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Abstract: Abdominal fat and fat-free masses report a close association with cardiometabolic risks,
therefore this specific body compartment presents more interest than whole-body masses. This
research aimed to develop accurate algorithms that predict body masses and specifically trunk fat and
fat-free masses from easy to measure parameters in any setting. The study included 104 apparently
healthy subjects, but with a higher-than-normal percent of adiposity or waist circumference. Multiple
linear regression (MLR) and artificial neural network (ANN) models were built for predicting
abdominal fat and fat-free masses in patients with relatively low cardiometabolic risks. The data
were divided into training, validation and test sets, and this process was repeated 20 times per each
model to reduce the bias of data division on model accuracy. The best performance models used a
maximum number of five anthropometric inputs, with higher R2 values for ANN models than for
MLR models (R2 = 0.96–0.98 vs. R2 = 0.80–0.94, p = 0.006). The root mean square error (RMSE) for
all predicted parameters was significantly lower for ANN models than for MLR models, suggesting
a higher accuracy for ANN models. From all body masses predicted, trunk fat mass and fat-free
mass registered the best performance with ANN, allowing a possible error of 1.84 kg for predicting
the correct trunk fat mass and 1.48 kg for predicting the correct trunk fat-free mass. The developed
algorithms represent cost-effective prediction tools for the most relevant adipose and lean tissues
involved in the physiopathology of cardiometabolic risks.

Keywords: trunk fat mass; trunk fat-free mass; lean mass; fat mass; body composition; machine
learning; artificial neural network; obesity; adiposity; cardiometabolic risk

1. Introduction

Over the years, segmental body masses have gained more importance in stratifying
the risk of diseases associated with obesity. Fat mass and more precisely, trunk fat mass,
reports relevant associations with insulin resistance and dyslipidaemia [1]. At the same
time, lean mass also proves a significant relationship with cardiometabolic risks [2]. There-
fore, including fat and lean masses into a patient’s profile would assure precise tools for
prevention and management of obesity and associated diseases. BMI is currently used for
obesity definition, and waist circumference is considered equally important and feasible
for improving patient management [3]. However, BMI tends to overestimate body fat mass
in individuals with a high muscle mass [4]. The main advantages of these measures are the
low cost and ease of determination, while segmental body masses involve high cost and
access to specific equipment.
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New methods to automate the process of body composition measurements are highly
explored. Research in this field showed that multivariate regression models [5,6], receiver
operating characteristic curves [7] and neural networks [8] are methods implemented for
the prediction of body composition. Artificial intelligence and machine-learning have made
promising advances in the field of image segmentation, that could be accessible in the
future in a variety of clinical and research workflows [9,10].

The goal of the study is to develop accurate algorithms that predict body masses,
and specifically trunk fat and fat-free masses, from easy-to-measure parameters in any
setting. The focus is predominantly geared towards abdominal masses, due to their close
association with cardiometabolic risks and because most studies do not focus on a specific
body compartment, but rather on the whole body. To validate the best approach, we aim
to compare linear regression models with neural networks that can capture non-linear
relationships between variables.

2. Materials and Methods

This study was conducted over a period of 2 years (2020–2022) and included
104 apparently healthy subjects, but with a higher-than-normal percent of adiposity or
waist circumference. The selected participants had no antecedent atherosclerotic acute
event and no known chronic disease, or had not followed treatment in the last 6 months.
Pregnant women were excluded from the study, since all patients underwent dual X-ray
absorptiometry (DEXA) investigation. For every participant, anthropometric and demo-
graphic data were collected. The study was approved by the University of Medicine and
Pharmacy “Gr. T. Popa” Ethics Committee, number 1/27 July 2020 and all participants
signed an informed consent form before entering the study.

2.1. Baseline Characteristics of the Study Population

Anthropometric measures were assessed by the same specialised medical staff during
the entire period of the study, using the same techniques and instruments. All investigations
were performed after a 12 h overnight fast, including no prior consumption of liquids in the
respective morning. The DEXA examinations were assessed with a Hologic QDR Delphi
A fan-beam densitometer (Hologic Inc., Malborough, MA, USA). Height was measured
with a stadiometer, waist circumference (WC) and hip circumference (HC) with a flexible
tape, abdominal and tricipital skinfold with a Holtain-type caliper. Tricipital skinfold was
assessed halfway between the acromion process and olecranon process, and abdominal
skinfold at 5 cm lateral of the umbilicus [11]. Waist circumference was measured between
the last rib and the iliac crest at its smallest perimeter, and hip circumference at the greater
trochanter level [12].

