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Abstract: The enlargement of the prostate gland in the reproductive system of males is considered a
form of prostate cancer (PrC). The survival rate is considerably improved with earlier diagnosis of
cancer; thus, timely intervention should be administered. In this study, a new automatic approach
combining several deep learning (DL) techniques was introduced to detect PrC from MRI and
ultrasound (US) images. Furthermore, the presented method describes why a certain decision was
made given the input MRI or US images. Many pretrained custom-developed layers were added to
the pretrained model and employed in the dataset. The study presents an Equilibrium Optimization
Algorithm with Deep Learning-based Prostate Cancer Detection and Classification (EOADL-PCDC)
technique on MRIs. The main goal of the EOADL-PCDC method lies in the detection and classification
of PrC. To achieve this, the EOADL-PCDC technique applies image preprocessing to improve the
image quality. In addition, the EOADL-PCDC technique follows the CapsNet (capsule network)
model for the feature extraction model. The EOA is based on hyperparameter tuning used to increase
the efficiency of CapsNet. The EOADL-PCDC algorithm makes use of the stacked bidirectional
long short-term memory (SBiLSTM) model for prostate cancer classification. A comprehensive set
of simulations of the EOADL-PCDC algorithm was tested on the benchmark MRI dataset. The
experimental outcome revealed the superior performance of the EOADL-PCDC approach over
existing methods in terms of different metrics.

Keywords: cancer diagnosis; prostate cancer; magnetic resonance imaging; equilibrium optimizer;
deep learning

1. Introduction

Prostate cancer (PrC) is the second most common cause of death among males and the
most frequently diagnosed cancer in males around the world [1]. Earlier diagnosis of PrC is
essential for more effective disease management. In several countries, the standard practice
for PrC diagnosis relies on high rates of prostate-specific antigen (PSA) in the blood and a
digital rectal examination (DRE). In some cases, pre-biopsy magnetic resonance imaging
(MRI) may be recommended to guide the biopsy process [2]. Automated computer-aided
diagnosis (CAD) and identification systems can address the limitations of the standard
radiological analysis by applying quantitative techniques for automated, standardized,
and supported regenerative analyses of radiological images [3]. Although PrC has a wide
variety of cancers when diagnosed in the earlier phases, the survival rates are increased
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because of the gradual development of cancer [4]. As a result, efficient monitoring and
earlier identification are significant for enhanced survival of patients.

Current research has found that implementing the machine learning (ML) technique
in prostate MRI can enhance diagnosis accuracy and decrease inter-reader changeability
by focusing on suspected regions on the MRI [5], permitting a more attentive analysis by
the radiologist in standard scan analysis. The ML method is also capable of forecasting
cancer aggressiveness and therapeutic reactions [6]. Numerous studies have indicated
similar implementations among ML techniques and proficient radiologists in head-to-
head relations for MRI analysis. The ML approach has a domain of artificial intelligence
(AI) to employ statistical methods for learning hidden models from present data and
decision making around hidden records [7]. The major function of a machine learner is
to make an overall system on the probable allocation of training samples and, further,
generalize capability to unseen samples. The learning method relies on the presented data
quality. A sample exists in a database with various features. Effective feature extraction
is unfortunately challenging for any task [8]. A convolutional neural network (CNN)
method could have greater individual effectiveness in real image analyses, which are
expected to improve CAD in prostate MRIs. The CNN-based DL technique restructures and
revolutionizes the present analytic model [9]. The main and real-time modules of medical
prostate MRI analyses are diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI),
and apparent diffusion coefficient (ADC) classifications. Numerous earlier studies of the
DL method engaged a PC analysis employing only one or two of the aforementioned
systems and, therefore, were not directly compared with medical efficiency [10].

The study proposes an Equilibrium Optimization Algorithm with Deep Learning-
based Prostate Cancer Detection and Classification (EOADL-PCDC) technique applied
to MRIs. The main goal of the EOADL-PCDC method lies in the recognition and catego-
rization of prostate cancer. To achieve this, the EOADL-PCDC technique applies image
preprocessing to improve the image quality. In addition, the EOADL-PCDC technique
follows the CapsNet (capsule network) for the feature extraction approach. The EOA-based
hyperparameter tuning increases the efficiency of the CapsNet model. For PrC classifica-
tion, the EOADL-PCDC technique makes use of a stacked bidirectional long short-term
memory (SBiLSTM) model. A comprehensive set of simulations of the EOADL-PCDC
technique was tested on the benchmark MRI data.

