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Abstract: Neutrophils act as critical mediators of innate immunity, which depends on their rapid
responses to chemokines followed by their migration towards sites of infection during chemotaxis.
Chemokine receptors expressed on the surface of neutrophils mediate chemotaxis by activating
contractile machinery as the cells escape from capillary beds and then attack pathogens. Neutrophils
also contribute to inflammatory responses, which support pathogen destruction but can lead to acute
and chronic inflammatory disorders. CXCR2, a G-protein-coupled chemokine receptor expressed on
both myeloid and epithelial cells, is well-characterized for its capacities to bind multiple chemokines,
including interleukin-8 and growth-related oncogene alpha in humans or keratinocyte chemokine
(KC) in mice. Here we show that a small molecule CXCR2 antagonist termed RIST4721 can effectively
inhibit KC-stimulated chemotaxis by neutrophils derived from ex vivo-cultured mouse bone mar-
row in a potent and dose-dependent manner. Antagonistic properties of RIST4721 are thoroughly
characterized, including the maximal, half-maximal and minimum concentrations required to inhibit
chemotaxis. Importantly, RIST4721-treated neutrophils exhibit robust phagocytosis and reactive
oxygen species production, confirming drug specificity to chemotaxis inhibition. Together our data
indicate that RIST4721 acts to inhibit inflammation mediated and potentiated by neutrophils and
therefore promises to facilitate treatment of a host of inflammatory conditions.

Keywords: neutrophil; chemotaxis; CXCR2 antagonist; inflammatory disease; phagocytosis;
respiratory burst

1. Introduction

Neutrophils play a pivotal role in innate immune responses as they exhibit rapid
migration towards sites of infection or inflammation, and then activate effective defen-
sive mechanisms leading to pathogen destruction. These professional phagocytes, also
termed polymorphonuclear neutrophils (PMNs), mature from hematopoietic stem cells
in the bone marrow through a sequential, cytokine-regulated differentiation process with
distinct stages that include common myeloid progenitors (CMP), promyelocytes, several
myelocytic stages (myelocytes, metamyelocytes, band cells) and finally mature PMNs [1,2].
This maturation process is regulated in part by the granulocyte colony-stimulating factor
(G-CSF) receptor upon binding of its ligand, which activates multiple intracellular path-
ways that ultimately control the expression of neutrophil-specific genes [3,4]. As PMNs
mature, they undergo unique morphologic changes including condensation of chromatin,
unique nuclear envelope component changes during the formation of characteristic seg-
mented or multilobed structures and decreased nuclear-to-cytoplasmic ratios (N/C) [5].
Mature neutrophils are then released from large pools in the bone marrow into circulation,
where they are poised to respond to gradients of chemoattractants secreted by infected
tissues in the process of chemotaxis. Chemotaxis is regulated by members of the CXC
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subfamily of chemokines that are characterized by the presence in their N-termini of four
conserved cysteine residues, the first two of which are separated by a variable amino
acid [6]. Among the 17 known CXC chemokine subfamily members is CXCL8 (also termed
IL-8 and neutrophil-activating protein), which plays a critical role in neutrophil chemotaxis
and pro-inflammatory responses. CXCL8 can act through either of two G-protein-coupled
receptors that can effectively bind the chemoattractant, CXCR1 and CXCR2 [7,8]. Upon
binding CXCL8, CXCR1/2 causes dissociation of the GTP-binding protein subunits, G-α
and the G-βγ complex, which independently activate pathways mediated by phosphatidyli-
nositol 3-kinase (PI3K), phospholipase C (PLC) and p38 mitogen-activated protein kinase
(p38MAPK). Once activated, these pathways are essential for integrin upregulation and
reorganization of the actin cytoskeleton during cell migration [9–12]. In mice, homolo-
gous versions of IL-8 and CXCR1 are not present; however, CXCR2-binding keratinocyte
chemoattractant (KC) is considered a reliable functional homologue of human IL-8 and is
commonly used in mouse studies on neutrophil migration [13].

Neutrophil functions are well established as critical to innate immunity, as evident
from neutropenia that is associated with reduced life expectancy [14,15]. However, per-
sistent infiltration of neutrophils has been linked to multiple autoimmune and inflam-
matory diseases, including but not limited to chronic obstructive pulmonary disorder
(COPD), cystic fibrosis, asthma, rheumatoid arthritis, psoriasis, neutrophilic dermatoses
and inflammatory bowel diseases [16]. Moreover, neutrophils are recruited to the tumor
microenvironment, the detection of which often correlates with tumor progression and
poor clinical prognosis [17–21]. Current treatments prescribed to ameliorate the detri-
mental effects of excessive neutrophil infiltration are microtubule inhibitors (MTI) such
as colchicine, and substances that promote the shedding of adhesion molecules critical
to neutrophil extravasation, for example the integrins LFA-1 (CD11a/CD18) and Mac-1
(CD11b/CD18) [22]. Such treatments include methotrexate, glucocorticoids (GC) and
nonsteroidal anti-inflammatory drugs (NSAIDS). Although effective in some cases, these
therapies are not considered specific to neutrophil chemotaxis, can lead to uncontrollable
responses and present serious side effects, especially with long-term use [23,24]. Alternative
approaches to address these issues include the use of ligand neutralizing antibodies, small
molecule inhibitors of PI3K, PLC and p38MAPK pathways, or microRNA-mediated silenc-
ing of chemokine expression [25]. However, reversibly inhibiting chemokine receptors is
arguably the most promising out of all the investigated strategies to control neutrophil
chemotaxis and recruitment.

