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Abstract: Type 1 diabetes (T1D) is an autoimmune disease with a shortage of islet β cells. To date,
the etiology of T1D remains elusive. Increasing clinical evidence and animal studies demonstrate
that autoimmune cells are directed against the nervous system of pancreatic islets, contributing to the
development of T1D. Therefore, it highlights the necessity to explore novel clinical approaches to
fundamentally correct the T1D autoimmunity not only focusing on islet β cells but also on protecting
the islet nervous system. This allows the restoration of the integrity of islet innervation and the
normal islet β-cell function. To address these issues, we developed a novel technology designated
the Stem Cell Educator TM therapy, based on immune education by human cord-blood-derived
multipotent stem cells (CB-SC). International amulticenter clinical trials demonstrated its clinical
safety and efficacy to treat T1D and other autoimmune diseases. Stem Cell Educator TM therapy may
have the potential to revolutionize the treatment of T1D, without the safety and ethical concerns
associated with conventional immune and/or stem cell-based therapies.

Keywords: type 1 diabetes; autoimmune; islet innervation; parasympathetic nerve; sympathetic
nerve; islet beta cells; immune modulation; Stem Cell Educator therapy

1. Introduction

The human endocrine system consists of a group of fully-differentiated glands that
are distributed in the body. Although the glands are small in size, they play essential
roles in controlling cellular growth, differentiation, and development through their release
of hormones. For instance, the pineal gland is a small, pinecone-shaped gland located
in the center of the brain responsible for the highly conserved nighttime secretion of
melatonin to regulate circadian rhythms [1]. Human pancreatic islets are scattered among
the exocrine tissues of the pancreas with a diameter of about 100 µm/islet, comprising
insulin-producing β cells, glucagon-producing α cells, pancreatic polypeptide-producing
PP cells, somatostatin-producing δ cells, and ghrelin-producing ε cells [2–5]. To effectively
regulate the body function at the holistic level, the endocrine system physiologically
interacts with the nervous system and the immune system and forms an endocrine–neuro–
immune (ENI) network through the endocrine/paracrine/autocrine signaling pathways,
the distribution of central/peripheral nerve fibers, neuropeptides, cytokines, chemokines,
and their receptors’ circuits [6,7]. Loss in the balance of the ENI network causes multiple
autoimmune diseases [6,8,9].

Type 1 diabetes (T1D) is a serious autoimmune and metabolic disease caused by the
autoimmune destruction of pancreatic islets leading to the deficit of islet β cells [10,11].
Millions of individuals worldwide have T1D, and its incidence has markedly increased
since the COVID-19 pandemic [12,13]. Although daily insulin injections offer limited
control over blood sugar levels and may delay the onset of chronic complications due to
dysglycemia, a true cure has proven elusive despite intensive research efforts over the past
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40 years. Recent clinical trials have highlighted the limits of conventional immunotherapy
and underscore the need for novel approaches to fundamentally address autoimmunity
through advanced understanding of the pathogenesis of T1D. T1D etiology appears to be
multifactorial, including genetic, epigenetic, physical, social, and environmental factors,
leading to the dysfunctions of multiple immune cell compartments such as T cells, B cells,
regulatory T cells (Tregs), monocytes/macrophages (Mo/Mφ), dendritic cells (DC), natural
killer (NK) cells, and natural killer T (NKT) cells [14,15]. Mechanistic studies in non-obese
diabetic (NOD) mice confirmed that T-cell-mediated autoimmune destruction of islet β
cells is initiated by type 1 F4/80+CD11c+ islet macrophages [16–18]. However, accumulated
evidence challenged this traditional concept of T cell/macrophage-mediated pathogenesis
in T1D autoimmunity [19–22]. As a part of the ENI network of pancreatic islets, islet-
resident macrophages (Mφ) not only function as antigen-presenting cells (APC) responsible
for an innate immunity, but also play an important role in the development of pancreatic
islets [16]. The op/op mice lacking functional macrophage colony-stimulating factor
(M-CSF, also termed CSF1) show the reduced islet size [16] in addition to the reduction
in macrophage numbers per islet [16]. Additional clinical evidence and animal studies
demonstrated that there is damage or loss of the pancreatic islet nervous system in newly-
diagnosed T1D patients [23] and in autoimmune-caused diabetic NOD mice and Bio-
Breeder rats [24–26]. Therefore, the fine tuning of the balance of this local ENI network is
necessary to maintain normal islet function and metabolic control. Here, we summarize the
current progress in understanding the pathogenesis of T1D in order to find a cure for T1D.