2. Related Works

Singh et al. [11] implemented the DL technique for diagnosing PrC by employing the
notion of Gleason grading. A 3D-CNN is utilized for monitoring the affected area and
forecasting the cancerous area by employing an Epithelial and Gleason grading network.
In [12], a hybrid method was developed for accurately analyzing mpMRI inspection and
forecasting PI-RADS scores. In this developed technique, feature mapping of mpMRI is
extracted with the help of Darknet53, MobilenetV2, and Efficientnetb0 frameworks. Further,
the feature maps acquired utilizing the above-mentioned frameworks are incorporated.
The combined feature maps have been subjected to neighborhood components analysis
(NCA) for extracting redundant features. Li et al. [13] introduced an imaging pattern that
depends on multi-parameter MRI. Primarily, a multi-view radiomics framework approach
was developed. Secondarily, logistic regression algorithms were exploited for extracting
features and making a framework. Lastly, a Swin Transformer model was developed and
trained through transfer learning (TL) methods.

In [14], a technique for automated classification of the prostate area and cancerous
area with the help of SegNet, a deep-CNN (DCNN) framework, was introduced. This
method employs the PROSTATEx database to train the framework and incorporate various
categorizations into three channels of one image. For all subjects, every part consisting
of the PCa area, transition zone (TZ), and peripheral zone (PZ) is preferred. Ye et al. [15]
presented a PrC identification that depends on the DL method, PSP-Net+VGG16.
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The DCNN segmentation technique dependent upon the PSP-Net was used to make
an atrous convolutional residual architecture framework extraction network. Primarily, a
3D prostate MRI was transformed into 2D image parts and trained to rely on the PSP-Net
and the VGG_16 framework, which could be employed for detecting the targeted area
and classifying the normal prostate and PrC. Ragab et al. [16] presented an Archimedes
Optimizer Algorithm with DL-based PrC Classification (AOADLB-P2C) technique to
execute preprocessing in two phases. Primarily, the technique extracts features through a
DenseNet-161 architecture with the RMSProp optimization. Lastly, the method categorizes
PCa utilizing the AOA with the least-square SVM (LS-SVM) approach.

In [17], a technique for computational identification of EPE on multivariant MRI ex-
ploiting DL was developed. This technique can include two phases. Initially, DL algorithms
are trained by implementing the MRI as input for producing cancerous possibility maps
both outside and inside the prostate. Next, this analysis makes an image postprocessing
pipeline to produce estimates for the EPE position. Bouslimi and Echi [18] suggested a CAD
technique. This developed method examines the convolutional neural networks (UNet)
algorithm to identify PCa cancers and segmentation for accurately collecting cancer cate-
gories. This research provides a completely automated technique through MultiResUNet,
which was primarily developed for the segmentation of skin cancers.

In [19], a new automated classification model was developed that combined various
DL methods to identify PrC from ultrasound (US) and MRI images. Furthermore, the
presented approach describes why a certain decision is made in the input of US or MRI
images. In [20], a strong DL-CNN is applied using a transfer learning algorithm. The
outcomes are compared to different ML approaches (different kernels, Decision Tree (DT),
and SVM). In [21], a new DL model is used for creating a pipeline for the classification and
segmentation of MRI images. The two steps of the DL technique are given as follows: a
U-Net model to segment ROI in the first stage and an LSTM model for categorizing the
ROI as non-cancerous or cancerous.

Several automated tools have been proposed in this work for efficient prostate cancer
detection and classification. Although ML and DL techniques exist in the prior research,
still it is essential to increase the efficiency of PrC classification. The number of parameters
of DL techniques also quickly increases, leading to model over-fitting due to the continual
deepening of the model. Simultaneously, dissimilar hyperparameters have a considerable
influence on the CNN model performance. Thus, we apply EOA for the parameter selection
of the CapsNet architecture. A summary of reviewed works is given in Table 1.

Table 1. Summary of existing works.

Reference Objective Methodology Dataset Measures Merits Demerits

Singh et al.
[11]

Classify PrC which
belongs to the
Gleason grade

group

Faster RCNN
with Inception-

Resnet-V2

Prostate-2
dataset

Accuracy,
sensitivity,
specificity

Effective
segmentation of

lesion

Less
experimentation

Yildirim
et al. [12]

Aimed to detect the
PI-RADS groups

using mpMR
images.