Multiple compounds that antagonize chemokine receptors have been developed, two
of which have been approved by the FDA: Maraviroc, a CCR5 antagonist used for HIV-1
infection, and Plerixafor, a CXCR4 antagonist used as a hematopoietic stem cell mobilizer
in patients with non-Hodgkin lymphoma and multiple myeloma [26,27]. Thus, targeting
CXCR2 could be a potent method to regulate neutrophil migration as a form of therapy for
a variety of inflammatory disorders. In particular, a CXCR2 antagonist could be particularly
effective in treating disorders associated with abnormally high expression of IL-8 or its
receptor, including psoriasis, palmoplantar pustulosis (PPP), acute respiratory distress
syndrome (ARDS) and rheumatologic conditions such as familial Mediterranean fever
(FMF) and Behcet’s disease [28–35]. Ligands that can be blocked by such an antagonist
include the epithelial-cell-derived neutrophil-activating protein (ENA-78), growth-related
oncogene alpha (GRO-α; also known as CXC chemokine ligand-1 [CXCL1]) and CXCL8,
which are produced by macrophages, mast cells and epithelial cells [36–39]. In the studies
presented here, we aimed to characterize the effects of a novel small molecule CXCR2
antagonist developed by Aristea Therapeutics (CA), termed RIST4721, on mouse neutrophil
chemotaxis. RIST4721 was designed to reversibly block human CXCR2 via allosteric
interactions, which is predicted to inhibit neutrophil chemotaxis and thereby prevent
neutrophil migration to sites of inflammation. We used mouse neutrophils derived from
ex vivo culture of bone marrow that was treated with a stepwise combination of the
cytokines known to promote neutrophil differentiation [40,41]. Our results demonstrate
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that we have designed an optimal assay for testing mouse neutrophil chemotaxis and
that RIST4721 effectively inhibits neutrophil chemotaxis. Data showing dose-dependent
responses to RIST4721 are also presented along with results that identify the minimal,
maximal and inhibitory 50 concentrations (IC50). Importantly the effects of RIST4721 are
specific to chemotaxis, as additional functional responses that include phagocytosis and
the production of reactive oxygen species (ROS) during the respiratory burst were not
affected by this CXCR2 antagonist. These results should be informative for clinical trials
of RIST4721 as an effective therapeutic to treat multiple inflammatory diseases caused by
aberrantly recruited neutrophils, a double-edged sword of the innate immune system.

2. Materials and Methods
2.1. Drug Preparation

Small molecule CXCR2 antagonist RIST4721 was provided as a powder by Aristea
Therapeutics (San Diego, CA, USA) and stored at −20 ◦C in vials protected from light.
Stock solutions of the drug were prepared every 2–3 months by dissolving appropriate
portions of the powder in DMSO (Thermo Fisher Scientific, Waltham, MA, USA) at 500 mM
final concentration. Single-use aliquots were then prepared to avoid multiple freeze–thaw
cycles. Working solutions were made if necessary by diluting the stock solution in DMSO
immediately prior to use.

2.2. Mice and Ex Vivo Neutrophil Culture

Eight-week-old C57BL/6 female mice were purchased from Charles River Labora-
tories (Wilmington, MA, USA) and euthanized under protocols approved by the UMass
Lowell Institutional Animal Care and Use Committee to harvest bone marrow flushed
from femurs and tibias, which were frozen and stored in liquid nitrogen. Bone marrow
batches were then thawed as needed and hematopoietic stem cells (HSCs) were isolated
to produce mature neutrophils using previously established protocols [40,41]. Briefly,
HSCs were separated through negative selection using BD IMag™ Mouse Hematopoietic
Progenitor Cell Enrichment Set (BD Biosciences, Woburn, MA, USA) according to manufac-
turer’s recommendations. The cells were then cultured for 3 days in basal media (Iscove’s
modified Dulbecco’s media (IMDM; HyClone, Logan, UT, USA) with 20% horse serum
(HS; Gibco, Grand Island, NY, USA) and penicillin (50 U/mL)/streptomycin sulfate (50
µg/mL; HyClone)) supplemented with SCF (50 ng/mL; Peprotech, Rocky Hill, NJ, USA)
and IL-3 (50 ng/mL; Peprotech) at 37 ◦C and 5% CO2. On day 3 (D3 CMP stage) the media
was changed to basal media supplemented with SCF (50 ng/mL), IL-3 (50 ng/mL) and
G-CSF (50 ng/mL; Peprotech) and the cells were cultured for 2 days at the same conditions.
Finally, on day 5 (D5 pro-PMN stage) the media was changed to basal media with G-CSF
(50 ng/mL) only and the cells were cultured for additional 2 days until terminal maturation
(D7 PMN). The differentiation of cells was confirmed by morphologic evaluation of cells
stained with Wright plus Giemsa (Sigma-Aldrich, St. Louis, MO, USA) and detection of
neutrophil-specific markers as described below.