2. Pancreatic Islet Innervation Contributes to the Normalization of Islet
β-Cell Function

Human pancreatic islets are primarily regulated by two autonomic nervous systems
including the parasympathetic and sympathetic nervous systems [27,28]. The parasym-
pathetic nervous system (vagus nerve) is derived from the central nervous system and
penetrates into islets, promoting the insulin secretion from β cells and reduces hyper-
glycemia [27,29–31]. In contrast, the sympathetic nervous system originates from the
paravertebral sympathetic ganglion chain and stimulates the glucagon secretion from α

cells, leading to the increased level of blood glucose [27]. Both the vagus nerve and the
sympathetic nerve can be further characterized into afferent and efferent nerve fibers,
respectively [32]. There are five types of parasympathetic neurotransmitter muscarinic
acetylcholine receptors (mAChRs), which are characterized as M1–M5 and expressed on
different types of neurons and tissue cells in humans [33]. Importantly, distinct islet cells
display different types of mAChRs. There are high levels of M3 and M5 expressions on the
islet β cells in the pancreata of the Caucasian population [34]; islet α cells display the M2
receptor and produce a cholinergic signal that contributes to the modulation of islet β-cell
function via the paracrine pathway [35]. Interestingly, our previous studies revealed the
molecular disparities of expression of mAChRs on human islet β cells between Caucasian
and Chinese populations [36]. The M2 receptor and other specific cholinergic markers such
as vesicular acetylcholine transporter (vAChT) and choline acetyltransferase (ChAT) are
markedly expressed on the islet β cells of the pancreata of Chinese populations [36].

The role of the nervous system in the functioning of pancreatic islets has been recog-
nized for decades. Rodriguez-Diaz et al. reported autonomic axons (e.g., parasympathetic
and sympathetic) in human islets with unique innervation patterns, with the invading
sympathetic fibers preferentially innervating smooth muscle cells of the blood vessels
located within the islet [37]. There were high concentrations of γ-aminobutyric acid (GABA,
a prominent inhibitory neurotransmitter in central nervous system) distributed in the
cytoplasm of islet β cells, with a small percentage of β-cell GABA located inside the insulin
granules [38]. Sorensen et al. found the presence of GABAergic nerve cell bodies at the
periphery of pancreatic islets with numerous GABA-containing processes extending into
the islet mantle [38]. Saravia-Fernandez et al. observed the same structures in NOD mice
and showed that these structures also express neuropeptide Y (NPY) [39]. NYP innervation
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of pancreata has been shown previously in a variety of species. Such neuronal networks
are critical for pancreatic islets to maintain their homeostasis and metabolic controls.

3. Cross-Reaction of T1D Autoimmunity between Islet β-Cells and Autonomic Nerves

T1D has been widely thought of as the T cell-mediated autoimmune destruction of islet
β cells. Until recently, Leete et al. found that different age groups of T1D subjects exhibited
different mechanisms of pathogenesis [20,21]. All subjects within the younger age group
(<7 years old) uniformly displayed a high profile of CD20+ B cells (CD20Hi) in the inflamed
islets in addition to the preponderance of CD8+ T cells [20]. Due to the aggressive nature
of these immune cells, this group tends to lose their islet β cells at a rapid rate. However,
those who received a diagnosis at an older age (≥13 years of age) had a low profile of
CD20+ B cells (CD20Lo) and therefore a less aggressive disease progression. Patients in
whom T1D developed between the age of 7 and 12 years fell into either group [20]. This
indicates that there were different profiles of immune cells contributing to the insulitis of
T1D in different age groups. To characterize the antigenic repertoire of islet-infiltrating
B-cells in T1D, Carrillo et al. generated hybridoma cell lines of islet-infiltrating B-cells from
nonobese diabetic (NOD) mice and NOD mice expressing a diabetogenic T-cell receptor
(8.3-NOD) [24]. Surprisingly, characterization of the tissue antigenic specificity of islet-
infiltrating B-cells in pre-diabetes is predominantly directed against the nervous system
elements of the pancreatic islets [24].