MobilenetV2,
Efficientnetb0,
and Darknet53

Own data Accuracy

Can be used to
reduce

unnecessary
biopsies

moderate to lower
level agreement in
PI-RADS scoring

evaluation

Li et al. [13]
Classify PCa and

prostate
hyperplasia

Swin
Transformer Own data AUC, ROC

Better
predictive
outcomes

Hard to detect the
accurate area on

MRI images

Lai et al.
[14]

For
auto-segmenting
the prostate zone
and cancer region

SegNet, DCNN Own data Accuracy, DSC,
Recall

Superior results
for PCa auto
segmentation

Less amount of
training data and

requires model
fine-tuning
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Table 1. Cont.

Reference Objective Methodology Dataset Measures Merits Demerits

Ye et al. [15]
Develop a prostate

tumor diagnosis
model

PSP-
Net+VGG16 Own data Accuracy

Superior in
accuracy and

processing time

Less
experimentation

Ragab et al.
[16]

Investigate MRI
images for prostate

cancer detection

DenseNet-161,
LS-SVM, AOA Own data

Accuracy,
sensitivity,
specificity,

F-Score

Enhanced
performance

Computational
complexity analysis

is needed

Moroianu
et al. [17]

Identify PCa that
spreads outside the

prostate
U-Net Own data ROC, AUC

Parameter
tuning is

accomplished

Computational
complexity analysis

is needed

Bouslimi,
and Echi

[18]

Offer a fully
automatic system

for prostate
detection

MultiResUnet

Radboudumc
prostate
cancer
dataset

Accuracy Enhanced
performance

Less
experimentation

Hassan et al.
[19]

Detect prostate
cancer using a

fusion of different
DL models

SVM, Adaboost,
K-NN, and

Random
Forests

Own data Accuracy Examined by
XAI

Requires
fine-tuning of

model parameters

Abbasi et al.
[20]

Employ transfer
learning model for

prostate cancer
detection

GoogleNet+ML
classifiers

Harvard
University

prostate
dataset

Sensitivity,
specificity, PPV,
NPV, and total

accuracy

Enhanced
performance

Requires
fine-tuning of

model parameters

Gavade
et al. [21]

Classify prostate
cancer

U-Net architec-
ture+LSTM

I2CVB
dataset

Accuracy, F1
score, precision,

recall, ROC,
dice

Reduce bias
and enhance

the generaliza-
tion

ability

Less
experimentation

3. The Proposed Model

In this article, we introduce an automatic prostate cancer diagnosis model using the
EOADL-PCDC technique on MRI Images. The main goal of the EOADL-PCDC algorithm
lies in the detection and classification of PrC. The presented model involves four major
stages, namely, image preprocessing, feature extractor, EOA-based hyperparameter tuning,
and SBiLSTM-based classification. Figure 1 represents the overall working flow of the
EOADL-PCDC technique.

3.1. Image Preprocessing

The CLAHE technique is used to improve the contrast level to preprocess the input
images. It is an image enhancement method that has two fundamental aspects: (1) clip limit
(Climit) and (2) non-overlapping regions (Ycontextual) [22]. In this model, both parameters
are accountable for controlling the improved quality of the image. Xav refers to the average
number of pixels in the grayscale as follows:

Xav =
XcrX × XcrY

Xg
(1)

where X crX indicates the pixel count in the x dimensions of Ycontextual , Xg denotes the
gray level count in the Ycontextual , and XcrY shows the pixel count in the y dimensions
of Ycontextual .

Xacis =
X ∑ c

Xg
(2)
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The distributed pixel is evaluated as follows:

Pd =
Xg

Xlp
(3)
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In Equation (3), Xlp denotes the residual number of clipped image pixels.

3.2. Feature Extraction Using CapsNet

For the feature extraction process, the EOADL-PCDC technique uses the CapsNet
model. The Conv layer, PrimaryCaps layer, and DigitCaps layer are the three fundamental
layers of CapsNet [23]. Furthermore, using three FC layers, CapsNet forms a reconstructed
stage. The Conv layer extracts the main key of input images. The original Sabour structure
chooses the ReLU function, with 256 filters, or channels, having a size of 9× 9 and stride of 1.
Hence, the 256 channels given with the dimension of 20× 20 from the Conv layers, the size
of 9× 9 with a depth of 256, and a stride of 2 are used, which leads to 32 PrimaryCaps layers
of dimension 6× 6× 8, where PrimaryCap contains 8D (eight dimensions). This operation
generates 1152 capsules. All the capsules have two different components: orientation
and magnitude. The orientation comprises the instantiate properties or parameters of the
entities, and the magnitude is the probability where the entity occurs.