2.3. Chemotaxis Assays and Half-Maximal Inhibitory Calculation

Chemotaxis experiments were performed in 96-well HTS transwell plates with 3 µm
pores (Corning, Corning, NY, USA) using a previously established protocol [42]. The assay
settings were further optimized by testing various cell numbers (between 2 × 104 and
2 × 105), different concentrations of KC (10 to 250 ng/mL; Peprotech) and total migration
times (30 min to 3 h) to maximize the chemotactic responses. To test the effect of RIST4721
on chemotaxis, solutions of phenol red-free IMDM plus 1% certified FBS (Gibco) with
or without KC (100 ng/mL) were prepared, with DMSO used as the vehicle control. To
prepare cells for each test, mature neutrophil (D7 PMN) concentrations were adjusted to
5 × 105 cells/mL by diluting the cells in basal media with G-CSF only. The cells were mixed
to ensure even distribution and plated in 6-well plates at 5 mL per well. The appropriate
working concentration of RIST4721 (or DMSO as control) was then added into the cultures
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at 5 µL per well. The cells were incubated with the drug for 30 min unless otherwise
indicated, 2 × 105 cells per replicate were then harvested, centrifuged at 250× g for 5 min,
washed in 5 mL of PBS and again centrifuged. Cell pellets were then resuspended in phenol
red-free IMDM at 80 µL per replicate and the drug (or DMSO) was added at the same
concentrations as used in the pretreatment step. Prepared media were then plated into
bottom chambers of designated wells at 230 µL per well and 5 replicates per condition.
Next, the insert plate with top chambers was applied. Finally, the cells were transferred
into the top chamber of the chemotaxis plates, and plates were incubated at 37 ◦C/5% CO2
for 2 h, unless otherwise stated. After the incubation, the top chambers were removed and
230 µL of CellTiter-Glo (Promega, Madison, WA, USA) was added into each well according
to the manufacturer’s protocol. The plate was incubated at RT for 10 min and viable cells
were detected by measuring luminescence using a microplate reader (Synergy HT, Biotek,
Winooski, VT, USA). The averages of luminescence signals or fold changes vs. DMSO
control were calculated for each tested condition to generate dose–response graphs, and
values were uploaded into an online EC50 calculator (ATT Bioquest, Pleasanton, CA, USA)
to identify half-maximal inhibitory concentration (IC50) values.

2.4. Cytospins and Wright/Giemsa Staining

To visualize cellular morphology, 1 × 105 cells were harvested from the culture and
centrifuged at 1400× g for 5 min. The pellet was then resuspended in 300 µL PBS with
0.1% BSA (Thermo Fisher Scientific) and transferred into a cytospin apparatus for slide
preparation. The cells were centrifuged for 5 min at 55× g and the slides were air-dried for
5 min followed by staining in Wright stain for 2.5 min. The slides were then submerged
in Sorensen’s phosphate buffer (pH 6.8) for 5 min, stained in Giemsa stain for 15 s, and
rinsed twice in distilled water for 5 min each. Finally, the specimens were air-dried and
mounted with a drop of Permount (Fisher Scientific) plus a glass coverslip. The cells were
then imaged under a 60X oil immersion objective using an Olympus BX41 microscope
(Olympus, Waltham, MA, USA) fitted with an Olympus DP camera and Controller image
analysis software (Olympus, Center Valley, PA, USA).

2.5. Proliferation and Viability Assays

To assess the effect of RIST4721 treatment on proliferation and differentiation of ex
vivo progenitors, D3 CMPs were plated in triplicate wells at 2 × 105 cells/mL (12-well
plate, 2.5 mL per well) and the drug (20 nM) or DMSO were added into the media. The
cells were cultured as described above until they reached the mature neutrophil stage (D7
PMN), making sure that the drug and DMSO were replenished during media changes and
passages. Cell counts were performed for each replicate at 24, 48, 72 and 96 h timepoints
using trypan blue exclusion assays (HyClone) and the total cell numbers were plotted as
proliferation curves. For viability assays, untreated D7 PMNs were mixed and split into
triplicate wells for RIST4721 (10 µM) or DMSO treatment. The cells were incubated for
2.5 h at 37 ◦C and 5% CO2, after which 100 µL samples were collected from each well and
transferred into a white, clear bottom 96-well plate. CellTiter-Glo reagent was then added
into each sample at 1:1 ratio and the plate was incubated at RT for 10 min. Viable cells were
detected by luminescence measurements using a microplate reader (Synergy HT).

2.6. Cell Surface Marker Analysis

Cells at D3 CMP stage were treated with 20 nM RIST4721 (or DMSO) and differenti-
ated into mature neutrophils as described above while replenishing the drug and DMSO
during culture expansion or media changes. Cell surface marker analysis using fluores-
cent immunolabeling and imaging flow cytometry was then performed as previously
described [42]. Briefly, the cells were harvested at 1 × 106 per sample through centrifuga-
tion at 250× g for 5 min. The pellets were then washed in PBS and centrifuged again. The
cells were resuspended in PBS with 2% FBS at 100 µL per sample, and Fc Block (Purified
Rat Anti-Mouse CD16/CD32; BD Biosciences) was added into each sample at 50 µg/mL
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followed by incubation on ice for 15 min. The cells were then stained with PE-conjugated
anti-Cd11b, FITC-conjugated anti-Ly6G, or corresponding isotypes (4 µg/mL for each
antibody; BD Biosciences) for 45 min on ice while protected from light. Finally, the samples
were washed in 400 µL of PBS with 2% FBS, centrifuged at 1400× g for 5 min and resus-
pended in 35 µL of fresh PBS with 2% FBS for processing with FlowSight imaging flow
cytometer (Luminex, Austin, TX, USA).