Although islet β cells have been selectively destroyed by autoimmune cells in T1D,
many target autoantigens are not exclusively expressed by β cells but are shared with the
nervous or neuroendocrine systems. Such autoantigens are glutamic acid decarboxylase
(GAD)-65 [40], protein tyrosine phosphatase such as protein IA-2 [41], and zinc transporter
8 (ZnT8) [41,42]. Winer et al. reported the spontaneous autoimmune targeting of pancreatic
nervous system tissue elements, peri-islet Schwann cells (pSC), in both diabetes-prone
humans and early in prediabetic NOD mice [43]. Similar autoantibodies and T-cell autore-
activities to the pSC-expressed antigens such as glial fibrillary acidic protein (GFAP) and
S100β were found in humans with probable prediabetes and young NOD females [43],
indicating that autoimmune targeting pSC may represent an earlier pathogenic process for
the initiation of T1D. In line with this, Mundinger et al. demonstrated that T1D patients
displayed an early, marked, sustained, and islet-selective loss of sympathetic nerves [23].
Both very recent onset (<2 weeks) and long duration (>10 years) T1D patients have a severe
loss of islet sympathetic nerves [23]. In contrast, type 2 diabetic patients failed to show the
loss of islet sympathetic nerves [23]. Using vesicular monoamine transporter 2 (VMAT2)
as a marker for sympathetic nerve terminals, Mei et al. showed a marked decrease in the
VMAT2-positive nerve fiber area in the islets of new onset diabetic BB rats relative to their
nondiabetic controls [25]. However, there was no decrease in the fiber area of sympathetic
nerves in the chemical streptozotocin (STZ)-induced diabetic rats relative to that of the
control group [25]. Interestingly, using the 3D panoramic histology, Tang et al. reported
the increased density of pancreatic sympathetic nerves in the hyperphagic db/db mice
at weaning age [44]. These data suggest that the loss of sympathetic nerves was associ-
ated with the autoimmunity. In agreement with this view, Taborsky et al. demonstrated
the loss of sympathetic nerves in pancreatic islets, which was coupled with the invasive
insulitis in autoimmune-caused diabetic NOD mice [26]. The loss of islet sympathetic
nerves progressed with the duration of diabetes. Importantly, the neuropeptide Y (NYP)-
positive nerve fiber area in the islets of cyclophosphamide-induced diabetic NOD mice was
markedly less than that in the age- and sex-matched non-diabetic NOD mice, and that of
naturally-onset diabetic NOD mice [26], because cyclophosphamide-induced diabetes in
the NOD mice was associated with a reduction in CD4+CD25+Foxp3+ regulatory T cells
(Tregs) and accelerated the autoimmune destructions [45].
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4. Infiltration of Autoimmune Cells against the Islet Nerves

The above studies in diabetic animals and patients indicated that autoimmunity
played a critical role in the loss of islet nerve innervation and the development of T1D.
To provide evidence that autoimmune cells directly attack the nerve fibers of pancreatic
islets, we developed a humanized immune cell-mediated T1D model in NOD-scid IL2rγnull