2.2. Development of Fat Mass and Fat-Free Mass Estimation Models

This research developed prediction models for body composition parameters that
have the highest influence on metabolic syndrome (MetS) prevalence. To achieve the best
performance, a comparison was performed between multiple linear regression (MLR) and
artificial neural network (ANN) models. The goodness of fit of the models was evaluated
using the mean squared error (MSE) and the coefficient of determination (R2). For the
purpose of comparison, the same formula was used to calculate the error, both in SPSS and
in MATLAB (Equation (1)):

MSE =
1
n

n

∑
i=1

(
Yobserved − Ypredicted

)2
(1)

2.2.1. MLR Models

MLR models are easy to implement and imply low computational power. In this
analysis, we built MLR models for predicting the dependent variables Total Fat Mass
(kg), Total Fat-free Mass (kg), Trunk Total Mass (kg), Trunk Fat Mass (kg), Trunk Fat-Free
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Mass (kg). The initial independent variables used for estimation were seven continuous
demographic and anthropometric parameters, that are easily assessed by trained personnel
in any medical facility.

2.2.2. ANN Models

Multilayer, perceptron, feed-forward neural network models were used for predicting
the same dependent variables as mentioned for the MLR models. The units in the model
are trained with the Levenberg–Marquardt backpropagation learning algorithm and the
prediction is performed by the output layer. The input layer consists of continuous demo-
graphic and anthropometric variables, and the arbitrary number of units in the hidden layer
between the input and output represent the true computational engine of the model [13].
Based on the Universal Approximation Theorem, “neural networks with a single hidden
layer can be used to approximate any continuous function to any desired precision” [14].
Therefore, we chose to work with only one hidden layer. The initialization function was
randomized weights. The tansig (hyperbolic tangent sigmoid) activation function was used
for the units in the hidden layer, and the purelin (linear) activation function for the output
layer. The maximum number of iterations for the algorithm was set to 1000.

The input parameters were included based on human logic and ease of use in clinical
settings. Afterwards, a forward-feature selection method was conducted to find the best
model. The data were randomly divided into training set (75%), validation set (15%) and
test set (15%), and each time there was a network computed. Twenty particular cases
associated with the number of units in the hidden layer were considered, from 1 to 20. The
performance did not improve after reaching 20 cases for each parameter estimated, therefore
we concluded that this number is representative for reaching the best performance. Each
model was trained, validated and tested in a sequence of 20 iterations. For each iteration
the mean squared error (MSE) for the entire set (Equation (1)) was calculated, and after all
iterations the averaged MSEset was attributed to that specific model with the respective
number of units in the hidden layer (Equation (2)).

(MSEset) = 0.7 × MSEtr + 0.15 × MSEval + 0.15 × MSEtest (2)

The 20 iterations per case were necessary as to evaluate the effect of data division on
the goodness of fit of the model. The goal is to have similar data sets for the model, but
chosen randomly, as in real life. The lowest averaged MSE of all 20 confirmed the number
of units in the hidden layer needed to identify the best performance of the model. It also
lowered the risk of bias in that perspective. From the 20 cases, the one with the lowest
MSE was selected as the model with the best performance. The root mean square error
(RMSE) was calculated for the chosen model. A simplified version of the methods used for
choosing the best models is presented in Figure 1.

2.3. Statistical Analysis

There were no missing data, therefore no data substitution algorithm was necessary.
All variables were analysed using Microsoft Excel version 16.64 (Microsoft Corporation,
Redmond, WA, USA), SPSS version 23.0 (IBM Corporation, Armonk, NY, USA) and MAT-
LAB R2021b (The MathWorks Inc., Natick, MA, USA).

MLR models were computed in SPSS, using stepwise regression. This method ex-
cluded variables that assumed multicollinearity. ANN models were built with Neural
Network Toolbox in MATLAB. For ease of use, an in-house function was constructed to
save the network with the best performance per each input in the hidden layer.
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All continuous variables were tested for normality with Kolmogorov–Smirnov test.
The normally distributed data were reported as the means ± standard deviations (SD), and
the non-normally distributed data were reported as the median and quartiles. Categorical
variables were expressed as frequencies (percentages). Linear regression generated the R2

and MSE values. The RMSE and R2 values for the chosen models were normally distributed,
therefore an independent sample t-test was used to compare these errors and R2 between
the MLR and ANN models.

For assessing multicollinearity, the Pearson correlation was used for all data. Results
were considered statistically significant if p < 0.05.