2.7. Phagocytosis

Neutrophils at the D7 PMN stage were pretreated with 20 nM RIST4721 (or DMSO)
by adding drug to the culture media and incubating the cells for 30 min at 37 ◦C, 5%
CO2. Next, 1 × 106 cells per sample were harvested by centrifugation at 250× g for 5 min,
washed in PBS and resuspended in HBSS at 100 µL per sample. The drug and DMSO
were added to the cell mixtures at the same concentration as used for the pretreatment
step. The cells were then subjected to a phagocytosis assay as described previously [41].
Briefly, the cell/drug mixtures were transferred into 5 mL snap-cap tubes together with
710 µL of HBSS, 100 µL of mouse serum, 80 µL of NucBlue reagent and 10 µL of opsonized
pHrodo E. coli bioparticles (Molecular Probes, Eugene, OR, USA). The tubes were secured
with parafilm and incubated at 37 ◦C with gentle rocking for 1 h. The samples were then
harvested through centrifugation at 1000× g for 5 min and resuspended in 35 µL HBSS
with 2% FBS for processing with FlowSight imaging flow cytometer (Luminex).

2.8. Respiratory Burst

Neutrophils (D7 PMNs) were pretreated 30 min at 37 ◦C, 5% CO2 with 20 nM RIST4721
(or DMSO with equivalent volume), 1 × 106 cells were harvested by centrifugation (250× g,
5 min), washed in PBS and resuspended in HBSS with 0.1% glucose (Sigma-Aldrich)
at 160 µL per replicate. Respiratory burst was then stimulated and amounts of ROS
were measured as described previously [42]. In short, the cells were transferred into
replicate wells in white, clear bottom 96-well plate at 160 µL per well. Diogenes (National
Diagnostics, Atlanta, GA, USA) was then added into each sample at 40 µL per well,
the plate was incubated at 37 ◦C for 3 min, and the cells were stimulated with either
phorbol myristate acetate (PMA, 0.5 µg/mL; Sigma-Aldrich) or opsonized Zymosan (OZ,
0.5 mg/mL; Sigma-Aldrich). The luminescence signal was detected every 2 min for 2 h
using a microplate reader equipped with a kinetic mode (Synergy HT).

2.9. Data and Statistical Analysis

All the data obtained from imaging flow cytometry analyses were processed using
provided IDEAS software (Luminex) to generate histograms and representative images
of stained cells. The data from microplate-reader-based assays were analyzed in Excel
software (Microsoft Corporation, Redmond, WA, USA) to calculate averages ± SD and
p-values using unpaired Student t-tests assuming equal variances. All the presented results
were produced using at least three technical or biological replicates and are representative
of at least three independent assays, unless otherwise stated.

3. Results
3.1. Bone-Marrow-Derived Mouse Neutrophils Exhibit Typical PMN Characteristics Prior to
Chemotaxis Assays

Neutrophils used for all chemotaxis tests were first assessed for their hallmark lobu-
lated nuclei by visual inspection of Wright–Giemsa-stained cells after cytocentrifugation.
As depicted in Figure 1a, the expanded CMP population after 3 days of culture exhibited
round or ovoid nuclear morphologies with high N/C ratios, whereas the vast majority
of D7 PMN cells showed lobulated nuclei with low N/C ratios. The D3 CMP and D7
PMN cells then were immunolabelled with fluorescent antibodies targeting the mature
neutrophil markers Ly6G and Mac-1, and then expression patterns were analyzed using
imaging flow cytometry. As shown in Figure 1b,c, D3 CMPs exhibit little to no expression
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of either cell surface marker, whereas both cell surface markers are readily detected in D7
PMNs, validating our neutrophil model for in-depth chemotaxis assays.
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Figure 1. Maturation characteristics of neutrophils derived from mouse bone marrow for chemotaxis
assays. (A) Shown are images of Wright–Giemsa-stained cells generated from ex vivo culture of bone
marrow at the common myeloid progenitor stage (after 3 days of culture, D3 CMP), or the terminally
differentiated stage (polymorphonuclear neutrophils after 7 days of culture, D7 PMN). CMP exhibit
characteristic high N/C ratios (open arrows), whereas PMN have lobulated or ring-shaped nuclei
(closed arrows). (B) Images are depicted of CMP and PMN labeled with anti-Ly6G or anti-Mac-1
antibodies with fluorescence tags (FITC or PE, respectively), each obtained using imaging flow
cytometry. (C) Graphs generated from imaging flow cytometry indicate quantities of cells with either
Ly6G or Mac-1 expression at each stage of differentiation, with the appropriate isotype used as the
negative control.