mice [46]. The selective destruction of islet β cells was achieved by human T cells after
an initial trigger provided by the injection of irradiated spleen mononuclear cells from
diabetic NOD mice. This resulted in severe insulitis, a marked loss of total islet β-cell mass
and other diabetic-related phenotypes [46]. Using a neuroendocrine cell marker protein
gene product 9.5 (PGP 9.5) [47], further immunohistochemistry analysis demonstrated the
direct infiltration of autoimmune cells from diabetic NOD mice to the PGP 9.5-positive
pancreatic nerve fibers, which included F4/80+ macrophages, CD4+ and CD8+ T cells
(Figure 1), and might cut off the “wire” (nerve fiber) to pancreatic islets by these infiltrated
immune cells. Prospectively, the neuropathy of islet innervation could be directly caused
by these infiltrated immune cells and/or their released inflammatory cytokines, leading
to the development of diabetes in NOD-scid IL-2rγnull mice [46]. Alternatively, due to the
shortage of neurotrophic support, the loss of the integrity between the islet nerve system
and β cells may induce and result in the apoptosis or necrosis of islet β cells, which in turn
activate the islet macrophages to evoke the infiltration of dendritic cells (DC), T and B cells,
and damage in pancreatic islets.
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Figure 1. Infiltration of autoimmune cells to pancreatic nervous system. (A) The bundles of PGP
9.5-positive nerve fibers are shown by the immunohistochemistry of human pancreata with the
vertical section (left) and horizontal section (right). (B) Innervation of human pancreatic islet with the
distribution of PGP 9.5-positive (green) neuronal fiber around insulin-positive islet β cells (red). The
2nd Ab immunostaining served as the negative control. Original magnification, ×600. (C) Infiltration
of immune cells such as CD4+ T cells, CD8+ T cells, and F4/80+ macrophages (green) to the PGP
9.5-positive nerve fibers (red) in pancreata of humanized diabetic NOD-scid IL-2rγnull mice. (D) The
CD8+ T cells directly targeted the PGP 9.5-positive nerve fiber (red), with a high magnification
shown in the insert. The irradiated spleen mononuclear cells (SMC) of diabetic NOD mice were
adoptively transferred into NOD-scid IL-2rγnull mice (1 × 107 cells/mouse in 300 µL PBS, i.p.).
Original magnification, ×600.
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5. Reversal of T1D by the Treatment with Stem Cell Educator TM Therapy
5.1. Correct the Autoimmunity through the Induction of Immune Tolerance by Stem Cell
Educator TM Therapy

Animal and clinical studies have demonstrated the loss of islet innervation caused
by the infiltrated autoimmune cells (Figure 2). Therefore, it is necessary to protect islet
innervation and restore the integrity between pancreatic islets and the nerve system to
fundamentally correct the autoimmunity for T1D treatment. Due to the potential of axon
growth [48], it is expected that the islet nerve fibers may be elongated and branched
around islets after the autoimmunity is controlled, and this re-innervation may lead to
the replication of residual islet β cells and restoration of β-cell function. In line with this
expectation, our previous animal studies demonstrated that the treatment of established
autoimmune-caused diabetes in non-obese diabetic (NOD) mice with the purified autolo-
gous CD4+CD62L+ Tregs co-cultured with human cord blood-derived multipotent stem
cells (CB-SC) could reduce hyperglycemia, promote islet β-cell proliferation to increase
β-cell mass and insulin production, and reconstitute islet architecture [49].
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Figure 2. Scheme of the infiltration of autoimmune cells against pancreatic islets and autonomic
nerves. (A) Innervation of vagus nerve fibers (blue) and sympathetic nerve fibers (yellow) from the
paravertebral sympathetic ganglion chain (orange) into major organs including heart, lung, kidney,
and pancreas (left panel). (B) Different types of immune cells attack the islet, vagus nerve (blue), and
sympathetic nerve (yellow).

To find a cure for patients with T1D and other autoimmune diseases, we developed
the Stem Cell Educator TM therapy by using a new type of cord blood-derived multipotent
stem cells (CB-SC). With this innovative technology, a patient’s blood is circulated through a
blood cell separator, where the patient’s immune cells are co-cultured with adherent CB-SC
in vitro and “educated” immune cells are returned to the patient’s circulation. Notably,
following the Stem Cell Educator TM therapy, long-standing established T1D patients
increased their C-peptide levels (a by-product of insulin production) of both fasting and
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post glucose challenging [11]. According to the Juvenile Diabetes Cure Alliance (JDCA,
New York), Stem Cell Educator TM therapy is ranked the leading practical cure project
among 607 global type 1 diabetes projects in 2022. Comparing with other technologies
(Table 1), Stem Cell Educator TM therapy displays several advantages to fundamentally
correct the autoimmunity and restore the immune tolerance through the expression of key
transcription factor autoimmune regulator (AIRE) in CB-SC and other molecular/cellular
mechanisms, without rejection issues [10]. Over the last 12 years, international multicenter
clinical trials in the United States, China, and Spain have strongly demonstrated the clinical
safety and efficacy of Stem Cell Educator TM therapy in more than 200 patients aged from 3
to 75 years old, which have demonstrated its long-lasting clinical safety and efficacy in the
restoration of islet β-cell function in T1D patients [11,36,50,51] and the treatment of other
autoimmune diseases (e.g., alopecia areata [52], psoriasis, and lupus).

Table 1. Compare the Stem Cell Educator TM therapy with other ongoing clinical therapies/trials in T1D.