When the capsule is calculated, it decides which data will be passed to the following
layer. In addition, the squashing function attains a vector with 0 and 1 values, which
ensures that a smaller vector takes values closer to 0 and a larger vector has a value below
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1. Equation (4) demonstrates the squashing function, in which vj denotes the output vector
of the jth capsules and sj is its overall input.

vj = squash
(
sj
)
=

‖sj‖2

1 + ‖sj‖2

sj

‖sj‖
(4)

For the PrimaryCaps layer, the overall input to sj capsules is a weighted sum through
each prediction vector ûj|i from the capsule by multiplying the output ui in the below
layer by the weighted matrices Wij, which implies ûj|i = Wijuj and sj = Σiûj|i. This
function exploits a weight transform matrix that encodes the spatial significance and other
relationships amongst the features of the present one and the low-level capsule. If the
estimated prediction vector has a higher value than the potential parent, then the coupling
coefficient

(
cij
)

value is adjusted to select the right connection path through the dynamic
routing mechanism. The coupling coefficient between the ith capsule and the capsule in
the top layer sums to 1 and is defined by the routing softmax function, where initial logits
bij are log-likelihoods that ith capsule must be coupled with the jth capsule:

cij = so f tmax(bi) =
exp
(
bij
)

Σkexp(bik)
(5)

3.3. Parameter Tuning Using EOA

The EOA is used to adjust the hyperparameter based on the CapsNet model. EOA is a
newly established metaheuristic optimization strategy which attempts to keep the balance
between the exploitation and exploration phases [24]. Exploitation is used to locally search
the space to obtain the best solution and increase the search quality, while exploration
is used to globally search the space but prevents the local optimal solution. The EOA
technique is derived from the dynamic mass balance of the control volume system. Similar
to other metaheuristic algorithms, EOA begins with population initialization, which is
generated based on the dimensions of the feature size and the number of particles:

V
dP
dt

= QPeq −QP + G (6)

The equation signifies the random initial population as follows:

pinitial
i = pmin + randi(pmax − pmin) (7)

where Pmin and Pmax denote the minimal and maximal concentration of particles, corre-
spondingly, pinitial

i shows the initial concentration vectors of the ith particles, n refers to the
number of particles in the population, and randi belongs to [0, 1].

The equilibrium state is used to conclude the optimization technique as it is globally
enhanced, and there is no knowledge of optimization at the beginning. Consider four
different particles that remain the best throughout the entire optimization algorithm. The
number of particles selected is random and dissimilar from that in other optimization
techniques. The five chosen objects that help to create a vector called equilibrium pooling
are discussed below.

peq→. pool = −peq→. (1),Peq→. (2)l,Peq→. (3),Peq→. (4),Peq→. (avg) (8)

Eventually, an exponential term (E) updates the concentration and balance between
exploitation and exploration, and finally aims at achieving better optimization. ε denotes
the random vector and ranges within [0, 1], and is given as follows:

→
E = e

→
ε (t−t0) (9)
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In Equation (9), t differs with the difference in iteration (i), which can be signified as:

t =
(

1− i
maxi

)(
k2 ·

i
maxi

)
(10)

where i shows the existing iteration and maxi denotes the maximum iteration number. k2
denotes the parameter that manages the exploitation capability. The succeeding formula
demonstrates that if the searching performance is delayed by augmenting the exploitation
and exploration capabilities, then the convergence is easier to obtain.

t0 =
1
∈ ln

(
−k1sign(m− 0.5)

[
1− e−∈.t])+ t (11)

In the above equation, k1 shows the exploration capability. The greater the value
of k2, the lower the exploration and the higher the exploitation capability. sign(m− 0.5)
denotes the direction of exploitation and exploration. The values of m lie within [0, 1]. The
amended version of Equation (9) is given below:

→
E = k.sign(m− 0.5)

[
e−∈t − 1

]
(12)

Then, the generation rate is the next important stage, which gives an accurate solution
to the optimization process by ensuring a better exploitation stage. There exist several
algorithms for computing the generation rate amongst well-known models for 1D space, as
given below.

