the test set, and the remaining four folds are used for training.
This process is repeated five times, ensuring that each fold is used as a test set exactly once.
The results from these iterations are then averaged to provide a comprehensive and reliable
assessment of the model’s performance. Five-fold cross-validation helps reduce the impact
of randomness and ensures that the model’s performance estimate is more representative
of its generalization capabilities compared to a single train/test split, making it a valuable
tool in model selection and performance assessment.

3. Results
3.1. Baseline Characteristics

In this study, 80 patients participated, with a mean age of 55.68 (±9.5) years, consisting
of 76 (95%) males and four (5%) females. Predominantly, the lesions were situated in
the middle part (41.1%), and the majority (71.2%) were diagnosed with stage III disease.
The observed ypCR rate across all patients stood at 28.75%, aligning with findings from
previous research. Notably, there were no statistically significant differences in age, lesion
location, clinical staging, radiation dosage, or overall survival outcomes between the ypCR
and non-ypCR groups (Table 1).

Table 1. Patients’ characteristics.

Characteristics Category All Patients,
n (%)

ypCR,
n (%)

Non-ypCR,
n (%) p

Sex Male 76 (95) 20 (87.0) 56 (98.2)
0.04Female 4 (5) 3 (13.0) 1 (1.8)

Age (year) Mean (SD) 55.68 ± 9.5 55.48 ± 7.3 55.76 ± 10.3 0.28
Location Proximal 5 (8.9) 3 (13.1) 2 (6.1)

0.16Middle 23 (41.1) 12 (52.2) 11 (33.3)
Distal 28 (50) 8 (34.8) 20 (60.6)

Clinical stage II 5 (6.3) 2 (8.7) 3 (5.3)
0.70III 57 (71.2) 17 (73.9) 40 (70.1)

IVA 18 (22.5) 4 (17.4) 14 (24.6)
Total radiation
dose (Gy) 44.0 ± 2.1 44.5 ± 2.4 43.8 ± 2.8 0.81

OS (month) 24.1 ± 13.7 27.7 ± 16.2 22.6 ± 14.8 0.08
SD, standard deviation. OS, overall survival.
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3.2. The Comparison of Three Methods in the Patient Summary

The model computed a potential non-ypCR value based on images. To consolidate
this value effectively across all images for a given patient, we assessed three distinct
summarization methods. Initially, we adopted the approach of selecting the maximum
value within the CTV. Subsequently, through thorough evaluation, we identified an optimal
cutoff for this potential value at 0.525. This particular method yielded an impressive AUC
score of 0.928, accompanied by a sensitivity of 0.845 and specificity of 0.852, as illustrated
in Figure 5.
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We employed the second method, which involved identifying the maximum among
the mean values of every three consecutive slices. Through optimization, a possibility value
cutoff of 0.457 was determined as optimal. This method yielded an AUC of 0.923, alongside
a sensitivity of 0.840 and a specificity of 0.826, as depicted in Figure 6.
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The third approach involved computing the mean value across the CTV, with an
optimal cutoff set at 0.309. This method yielded an AUC of 0.924, a sensitivity of 0.825,
and a specificity of 0.869 (Figure 7). These findings highlight the similarity in predictive
performance among all three methods for identifying non-ypCR cases, albeit with minor
discrepancies in optimal cutoff values and performance metrics.
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3.3. The Model Performance of DCRNet in Pathological Results

We observed no significant performance differences among the three summary meth-
ods and opted for simplicity by selecting the maximum value across the CTV. Subsequently,
we conducted a comparative analysis of four backbone models (HRNetV2p, ResNet-101,
EfficientNet, and DenseNet-121), both with and without dose contextual representations
(Table 2). The HRNetV2p model integrated with dose contextual representations (DCR)
outperformed the others, yielding an AUC of 0.928 (95% CI, 0.884–0.972) through 5-fold
cross-validation, demonstrating a notable superiority over alternative models. Models
incorporating DCR exhibited significantly better AUC outcomes in comparison to those
without DCR.

Table 2. Comparison of predictive AUC in 5-fold cross validation.