3.2. Quantitative Chemotaxis Measurements Depend on Cell Numbers, Chemokine Concentration
and Migration Time

To ensure optimal and reproducible results for our planned tests of chemotaxis inhi-
bition by RIST4721, we used our standardized, transwell-based migration assay [42] but
varied several parameters including cell numbers used in each assay, concentrations of
KC and total migration times prior to cell number quantifications with CellTiter-Glo. We
began by confirming the correlation of neutrophil numbers to luminescence generated
by the CellTiter-Glo reagent using two different ranges of cell numbers (10,000–50,000 or
20,000–100,000). As shown in Figure S1, R2 values were in the linear range for both tests
(0.972 and 0.996, respectively), demonstrating that luminescence detected in the bottom
chamber of the chemotaxis devices should accurately reflect the number of migrated cells,
at least up to 1 × 105 neutrophils. Chemotaxis of different numbers of cells added to the
chambers was next analyzed; as shown in Figure 2a, the ex vivo culture-derived neutrophils
exhibited robust chemotactic activity when responding to KC (100 ng/mL) as compared
to FBS alone, but the responses increased proportionally to the numbers of cells used in
each test. The highest migration levels, and perhaps more importantly the best fold in-
creases between KC-stimulated cells vs. FBS alone, were observed for 2 × 105 cells (almost
26,000 RLU and 7.5-fold increased response, respectively); thus, this total cell number was
chosen for all the subsequent assays. Higher numbers of cells were not considered due to
the risk of membrane overcrowding and numbers exceeding the linear range of lumines-
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cence provided by the CellTiter-Glo reagent (e.g., no more than 1 × 105 total migrated cells).
Next, we tested a wide range of KC concentrations (10–250 ng/mL) and also observed an
increasing trend in chemotaxis levels, but concentrations higher than 100 ng/mL showed
little change, and therefore this dose was considered optimal (Figure 2b). Finally, we
investigated various migration times to identify that required to reach maximal numbers of
neutrophils in the bottom chamber; since no more were gained after 2 h of incubation, this
time was chosen for all subsequent studies (Figure 2c).
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Figure 2. Chemotaxis responses by bone-marrow-derived neutrophils to keratinocyte chemokine
(KC). Depicted are responses of neutrophils to different conditions that stimulate chemotaxis in
response to either FBS alone or FBS plus added KC, each quantified using CellTiter-Glo to detect cells
that have migrated into the bottom chambers of transwell plates. Shown are chemotaxis responses to
(A) 100 ng/mL of KC with different numbers of cells added to the chambers after 2 h of incubation,
(B) increasing concentrations of KC with 2 × 105 cells total and 2 h of incubation or (C) different
times of incubation (hours, h) after adding 2 × 105 cells and 100 ng/mL of KC to the chambers. The
arrow in each graph indicates optimal responses for conditions used in subsequent assays. All data
shown are averages ± standard deviations (SD) from triplicate tests per condition, and represent one
of at least three separate replicate assays including independent preparations of neutrophils from
bone marrow.

3.3. RIST4721 Inhibits KC-Mediated Chemotaxis in a Dose-Dependent Manner

RIST4721 was designed as a small molecule antagonist of CXCR2 that can be provided
as an oral treatment but here was dissolved in DMSO for use in the chemotaxis media (see
Figure 3a for chemical structure). To initially assess the inhibitory properties of RIST4721
on chemotaxis, we treated the ex vivo bone marrow-derived neutrophils with various
concentrations of the drug ranging from 1 nM to 100 µM to identify both minimal and
maximal levels of chemotaxis inhibition, using DMSO at the maximal volume of added
drug as the negative control. The parameters for each assay were based on the optimization
analyses with KC, specifically 2 × 105 cells total, 100 ng/mL of KC and 2 h of incubation per
test, each used prior to quantifying migrated cell numbers with CellTiter-Glo. Experimental
conditions included a 30 min pre-incubation with RIST4721 or DMSO. We began with the
lower end of concentrations, demonstrating that 1 nM RIST4721 showed little inhibition
(the p-value between this and no drug was 0.24), but impressive results were observed
with 10 nM and 100 nM (Figure 3b). Responses above 100 nM were then examined, which
showed that 1 µM RIST4721 completely abrogated any additional chemotaxis stimulated
with KC (e.g., above that caused by FBS alone), indicating the complete inhibition of
CXCR2 activities (Figure 3c). RIST4721 did not change FBS-mediated responses, indicating
chemotaxis inhibition is CXCR2-specific. Moreover, chemotaxis inhibition by RIST4721 is
rapid as pre-incubation times longer than 30 min did not enhance the inhibitory efficacy of
the drug at 10 nM concentrations (Figure 3d).
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Figure 3. Inhibition of chemotaxis by RIST4721 at varying concentrations. (A) Depicted is the chemical
structure of RIST4721, which is dissolved in DMSO and added to the cells both prior to chemotaxis
tests and within the bottom chamber of the chemotaxis assay transwell plates. (B,C) Graphed are
chemotaxis responses with neutrophils treated with low concentrations of RIST4721 (1 nM–100 nM)
vs. high concentrations of drug (100 nM–10 µM). (D) Shown are graphed chemotaxis responses of
neutrophils with different pretreatments with RIST4721, indicating a 30 min pre-incubation (arrow)
is sufficient to achieve consistent chemotaxis inhibition. (E) Graphed are chemotaxis responses of
neutrophils treated with low-range concentrations of RIST4721 used to guide further tests for MIC
and IC50 calculations. The data shown indicate that the MIC needed to inhibit neutrophil chemotaxis
oscillated between 1 nM and 5 nM. All data shown are averages ± SD from triplicate tests per assay
and represent at least three independent replicates. * p < 0.001, ** p < 0.05, n.s., not significant.