→
HG =

→
H0·e

→
∈(t−t0) (13)

In Equation (13), H0 refers to the initial value and ε denotes the decay constant:

→
HG =

→
H0·
→
E (14)

E
→
− 0 = GCP(Peq− ∈ P) (15)

GCP =

{
0.5 ·m i f m > GP
0 else

(16)

Now, GCP refers to the generation control parameter. Finally, the EOA updating rule
can be given in the following equation:

P = peq +
(

P− peq
)
E +

F
∈ V(1− E)

(17)

The EOA system derives an FF to accomplish higher efficacy of classification. It
determines a positive integer to be the greater outcome of the solution candidate. Thus, the
decay of the classifier error rate is assumed as an FF as follows:

f itness(xi) = Classi f ierErrorRate(xi) =
no. o f misclassi f ied samples

Total no. o f samples
∗ 100 (18)

3.4. Image Classification Using SBiLSTM Model

The SBiLSTM model is applied for prostate cancer classification. BiLSTM is obtained
via the data sequence of time-dependent input, together with latent relations between
the input features and the destination [25]. It is proposed to record the long-term prior
experience and manage it by applying memory units. LSTM provides several benefits
while analyzing and projecting time series data. In the network module, a chain structure
exists in LSTM and RNN. The RNN model encompasses a single neuron structure, while



Biomedicines 2023, 11, 3200 8 of 18

the LSTM model includes cells with three gates, namely, forget, output, and input gates.
The succeeding equation demonstrates the computation method for the above three gates:

input (t) = σ(Wix(t) + Vih(t− 1) + bi) (19)

In Equation (19), Wi and yi signify the weights of the input gate, h(t− 1) symbol-
izes the output of prior cells, x(t) signifies the input of existing cells, and σ denotes the
sigmoid function:

f orget (t) = σ
(

W f x(t) + Vf h(t− 1) + b f

)
(20)

This gate states that data in a cell must be forgotten, and w f and y f are the weights of
the forgotten gate. By using the following expression, the update procedure was carried out:

C̃(t) = tanh(Wcx(t) + Vch(t− 1) + bc) (21)

C(t) = f orget (t) ∗ C(t− 1) + inpu f (t) ∗ C̃(t) (22)

Equation (21) shows the candidate unit for memory which generates present data.
Moreover, Equation (22) illustrates the procedure of renewing conditions of the cell.
iVVc and yc show the weight of the substitute and existing condition and ∗ shows the
Hadamard product.

output (t) = σ(W0x(t) + V0h(t− 1) + b0) (23)

h(t) = output(t) ∗ tanh(C(t)) (24)

Equations (23) and (24) analyze the output gate. Initially, the sigmoid layer is obtained
via the cell states to be outputted. Through the tanh function, the cell state upgraded is
processed, and the upgraded states are multiplied using output (t) to attain h(t). y0 shows
the weight of the output gate. These frameworks create a BLSTM network to extract data
features. In comparison to classical LSTM, BiLSTM is used to extract more context data.
Backwards and forward time series are used to gain data regarding the present timestamp
in the prior period and the future to create accurate time series predictions. Figure 2 shows
the structure of the BiLSTM model.
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The BiLSTM layer is added in the SBiLSTM mechanism to the stacked layer. Ac-
cordingly, output representations from the stacking layer are transferred to FC and the
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regression layer determines the temperature values. The ReLU function is used in the
output layer to mitigate gradient vanishing problems:

temperature = ReLU
(

W0h f + b0

)
(25)

In Equation (25), W0 and b0 correspondingly show the weighted matrices and bias in
the regression layer. h f indicates the output of the FC layer:

Loss =
1
T

T

∑
r=1

(∣∣temperaturer − temperature′r
∣∣)2 (26)

The proposed model was trained through the BP model.

4. Results and Discussion

The presented approach was simulated using the Python 3.6.5 tool. The prostate cancer
classification outcomes of the EOADL-PCDC method were validated on the dataset [16],
including 400 samples with two class labels as described in Table 2.

Table 2. Details of the database.