AUC
(95% CI) ypCR ypT0 ypN0

HRN + DCR 0.928 (0.884–0.972) 0.939 (0.928–0.950) 0.891 (0.881–0.901)
HRN 0.865 (0.856–0.873) 0.877 (0.865–0.889) 0.859 (0.846–0.872)
RN + DCR 0.829 (0.809–0.849) 0.845 (0.828–0.862) 0.813 (0.799–0.827)
RN 0.763 (0.751–0.775) 0.775 (0.759–0.791) 0.751 (0.733–0.769)
EN + DCR 0.836 (0.818–0.854) 0.847 (0.825–0.869) 0.825 (0.806–0.844)
EN 0.766 (0.749–0.783) 0.780 (0.756–0.804) 0.752 (0.736–0.768)
DN + DCR 0.832 (0.812–0.852) 0.844 (0.826–0.862) 0.820 (0.803–0.837)
DN 0.761 (0.742–0.780) 0.776 (0.756–0.796) 0.746 (0.731–0.761)

4. Discussion

Accurately detecting ypCR in esophageal cancer remains challenging with traditional
imaging methods, such as computed tomography, positron emission tomography, endo-
scopic ultrasound, and magnetic resonance imaging, as their sensitivity ranges from 0.35
to 0.80 [5]. To overcome this limitation, computer-aided detection techniques, including
radiomics and machine learning, have garnered interest as tools to enhance ypCR predic-
tion. Prior research by Zhang et al. utilized a support vector machine model, achieving
high accuracy by combining clinical, conventional PET, and radiomic PET features [6].
Beukinga et al. [7] and Yang et al. [8] developed multivariate logistic regression models
incorporating textural features from PET and CT scans. Ypsilantis et al. demonstrated that
a convolutional neural network outperformed traditional machine learning methods, such
as support vector machine, logistic regression, random forest, and gradient boosting [9].
Hou et al. conducted two studies comparing an artificial neural network and support
vector machine based on CT and MRI features, both yielding accurate treatment response
predictions [10,11]. Notably, no significant difference in predictive performance emerged
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between artificial neural network and support vector machine models, emphasizing the
model choice may not be the primary factor [10,11]. Additionally, recent research delves
into radiomic features of the peritumoral region, deemed reflective of the tumor microen-
vironment. Hu et al. [12] developed a support vector machine model with a radial basis
function kernel, enhancing the AUC by integrating intratumoral and peritumoral features.
While these studies underscore the efficacy of imaging features and machine learning mod-
els in predicting treatment response in esophageal cancer, wider clinical adoption awaits
further validation in larger patient cohorts and the standardization of feature extraction
methods.

The current study introduces an innovative approach, the radiotherapy dose map-
guided deep learning method, to predict esophageal cancer patients’ responses to nCRT.
This method integrates imaging data with radiotherapy dose map variations, offering a
more comprehensive assessment of patient responses. Notably, the study population’s
demographics and ypCR rate aligned with previous research findings [5]. There were
no statistically significant differences observed in age, tumor location, clinical stage, or
radiation dose between the ypCR and non-ypCR groups. Three methods were employed
to summarize the potential value of non-ypCR predicted by the model. The first method,
taking the maximum value across the CTV, yielded an AUC score of 0.928, a sensitivity
of 0.845, and a specificity of 0.852, with an optimal cutoff at 0.525. The second method,
based on the maximum between the mean values of three consecutive slices, produced
an AUC of 0.923, a sensitivity of 0.840, and a specificity of 0.826, with an optimal cutoff at
0.457. The third method, utilizing the mean value across the CTV, resulted in an AUC of
0.924, a sensitivity of 0.825, and a specificity of 0.869 with an optimal cutoff at 0.309. These
findings indicate that all three methods effectively predicted the presence of non-ypCR,
albeit with variations in optimal cutoff values and performance metrics. To assess the
impact of dose map information, this study compared four distinct deep learning models
(HRNetV2p, ResNet-101, EfficientNet, and DenseNet-121) both with and without dose
contextual representations. The simplest summary method, the maximum value across
the CTV, was chosen. Results revealed that the HRNetV2p model, when enhanced with
dose contextual representations (DCR), outperformed others, achieving an AUC of 0.928
through 5-fold cross-validation. This outcome marked a significant improvement over
models lacking DCR. Notably, models without DCR demonstrated AUC results in line with
prior research findings [6–12].