List of Products
Company/
Hospital

ClinicalTri-
als.gov

Target the Autoimmunity Restoration of β-Cell Function

Immune
Modulation

Immune
Suppression

Improve the
Endogenous
β-Cell Re-
generation

Transplant
Exogenous

β-Cell
Surrogates

Rejection
and Need
Immune

Suppression

Stem Cell Educator
TM therapy

(Gleukocell TM)
Throne NCT04011020

Phase 2/3 Yes No Yes No No

VX-880 (ES
cell-derived

insulin-producing
cells)

Vertex NCT04786262
Phase 1/2 No N/A No Yes Yes

VC02-101 (ES
cell-derived β-cell

progenitors)
ViaCyte NCT03163511

Phase 1/2 No N/A No Yes Yes

PIpepTolDC
(vaccine therapy)

City of
Hope

NCT04590872
Phase 1 Yes N/A N/A No No

TZIELD
(teplizumab-

mzwv)

Prevention
Bio

FDA
approved No Yes N/A No No

Substantial evidence demonstrates that autoimmune memory T cells constitute the
most significant barriers to curing autoimmune diseases, including T1D. Our ongoing
clinical trials and previous studies demonstrated the therapeutic capability of Stem Cell
Educator TM therapy to correct the autoimmune memory in T1D [36] and other autoimmune
diseases [10]. Delgado et al. showed that the percentages of CD4+ TEM and CD8+ TEM cells
were substantially decreased in the peripheral blood of T1D subjects who had received Stem
Cell EducatorTM therapy; CD4+ TCM cells were not impacted [36]. Furthermore, Stem Cell
Educator TM therapy led to increased levels of CCR7 expression on naïve T and TCM cells
and increased percentages of CCR7+ TCM at the expense of CCR7− TEM [36]. Together, these
findings show that Stem Cell Educator TM therapy targets T cells for modulation, rather
than destruction, restoring populations of naïve T cells and eliminating those responsible
for autoimmune responses.

To date, our preclinical [49,50,53–55] and clinical [11,36,50–52] studies have identified
the following cellular and molecular players mediating the immuno-modulating activities
of CB-SC during Stem Cell Educator TM therapy [10]: (1) expression of autoimmune reg-
ulator (AIRE) in CB-SC [11,56]; (2) cell–cell contacts mediated by PD-L1(CD274) [54] and
HVEM (CD270), which are expressed on CB-SC [52] and whose ligands PD-1 and BTLA
are expressed on immune cells (T cells, B cells, monocytes, DC, and granulocytes) [52];
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(3) soluble factors (nitric oxide, TGF-β1) released by CB-SC [54]; (4) modulating interac-
tions between antigen-presenting cells (e.g., Mo/Mφ) and T cells through co-stimulatory
molecules and their ligands [51]; (5) release of CB-SC-derived exosomes that polarize
the type 2 macrophage (M2) differentiation of Mo/Mφ [53,57]; (6) CB-SC displayed mul-
tiple immune modulations on B cells through the Galectin-9-mediated cell–cell contact
mechanism [58]. Like the nerve fiber infiltration with the multiple types of immune cells,
T1D-associated immune dysfunctions have been traced to different cell compartments, in-
cluding T cells, B cells, regulatory T cells (Tregs), monocytes/macrophages (Mo/Mφ), and
dendritic cells (DC). Therefore, Stem Cell Educator TM therapy displays immune education
on multiple immune cells, leading to the restoration of immune balance.

Recently, Richardson et al. reported that there were pancreatic capillaries and nerve
fibers persisting in both recent onset and longstanding T1D patients [59]. Additional
studies showed that the number and densities of sympathetic nerves were decreased
in the non-diabetic islet autoantibody-positive individuals [60] and T1D patients [23],
without significantly affecting the islet-associate parasympathetic axons [61]. Therefore, it
is necessary to protect and restore the islet innervation for the prevention and treatment
of T1D. Importantly, by the collection of a patient’s own immune cells through apheresis
that are “educated” by CB-SC [10], it is expected that Stem Cell Educator TM therapy may
protect both the islet nervous systems and islets against the autoimmunity, leading to
the restoration of islet ENI integrity and islet β-cell function for the treatment of T1D.
Our previous studies have demonstrated this capability of improving islet β-cell function
and proliferation in the autoimmune-caused NOD mice [49] and T1D patients after the
treatment with CB-SC’s immune modulation [11,56].