Given the range of decreased chemotaxis observed by neutrophils treated with 10 nM
vs. 100 nM concentrations of RIST4721 (specifically 50% vs. 70% decreased chemotaxis
compared to no drug, respectively), we wished to dig deeper into the concentration-
dependent effects of RIST4721 in order to identify the minimal inhibitory concentration
(MIC) required to cause statistically significant changes in neutrophil migration. Assays
with smaller increments in drug concentrations were therefore performed, which showed
that either 1 nM or 5 nM of the drug could cause a small decrease in chemotaxis, but
the results were inconsistent as revealed by statistical assessment of the differences in
chemotaxis vs. DMSO (Figure 3e and Figure S2). However, consistent and substantial
chemotaxis inhibition was observed with 10 nM RIST4721, with a 36% vs. 26% reduction
in KC-stimulated migration vs. the DMSO (Figure 3e). This further testing at fine-tuned
ranges of drug concentrations suggest that the MIC is around 5 nM. Importantly, these
data showed that the IC50 (the concentration required for half-maximal inhibition) is most
likely near 20 nM (responses shown in Figure 3e were 54% lower than those generated by
DMSO). As shown previously, treatment with the drug did not affect neutrophil migration
in wells with serum alone, confirming that the observed inhibitory effects are specific to
CXCR2-mediated pathways.
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3.4. RIST4721 Is a Potent Inhibitor of Neutrophil Chemotaxis with Moderately Low IC50

Based on the trends revealed from the chemotaxis assays with RIST4721 in Figure 3,
we performed further tests to accurately calculate the drug’s IC50, as this is a useful FDA-
recommended measurement that can help predict in vivo potency of the drug. We first
analyzed chemotaxis values from several independent assays using RIST4721 concentra-
tions ranging between 5 nM and 10 µM, as an example, input the values into an IC50
calculator available through AAT Bioquest and found that the IC50 values oscillated be-
tween 14 nM and 28 nM (representative data are shown in Figure 4a). We next converted the
RLU values from these multiple chemotaxis assays into fold changes vs. the DMSO control,
calculated the average fold change for specific doses and then used the IC50 calculator to
establish the final IC50 value for RIST4721 at ~17 nM (Figure 4b).
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Figure 4. Broad-range concentration effects of RIST4721 on neutrophil chemotaxis identifies IC50
values. (A) Graphed are chemotaxis responses of neutrophils to a broad spectrum of RIST4721
concentrations ranging from 5 nM to 10 µM, which reveals MIC is near 5 nM but maximal inhibition
(i.e., responses are equivalent to FBS alone) is provided by 10 µM; these values were then used to
calculate the indicated IC50 (right panel). (B) Compiled fold changes of responses compared to DMSO
are shown, which were then used to also calculate an IC50 value, identified as ~17 nM. Data shown
are averages ± SD from triplicate tests per assay. * p < 0.05, ** p < 0.001.

3.5. Treatment with RIST4721 Does Not Affect Progenitor Differentiation Nor Viability

To rule out the possibility that the lower numbers of migrating cells in RIST4721-treated
cultures is caused by the impaired survival or maturation of the tested neutrophils, we
performed a thorough analysis of their viability and differentiation characteristics with drug
treatment. First, we investigated whether the presence of RIST4721 (20 nM) changes the
growth profile of differentiating neutrophils starting from the common myeloid progenitor
(CMP) stage through to the PMN stage. Our results show no significant differences between
the untreated, DMSO-treated and drug-treated cultures, demonstrating that RIST4721 does
not alter the proliferation rates of mitotically active neutrophil progenitors (Figure 5a).
Second, we used the CellTiter-Glo assay to assess the viability of PMNs when exposed to
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the maximum inhibitory concentration of RIST4721 (10 µM) and again observed no notable
differences between the drug-treated cells and controls (Figure 5b).

Figure 5. Proliferation and differentiation characteristics of neutrophils treated with RIST4721.
(A) Graphed are total numbers of live cells identified by trypan blue exclusion in cultures treated
with RIST4721 (10 nM) vs. two control conditions, DMSO (diluent) or no treatment (no drug).
(B) Shown are levels of luminescence via CellTiter-Glo generated from mature neutrophils treated for
2.5 h with the concentration of RIST4721, shown to completely abrogate KC-mediated chemotaxis
(10 µM), vs. no drug or DMSO-only treatment. Luminescence levels from media plus CellTiter-Glo
with no cells (media only) are also shown to indicate background. (C) Pictures of neutrophils derived
from cultures with RIST4721 (10 µM) vs. no drug or DMSO, each stained with Wright–Giemsa,
indicate normal morphologic maturation with characteristic lobulated nuclei. (D) Graphed are results
from flow cytometry analyses of neutrophils that were generated with RIST4721 treatment (20 nM
RIST4721) vs. DMSO or no treatment, each labeled with fluorescence-labelled antibodies to either
Ly6G or Mac-1. All graphed data are averages ± SD from triplicate tests per assay and represent data
from three independent replicates.