Classes No. of Instances

Prostate 200
Brachytherapy 200
Total Samples 400

Figure 3 illustrates the confusion matrices made by the EOADL-PCDC method on
80:20 and 70:30 of the TR phase (TRAP)/TS phase (TESP). The experimental data specify
the efficient identification of the Prostate and Brachytherapy samples under every class.
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In Table 3 and Figure 4, the prostate cancer detection outcome values of the EOADL-
PCDC method are shown at 80:20 of the TRAP/TESP. The stimulation values highlighted
that the EOADL-PCDC system recognizes two classes. With 80% TRAP, the EOADL-PCDC
technique gains average accuy, recal , specy, Fscore, and MCC of 99.69%, 99.70%, 99.70%,
99.69%, and 99.38%, correspondingly. Moreover, with a 20% TESP, the EOADL-PCDC
method attains average accuy, recal , specy, Fscore, and MCC of 98.75%, 98.61%, 98.61%,
98.73%, and 97.50%, correspondingly.

Table 3. Prostate cancer detection outcomes of the EOADL-PCDC algorithm on 80:20 of TRAP/TESP.

Class Accuy Recal Specy Fscore MCC

TRAP (80%)

Prostate 99.69 99.39 100.00 99.69 99.38
Brachytherapy 99.69 100.00 99.39 99.68 99.38

Average 99.69 99.70 99.70 99.69 99.38

TESP (20%)

Prostate 98.75 97.22 100.00 98.59 97.50
Brachytherapy 98.75 100.00 97.22 98.88 97.50

Average 98.75 98.61 98.61 98.73 97.50
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As shown in Figure 5, TR and TS accuy curves are defined to calculate the performance
of the EOADL-PCDC technique on 80:20 of TRAP/TESP. The TR and TS accuy curves show
the outcomes of the EOADL-PCDC system over numerous epochs. The figure provides
relevant details about the learning process and generalizability of the EOADL-PCDC
technique. The TR and TS accuy curves are enriched with the improvement in epoch count.
It can be noticeable that the EOADL-PCDC algorithm yields enhanced testing accuy and
has the proficiency to identify the patterns in the TR and TS datasets.
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The comprehensive TR and TS loss values of the EOADL-PCDC system on 80:20
of TRAP/TESP over epochs are shown in Figure 6. The TR loss states the model loss
minimized over epochs. Initially, the loss value is minimized as the model adapts the
weight to minimize the predictive error on the TR and TS datasets. The loss curve exhibits
the level where the model fits the training dataset. The TR and TS loss reduced progressively
and showed that the EOADL-PCDC method efficiently learns the patterns given in the TR
and TS datasets. The EOADL-PCDC technique adapts the parameters for the reduction in
the variance between the predictive and original training labels.
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As shown in Figure 7, the PR analysis of the EOADL-PCDC algorithm on 80:20 of
TRAP/TESP is confirmed by plotting precision against recall. The simulated outcomes
confirm that the EOADL-PCDC method attains increased PR values in each class. The
figure describes the model learned for recognizing diverse class labels. The EOADL-PCDC
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technique achieves better experimental outcomes in the detection of positive samples with
reduced false positives.
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The ROC examination presented by the EOADL-PCDC model on 80:20 of TRAP/TESP
is demonstrated in Figure 8, which has the ability to discriminate the classes. The figure
provides insights into the tradeoff between the TPR and FPR rates over dissimilar classifi-
cation thresholds and differing counts of epochs. It represents the accurately forecasted
outcomes of the EOADL-PCDC method on the classification of dissimilar class labels.
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In Table 4 and Figure 9, the prostate cancer recognition-simulated investigation of
the EOADL-PCDC model is demonstrated at 70:30 of the TRAP/TESP. The observation
data highlighted that the EOADL-PCDC models identify two classes. With 70% TRAP,
the EOADL-PCDC system attains average accuy, recal , specy, Fscore, and MCC of 99.29%,
99.29%, 99.29%, 99.29%, and 98.57%, respectively. Moreover, with a 30% TESP, the EOADL-
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PCDC method gains average accuy, recal , specy, Fscore, and MCC of 99.17%, 99.14%, 99.14%,
99.17%, and 98.34%, correspondingly.

Table 4. Prostate cancer detection outcome of the EOADL-PCDC model at 70:30 of TRAP/TESP.