3. Results

All the demographic and anthropometric measures are reported in Table 1, together
with total fat and fat-free masses for the trunk region and for the whole body. The fat-free
mass parameter includes lean and bone mineral content for that specific region, with the
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amendment that fat-free mass measured by DEXA is smaller than the classical concept of
lean body mass presented in the literature for the first time eight decades ago, which also
includes essential fat [15]. The confusion of terminology in the literature leads to improper
comparisons between studies and it should be avoided by clearly stating the definition of
lean mass in the respective study.

Table 1. Baseline characteristics of the study population.

Study Population (n = 104)

Parameter Percentage (number of subjects)
Gender
Female 74.04% (77)
Male 25.96% (27)

Residence
Urban 63.46% (66)
Rural 36.54% (38)

Normally distributed continuous variables

Mean ± SD
95% CI Kolmogorov–Smirnov

p valueLower bound Upper bound
Height (cm) 166.13 ± 7.83 164.61 167.66 0.144

Tricipital skinfold (mm) 27.06 ± 7.43 25.61 28.50 0.175
Abdominal skinfold (mm) 36.22 ± 8.17 34.63 37.81 0.200

Trunk fat % 40.30 ± 6.42 39.05 41.55 0.200
Trunk fat-free % 59.70 ± 6.42 58.45 60.95 0.200

Non-normally distributed continuous variables

Median Q1 Q3 Kolmogorov–Smirnov
p value

Age (years) 62 53 65 <0.001
Weight (kg) 84.42 76.10 98.65 0.001

WC (cm) 106 99 115 0.011
HC (cm) 113 106.25 119 0.013

BMI (kg/m2) 30.99 28.57 34.39 0.006
Total fat mass (kg) 34.16 30.14 39.36 <0.001

Total fat-free mass (kg) 49.07 43.97 59.04 <0.001
Trunk fat mass (kg) 17.32 14.78 20.54 <0.001

Trunk fat-free mass (kg) 24.96 21.59 30.24 <0.001
Total fat % 41.10 36.32 44.27 0.034

Total fat-free % 58.90 55.72 63.67 0.034

Note: WC = waist circumference, HP = hip circumference.

The initial input variables included in the algorithm were age, weight, height, waist
circumference, hip circumference, tricipital skinfold and abdominal skinfold. Pearson
correlation was performed to exclude high intercorrelation (≥0.9) between variables. The r
coefficient is written on each plot, with a value ranging from –0.02 to 0.872, therefore no
high intercorrelation was detected (Figure 2).

The initial attempt was to obtain prediction algorithms for percentages of fat and
fat-free masses, as these are proven to be more relevant for estimating the cardiovascular
risk of a patient. These initial results yielded models (both MLR and ANN) with poor
performance, guiding us to estimating the fat and fat-free mass in kilograms that would
allow afterwards the calculus of percentages.

The stepwise method for MLR identified the independent variables with the highest
level of prediction on the outcome and the best performances (Table 2). After performing
forward-feature selection for the machine-learning algorithm, the best performances of the
ANN models for each parameter were assessed (Table 3).
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Table 2. Best performance MLR models for fat and fat-free masses.

Parameter
Predicted Model β p F

(df1, df2) R2 p MSE

Total Fat Mass (kg)

Intercept 18.599 0.236

117.71 (5, 98) 0.86 <0.001 15.71

HC 0.389 <0.001

Weight 0.442 <0.001

Height –0.322 <0.001

Tricipital skinfold 0.203 0.003

WC –0.172 0.015

Total Fat-Free Mass (kg)

Intercept –18.675 0.234

141.901 (5, 98) 0.88 <0.001 15.70

Weight 0.557 <0.001

HC –0.389 <0.001

Height 0.322 <0.001

Tricipital skinfold –0.202 0.003

WC 0.173 0.014

Trunk Total Mass (kg)

Intercept 0.552 0.947

399.986 (4, 99) 0.94 <0.001 7.16

Weight 0.514 <0.001

WC 0.183 <0.001

Tricipital skinfold –0.123 0.004

Height –0.108 0.024
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Table 2. Cont.

Parameter
Predicted Model β p F

(df1, df2) R2 p MSE

Trunk Fat Mass (kg)

Intercept 16.720 0.145

131.077 (3, 100) 0.80 <0.001 9.11
Weight 0.303 <0.001

Height –0.243 <0.001

HC 0.132 0.042

Trunk Fat-Free Mass (kg)

Intercept –6.198 0.477

116.878 (5, 98) 0.86 <0.001 4.85

Weight 0.269 <0.001

HC –0.196 <0.001

WC 0.138 0.001

Height 0.112 0.009

Tricipital skinfold –0.088 0.018

Note: MSE = mean square error.