As mentioned previously, nuclear lobulation and increased expression of two cell
surface proteins, Mac-1 and Ly6G, serve as hallmarks of neutrophil differentiation with
our model cells. Consistent with these phenotypic changes, significant nuclear lobula-
tion was observed in treated neutrophils that were indistinguishable from untreated or
DMSO-treated cells, as shown in Figure 5c. Moreover, flow cytometry analyses of cell
surface markers revealed almost identical levels of Mac-1 and Ly6G expression in sam-
ples from drug-treated vs. control cultures (Figure 5d). Together, these data indicate that
RIST4721 does not disrupt myeloid progenitor growth nor does it affect their commit-
ment to the neutrophil lineage, and therefore will not alter basic neutrophil differentiation
characteristics.

3.6. Neutrophils Treated with RIST4721 Show Normal Phagocytosis and Respiratory
Burst Responses

In order to ensure RIST4721 does not disrupt molecular pathways associated with
other innate immune responses provided by neutrophils, we subjected the drug-treated
cells to phagocytosis and respiratory burst assays. For the former, we used pHrodo FITC-
conjugated E. coli bioparticles to imitate pathogen exposure and analyzed the treated cells
for phagocytosis percentages with imaging flow cytometry. As shown in Figure 6a, the
distributions of pHrodo positive cells were very similar between RIST4721-treated cells
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and the controls, with 57.8% phagocytosing cells in the drug-treated sample vs. 62.2%
and 63.3% in DMSO-treated and untreated samples, respectively (the negative control
of undifferentiated cells essentially lack engulfed particles, see [41]). To quantify the
respiratory burst, we stimulated the cells with two potent inducers of ROS production,
PMA and OZ, and detected the released oxygen radicals (primarily superoxide anion,
see [43]) in real time using an enhanced luminol reagent (Diogenes) and a microplate
reader. Again, the results indicate no distinguishable difference between RIST4721-treated
cells vs. untreated or DMSO-treated cells, with robust amounts of ROS detected under all
conditions (Figure 6b). Collectively, our data provide important evidence that RIST4721
will not interfere with pathways that promote phagocytosis or the respiratory burst, both
critical to the capacity of neutrophils to attack and kill pathogens in an infected patient. The
combined data therefore indicate that RIST4721 acts as a potent and specific inhibitor of
CXCR2, and treatments with RIST4721 promise to suppress aberrant neutrophil migration
but not block other functional responses, including their capacities to engulf pathogens
and produce antimicrobial weapons that include ROS.
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Figure 6. Phagocytosis and ROS production of neutrophils after treatment with RIST4721. (A) Shown
are quantitative measurements of neutrophils that have phagocytosed E. coli particles that emit
fluorescence when exposed to the acidic environment of the phagosome (upper panel), or images of
cells with engulfed particles (lower panels), each obtained with imaging flow cytometry. (B) Graphed
are data from analyses of ROS production by neutrophils that are treated with RIST4721 vs. no drug
or DMSO, stimulated with either opsonized zymosan (upper graph) or PMA (lower graph), and
measured using the enhanced luminol Diogenes. Data shown are averages ± SD from triplicate tests.

4. Discussion

Excessive accumulation of neutrophils in tissues is associated with numerous inflam-
matory diseases as the aberrantly recruited leukocytes cause cellular damage through the
degranulation and production of toxic reactive oxygen radicals. Neutrophils also contribute
to inflammatory conditions with their capacity to release neutrophil extracellular traps
(NETs), a means of trapping extracellular bacteria with a net of ejected DNA decorated with
proteolytic enzymes. These antimicrobial functions not only promote inflammation but also
destroy diseased tissues. An important example is chronic obstructive pulmonary disease
(COPD), in which neutrophils colonize the airways and release high amounts of proteases
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including neutrophil elastase (NE) and matrix metalloproteinase, which then digest extra-
cellular matrix proteins including collagen, elastin and fibronectin, thereby causing alveolar
destruction, mucous secretion and airway obstruction [44,45]. Similar neutrophil activity is
associated with other pulmonary conditions such as asthma, bronchiectasis and cystic fibro-
sis, each often associated with NE release (recently reviewed in [46]). Even viral infections
that target the pulmonary system involve the recruitment of neutrophils, exemplified by the
relatively recent discovery that SARS-CoV-2 infection, the causative agent of Coronavirus
disease 19, causes the release of NETs that not only increase lung inflammation but can also
promote the cytokine storm often associated with this disease [47]. Enhanced neutrophil
infiltration and function is also a key factor in the pathogenesis of skin disorders collec-
tively called neutrophilic dermatoses (NDs). This group encompasses a growing number
of cutaneous conditions including palmoplantar pustulosis (PPP), pyoderma gangrenosum
(PG), Sweet’s syndrome (SS), subcorneal pustular dermatosis and generalized pustular
psoriasis [48]. Interestingly, patients with ND exhibit increased levels of serum G-CSF that
supports increased neutrophil production, along with elevated IL-17 levels in the skin, a
cytokine that promotes neutrophils to produce IL-8 and thereby causes increased recruit-
ment and pro-inflammatory responses in a vicious feedback pathway [49]. Combining
these results provides strong support for the use of chemokine receptor antagonists that
will target neutrophil chemotaxis, thereby suppressing their roles in these types of lung
and skin disorders. Our data indicate that such suppression is possible with nanomolar
concentrations of RIST4721, but that the level of suppression provided by the drug will not
affect neutrophil maturation nor other functions critical to innate immunity. RIST4721 may
also be used as an adjunct for other autoimmune-mediated inflammatory conditions or
lung inflammation caused by respiratory-targeting viruses including COVID-19.