Class Accuy Recal Specy Fscore MCC

TRAP (70%)

Prostate 99.29 99.28 99.30 99.28 98.57
Brachytherapy 99.29 99.30 99.28 99.30 98.57

Average 99.29 99.29 99.29 99.29 98.57

TESP (30%)

Prostate 99.17 100.00 98.28 99.20 98.34
Brachytherapy 99.17 98.28 100.00 99.13 98.34

Average 99.17 99.14 99.14 99.17 98.34

As presented in Figure 10, TR and TS accuy curves are shown to calculate the perfor-
mance of the EOADL-PCDC method on 70:30 of TRAP/TESP. The TR and TS accuy curves
show the outcomes of the EOADL-PCDC algorithm over dissimilar epochs. The figure
provides significant details about the learning task and generalizability of the EOADL-
PCDC method. With the improvement in epoch count, the TR and TS accuy curves acquire
superior outcomes. The EOADL-PCDC method achieves maximum testing accuracy, which
has the proficiency to identify the patterns in the TR and TS datasets.
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Figure 11 illustrates the detailed TR and TS loss values of the EOADL-PCDC model
on 70:30 of TRAP/TESP over epochs. The TR loss shows the model loss minimized over
epochs. The loss values were minimized as a model adjusted the weight for the reduction
in the predictive error on the TR and TS datasets. The loss curves exhibit the extent to
which the model fits the trained dataset. The TR and TS loss reduced progressively and
showed that the EOADL-PCDC method efficiently learns the patterns given in the TR and
TS dataset. Note that the EOADL-PCDC algorithm adapts the parameters to diminish the
dissimilarity between the original and predictive training labels.
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As shown in Figure 12, the PR examination of the EOADL-PCDC model on 70:30 of
TRAP/TESP is represented by plotting precision against recall. The experimental data
confirm that the EOADL-PCDC methodology enhanced PR values under each class. The
figure demonstrates that the model learns to detect dissimilar class labels. The EOADL-
PCDC system accomplishes higher experimental outcomes in the detection of positive
samples with diminished false positives.

The ROC investigation provided by the EOADL-PCDC method at 70:30 of the TRAP/TESP
is demonstrated in Figure 13, which has the capability to discriminate the classes. The figure
provides valued insights into the tradeoff between the TPR and FPR rates over dissimilar
classification thresholds and varying counts of epochs. It obtains the accurately forecasted
outcomes of the EOADL-PCDC method on the classification of several class labels.
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The comparison study of the EOADL-PCDC method with current models is provided
in Table 5 and Figure 14 [16]. The results indicate that the DT model achieves ineffectual
performance. Next, the NB, SVM-Gaussian, SVM-RBF, and GoogleNet models obtained
slightly enhanced outcomes. Although the AOADLB-P2C model reaches near-optimal
performance, the EOADL-PCDC technique obtains maximum performance with accuy,
sensy, specy, and Fscore of 99.69%, 99.70%, 99.70%, and 99.69%, correspondingly. These
outcomes ensured the superior outcome of the EOADL-PCDC method on the PC classifica-
tion algorithm.
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Table 5. Comparative outcome of the EOADL-PCDC method with existing techniques [16].

Methods Accuy sensy Specy Fscore

EOADL-PCDC 99.69 99.70 99.70 99.69
AOADLB-P2C 99.50 99.50 99.50 99.50

NB 98.46 98.47 98.64 98.81
DT 97.29 97.26 98.47 98.83

SVM-Gaussian 98.36 98.43 98.54 97.91
SVM-RBF 98.12 98.63 97.89 98.52
GoogleNet 98.28 98.28 98.49 98.69
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Figure 14. Comparative outcome of the EOADL-PCDC algorithm with recent systems.

5. Conclusions

In this article, we introduced an automated prostate cancer diagnoses method us-
ing the EOADL-PCDC method on MRI images. The main goal of the EOADL-PCDC
technique lies in the recognition and categorization of prostate cancer. The presented
model involves four major stages, namely, image preprocessing, CapsNet feature extrac-
tion, EOA-based hyperparameter tuning, and SBiLSTM-based classification. Primarily, the
EOADL-PCDC technique applies image preprocessing to improve the image quality. In
addition, the EOADL-PCDC technique follows CapsNet for the feature extraction process.
The EOA-based hyperparameter tuning is used to enhance the performance of CapsNet.
The EOADL-PCDC technique makes use of the SBiLSTM model for prostate cancer classifi-
cation. A comprehensive set of simulations of the EOADL-PCDC technique was tested on
the benchmark MRI dataset. The experimental outcomes revealed the superior performance
of the EOADL-PCDC method over the existing techniques under various metrics. In the
future, the EOADL-PCDC method can be further optimized to accommodate larger and
more diverse datasets, enhancing its generalizability across different patient populations.
Additionally, exploring the model’s potential for real-time or near-real-time diagnosis
in clinical settings could significantly contribute to improving patient outcomes through
timely interventions.
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