Table 3. Best performance ANN models for fat and fat-free masses.

Units in
Hidden
Layer

MSE
Training

Set

MSE
Validation

Set
MSE Test Set MSE

Entire Set

R2

Training
Set

R2

Validation
Set

R2 Test
Set

R2 Entire
Set Best Epoch

ANN 1 for Total Fat mass (kg)
8 5.51 5.26 16.88 7.18 0.98 0.97 0.85 0.97 23

ANN 2 for Total Fat-Free mass (kg)
3 7.78 4.56 8.20 7.36 0.97 0.98 0.97 0.97 10

ANN 3 for Trunk Total mass (kg)
7 5.54 3.75 3.78 5.01 0.98 0.97 0.98 0.98 7

ANN 4 for Trunk Fat mass (kg)
6 2.26 6.49 5.42 3.37 0.96 0.98 0.93 0.96 16

ANN 5 for Trunk Fat-Free mass (kg)
6 1.71 2.76 3.86 2.19 0.98 0.93 0.94 0.97 8

Note: ANN 1: weight, WC, HC, height; ANN 2: weight, WC, HC, height, abdominal skinfold; ANN 3: weight, WC,
HC, height; ANN 4: weight, WC, height, tricipital skinfold; ANN 5: weight, WC, HC, height, tricipital skinfold.

The regression plots for the entire set of data for each predicted parameter can be
analysed in Figure 3. Beside high coefficients of determination which confirm the accuracy
of the model, close examination of the errors of the ANN models is needed. These are
presented separately for the training, validation and test sets for each predictor (Figure 3).
The individual regression plots for training, validation and test sets for each parameter are
included in the Supplementary Materials (Figures S1–S10), together with performance and
training state plots.

The R2 values reported for the ANN models are significantly higher than the ones for
the MLR models (p = 0.006), suggesting a good prediction of the outcome. In Figure 4, we
plot the RMSE values for each parameter according to its own best performance model.
RMSE values define the mean of error in a more practical way, concluding that for ANN
models the mean error will be for all parameters between 1.48–2.71 kg vs. 2.20–3.96 kg for
MLR models (p = 0.05).
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4. Discussion

Our previous research on the same cohort reported fat and fat-free percentage high
sensitivity scores regarding the prevalence of MetS, concluding that body composition
holds an important place in prevention and management programs of MetS [16]. These
are measurements provided by DEXA, which is an accurate and validated method in
evaluating body composition [17–19]. The high cost of this investigation justifies our
approach to predict these parameters from simple measurements that can be performed
in any medical clinic. Percentages of adipose tissue or of lean mass are preferable to
masses in kg, since they offer a perspective of the patient’s body composition and they are
more precise in estimating the prevalence of MetS [16]. Since the models for estimating
percentages presented low performance, all efforts were redirected towards estimating all
the necessary values for calculating the percentages.

Extended studies have shown that body masses establish a more accurate relationship
with mortality than BMI, in large populations [20–22]. BMI does not distinguish fat mass
from lean mass, thus defining optimal thresholds for this measurement is not enough [23].
Furthermore, a thorough risk stratification can be obtained by separating visceral fat from
subcutaneous fat and identifying sick fat (adiposopathy). This ratio is in favour of visceral
fat in cardiovascular diseases [24,25], moreover that patients undergoing lifestyle interven-
tions (diet and exercise, weight-loss medication, bariatric surgery) do not preferentially
loose one type of tissue over the other [26]. The cardiovascular health depends on the type
of adiposity, its inflammation level, its location and function [27,28]. Extended studies stress
the importance of correctly identifying body masses in order to predict the cardiometabolic
risk the patient is facing more accurately.

The proposed prediction models are specific for patients that are apparently healthy,
with no previous diagnosis of MetS, but with a higher-than-normal percentage of adi-
pose tissue or waist circumference. The metabolic profile of patients is presented else-
where [16]. There are several research studies that report models for estimating fat mass,
but even though they include a high number of participants, most of these studies had
not targeted specific subpopulations as to reduce bias [29–31]. A retrospective study on
14,065 individuals proposes a multiple linear regression model with a high goodness of fit
for estimating lean and fat mass, suggesting a generalizability of the model [32]. This study
proposes a model for patients with a higher-than-normal fat mass that are at borderline
or have just been diagnosed with MetS. The strength of the study is that the inclusion
criteria for participants best fits the purpose of estimating body masses in patients with no,
or relatively low, cardiometabolic risks. The proposed algorithm has a low bias, argued
by no prior medication or no diagnosed chronic diseases. Furthermore, participants with
MetS are at an initial stage of the pathology, thus the cohort is also characteristic for those
individuals that cross the fine line between healthy and unhealthy.