Recent studies also reveal a clear involvement of neutrophil recruitment in tumor
development and progression, potentially caused by the immunosuppression of T cells
and promoting angiogenesis and metastasis (reviewed in [50]). Indeed, the depletion
of neutrophils in several breast and ovarian cancer models resulted in reduced tumor
growth and density [51–53]. Moreover, Houghton et al. recently reported that neutrophil
elastase activates pathways stimulating growth and angiogenesis in a murine model of
lung adenocarcinoma [54]. Finally, it has been shown that neutrophils can interact with
circulating cancer cells via Cd11b- or NETs-mediated mechanisms and facilitate their
retention in metastatic tissues including the lungs and liver [55,56]. RIST4721 might
therefore be a useful adjuvant with antitumor treatments that will suppress the recruitment
of neutrophils in the tumor microenvironment.

Studies of other small molecule antagonists of CXCR2 support the notion that RIST4721
should be further investigated in vivo for its capacity to suppress neutrophil migration
in peripheral blood. For example, the CXCR2 antagonist AZD5069 (developed by As-
traZeneca) is a potent compound shown to effectively block ligand binding to CXCR2 and
significantly reduce chemotaxis by human peripheral blood PMNs, even at single-digit
nanomolar concentrations [57]. In clinical trials, treatment with AZD5069 appeared promis-
ing as it considerably reduced neutrophil counts in sputum and lung tissue of patients with
bronchiectasis and asthma; however, the drug had no effect on the frequencies of symp-
toms in long-term clinical trials (NCT01704495, NCT01255592). Several other compounds
including SB-656933 and SCH527123 (MK-7123) presented efficacy in clinical trials when
tested in patients with COPD and asthma, but markedly lower neutrophil counts observed
in the peripheral blood of healthy subjects resulted in termination of the studies [58,59]. In
contrast, our data indicate that RIST4721 does not affect neutrophil development (Figure 2),
nor does is suppress innate immune functions other than chemotaxis (Figure 6).

There are some limitations of the results presented here that should be considered for
future studies of RIST4721 that go beyond our use of a mouse model, albeit an ex vivo
one that is derived directly from bone marrow hematopoietic stem cells. One important
consideration is the effective dose required to inhibit neutrophil chemotaxis once they are
released into peripheral blood. Importantly, our extensive analyses using a wide range of
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RIST4721 indicate that concentrations as low as 1 nM suppressed chemotaxis, suggesting
that low oral doses will be sufficient to achieve nM concentrations in neutrophils in serum
or in target tissues (Figure 3; several tests showed statistically significant differences at
1 nM). Our results therefore suggest that RIST4721 will suppress neutrophil chemotaxis for
lung or skin disorders as was previously shown for AZD5069 [60–62]. In addition, further
cytotoxicity studies will be required with dose- and time-dependent studies using in vitro
assays or ideally in vivo, despite the low toxicity observed in our tests with concentrations
that suppress chemotaxis (see Figure 5). Despite these limitations, chemotaxis suppression
by RIST4721 intensified proportionally to increased doses of the drug, indicating that the
drug exhibits a gradual, dose-dependent effect in humans that can be fine-tuned when
used as an adjuvant, in particular for the suppression of neutrophil recruitment into the
tumor microenvironment. Our results also indicate that RIST4721 acts rapidly (e.g., within
minutes) as pre-incubation times longer than 30 min did not significantly enhance its
potency (Figure 3b). Moreover, our functional studies on RIST4721-treated neutrophils
provide important evidence that this antagonist does not interfere with pathways control-
ling phagocytosis or respiratory burst responses, which are pivotal elements of sterile and
nonsterile inflammation processes. These results are in agreement with those shown for
AZD5069, indicating that these types of CXCR2 antagonists will still allow for the normal
development and mobilization of neutrophils from bone marrow, and not interfere with
their capacity to attack and destroy opportunistic pathogens [63,64].

5. Conclusions

Our results show that RIST4721 is a potent inhibitor of neutrophil chemotaxis that
offers fine-tuned control of chemotaxis inhibition, with dose-dependent and highly repro-
ducible effects. Moreover, treatment with RIST4721 does not affect the proliferation or
differentiation of neutrophil progenitors, nor does it interfere with the functional properties
of mature neutrophils including their capacities to phagocytose pathogens and undergo
a robust respiratory burst. Continued analyses of RIST4721 for the treatment of human
inflammatory conditions and/or diseases are warranted, and possible supplemental use
with anticancer treatments in the tumor microenvironment should be studied.
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