Given the small number size of this study, five-fold cross-validation method was
performed for model evaluation to address the limitations of the traditional train/test
split method. The comprehensive process of 5-fold cross-validation provides several
key advantages compared to a single train/test split. First, it delivers a more reliable
performance estimate by averaging results over five iterations, reducing the influence of
random data splits and outliers. Second, it maximizes data utilization, as all data points are
used for both training and testing, enhancing the model’s ability to learn from the entire
dataset. Third, it mitigates the risk of overfitting by testing the model on five different
subsets, making it less likely to memorize peculiarities of a single split. Moreover, it assesses
model robustness by revealing whether the model’s performance is consistent across the
folds, indicating its generalization capabilities. Lastly, five-fold cross-validation enables
fair model comparisons, aiding in the selection of the best-performing model, making it a
valuable tool in machine learning for accurate and reliable model assessment.

In our study, a noteworthy observation was the statistically significant difference
in the male-to-female ratio between the ypCR group and the non-ypCR group, with the
ypCR group having a higher proportion of female patients. This finding aligns with
a prior study that identified female sex as an independent favorable prognostic factor
in patients with ESCC who underwent definitive radiotherapy [20]. It is worth noting
that our study cohort consisted of 95% male patients, reflecting the male-to-female ratio
observed in the general population of individuals diagnosed with ESCC in Taiwan [21].
According to the Cancer Registry Annual Report 2020 published by the Ministry of Health
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and Welfare of Taiwan in December 2022, out of the 2652 newly diagnosed ESCC cases in
2020, 93% were male patients [21]. However, it is essential to recognize that while ESCC is
typically more prevalent in males, with a global male-to-female age-standardized incidence
rate ratio (ASIR) of approximately 3.3:1, significant variations exist by country [22]. For
instance, in the Republic of Korea and several Baltic/European countries, including Belarus,
Ukraine, Slovakia, Lithuania, Latvia, and Estonia, studies have reported extremely high
male-to-female ASIRs, exceeding 10:1 and even reaching as high as 21:1 for ESCC [22]. The
male-to-female ASIR for ESCC in Taiwan is similar to these countries, highlighting the
geographical diversity in the incidence of this disease.

This study highlights the potential of a radiotherapy dose map-guided deep learning
approach, combining imaging data and radiotherapy dose map variables, to predict ypCR
effectively. These results hold the promise of enhancing patient response prediction, en-
abling more personalized and effective care. This includes avoiding unnecessary surgeries
and optimizing radiotherapy treatment planning by incorporating the algorithm into the
treatment planning system, thereby potentially improving patient outcomes and treatment
strategies. Nevertheless, several limitations in the experiment may affect the validity of
the results. Firstly, the relatively small sample size, comprising only 80 patients, could
potentially restrict the generalizability of the findings, as larger sample sizes are often
required for more robust and accurate predictions. Secondly, the use of data from a single
center introduces potential bias into the results, particularly if there are variations in patient
populations or treatment protocols across centers. Finally, the study did not evaluate the
model’s impact on patient outcomes, including survival and quality of life, which should
be addressed in future research to provide a more comprehensive understanding of its
clinical significance.

5. Conclusions

This study introduced a novel approach to predict nCRT response in esophageal
cancer patients, employing a deep learning method that considers both imaging data
and radiotherapy dose map variations. The HRNetV2p with DCR model demonstrated
superior performance, achieving an AUC of 0.928 through 5-fold cross-validation, signify-
ing significant improvement over alternative models. While all three summary methods
yielded similar results for non-ypCR prediction, the simplicity of selecting the maximum
value across the CTV was preferred. This research highlights the promise of radiotherapy
dose map-guided deep learning in enhancing ypCR prediction. However, further studies
involving larger patient cohorts are essential to validate these findings and unlock the full
potential of the proposed methodology.
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