The ANN models resulted are superior to the MLR ones, therefore machine learning
algorithms represent a better choice for capturing the relationship between body masses
and anthropometric measurements on a cohort similar to the one analysed. More advanced
work underlines the idea that hybrid models, like the one proposed by Hussain S.A. et al.,
based on support vector regression and emotional artificial neural networks, provide su-
perior results to other machine-learning models [33]. A recent study on 20,137 subjects
reported similar results for lean and fat masses, with higher R2 and lower standard error of
the estimate values for ANN than for MLR, while using 13 demographic and anthropo-
metric measures as predictors [34]. The research presented in this paper proposes simpler
models with a maximum number of five anthropometric inputs, also with high R2 values,
suggesting that these models explain the variability of a large portion of the dataset. The
error is higher than the abovementioned study, mainly due to the small cohort and possibly
to the particularity of the population selected, preMets and MetS niched. Another strength
is that test data were included to confirm the good performance of the model, beside the
validation set that ensured no overfitting.
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Most studies estimate total fat and lean masses, and not masses specific to certain
areas of the body. This study answers the necessity of narrowing down to abdominal
mass, since adiposity at this level is the most important causative factor for cardiometabolic
diseases. On the other hand, patients with low lean mass and high fat mass associate with a
higher mortality than patients with normal lean mass and high fat mass [35]. Considering
this and the fact that in our previous study trunk fat-free mass was reported as the body
composition parameter with the best predictive power for the prevalence of MetS, its value
is important specifically in stratifying MetS risks [16]. From all body masses predicted,
trunk fat-free mass registered the best performance, with an R2 value per entire set of 0.98,
MSE of 2.19 kg and RMSE of 1.48 kg.

The algorithms developed on the population included in the study provide similar
results to the ones for the white population. The multi-ethnic research on the same subject
reported similar values for errors according to the ANN models: approximately 2 kg for
training set for total adipose tissue mass in the white population vs. 2.35 kg in this study.
The error values for the MLR model were lower in the multi-ethnic study: approximately
2.45 kg vs. 3.96 kg in this study. Although standard error of the estimate was used to report
the goodness of fit of the models, RMSE uses almost the same formula, therefore, the values
can be safely compared [34].

Continuous addition of participants with the same characteristics in the training
and validation set will allow the error to decrease and, therefore, further improve the
accuracy of the models developed in this study. A variability in DEXA devices concerning
calibration procedure, variations in photon source intensities or the formulas implemented
in the software [36], are also acknowledged. The specific and well-chosen inclusion criteria,
together with providing a test set for confirming the accuracy of the prediction algorithms,
provide low bias and validated results.

5. Conclusions

This study proposes alternative algorithms to determining total fat-free and fat masses
and more specifically, trunk fat-free and fat masses. These high-cost measurements nor-
mally require access to hospital equipment and a complex set-up, justifying our approach
for estimating them from easily obtainable anthropometric inputs. The ANN models
showed a better and more statistically significant performance than MLR ones, with a lower
error for all predicted parameters. Trunk fat-free and fat masses presented the models with
the best accuracy, supporting the research for prediction tools of the most relevant adipose
and lean tissues involved in the physiopathology of cardiometabolic risks. These algo-
rithms provide a resource for better assessing cardiovascular risk in patients, developing
scores for obesity, improving the management of weight-loss and prevention programs.

Supplementary Materials: The following supporting information can be downloaded at:
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Figure S4. Performance plot (left) and training state plot (right) for Total fat-free mass (ANN model);
Figure S5. Regression plots for Trunk fat mass (ANN model); Figure S6. Performance plot (left) and
training state plot (right) for Trunk fat mass (ANN model); Figure S7. Regression plots for Trunk
fat-free mass (ANN model); Figure S8. Performance plot (left) and training state plot (right) for
Trunk fat-free mass (ANN model); Figure S9. Regression plots for Trunk total mass (ANN model);
Figure S10. Performance plot (left) and training state plot (right) for Trunk total mass (ANN model).
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