5.2. Overcome the Shortage of Islet β Cells through the Alternative Approaches

It is essential to rescue the residual β cells for recent onset of T1D patients after correct-
ing the autoimmunity with Stem Cell Educator TM therapy, which has been demonstrated
by previous clinical trials [11,36]. Due to human islet β-cell replication usually occurring
during the fetal and neonatal stages and then declining after these stages, it will be necessary
to provide alternative resources for the restoration of β-cell function in those longstanding
severe T1D subjects. Recently, functional insulin-producing cells have been generated from
embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) [62–64]. This has led
to clinical trials for the treatment of T1D subjects including ViaCyte studies with VC-01 and
VC-02 products (NCT04678557 and NCT03163511, respectively) and a Vertex study with
VX-880 (NCT04786262). Clinical applications of these stem-cell-derived insulin-producing
cells may have ethical and safety concerns including potential tumor formation and im-
mune rejection [65,66]. To circumvent the immune rejection, encapsulations of ESC- or
iPSC-derived insulin-producing cells or using an immunosuppressive regimen have been
tested in animal studies and clinical trials [67–69]. Recently, ViaCyte is trying to develop
the gene-edited stem cell-derived therapy for the treatment of T1D in collaboration with
CRISPR Therapeutics (NASDAQ: CRSP), a biotech company focusing on the development
of transformative gene-based medicines for serious diseases.

Using a similar approach previously utilized for an isolation of CB-SC [70], Zhao
et al. characterized adult peripheral blood insulin-producing cells (PB-IPC) [71] from
adult human peripheral blood, displaying islet β-cell-related markers (e.g., the expres-
sion of β cell-specific insulin gene transcription factors and prohormone convertases)
and reducing hyperglycemia with migration to pancreatic islets after transplant into the
chemical streptozotocin (STZ)-induced diabetic mice [71]. To improve the differentiation
of PB-IPC toward islet β cells, PB-IPC were treated with the purified platelet-derived
mitochondria [72,73]. Notably, Yu et al. generated the pluripotent stem cells from adult hu-
man peripheral blood PB-IPC following the treatment with platelet-derived mitochondria.
Ex vivo and in vivo functional studies established that treatment with platelet-derived
mitochondria can reprogram the transformation of adult PB-IPC into functional CD34+

hematopoietic (HSC)-like stem cells, leading to the production of blood cells such as T
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cells, B cells, monocytes/macrophages, granulocytes, red blood cells, and megakaryocytes
(MK)/platelets [73]. Additionally, these mitochondrion-induced PB-IPC (miPB-IPC) can
give rise to retinal pigment epithelium (RPE) cells and neuronal cells in the presence of
different inducers [72], highlighting the pluripotent capability of the differentiation of
PB-IPC into three-germ layer-derived cells. Through confocal and electron microscopy, Yu
et al. found that exogenous mitochondria enter cells and directly penetrate the nucleus of
PB-IPC where they can produce profound phenotypic changes [72]. Thus, these findings
reveal a novel function of mitochondria directly contributing to cellular reprogramming,
thus overcoming the limitations and safety concerns of using conventional technologies to
reprogram embryonic stem (ES) and induced pluripotent stem (iPS) cells in regenerative
medicine. In comparison with the generation of insulin-producing cells from ES and iPS
cells, this technology can efficiently isolate insulin-producing PB-IPC cells from patients’
own blood, without any ethical issues or the hazards of immune rejection. Mitochondrial
reprogramming of PB-IPC may provide a novel approach for the generation of a large
amount of autologous insulin-producing cells from patients themselves to potentially treat
T1D patients in clinics after further optimizing ex vivo differentiation protocol.

Our previous studies demonstrated PB-IPC naturally circulate in human peripheral
blood [71–73]. The preliminary clinical data from our ongoing clinical trial (IND 19247)
revealed that the percentage of PB-IPC was very low in T1D patients. Notably, its percentage
was markedly increased after receiving Stem Cell Educator TM therapy. Therefore, the
recovered PB-IPC may display therapeutic capability to replenish the damaged neuronal
cells/nerve fibers and β cells due to their multiple differentiation potential. They could
migrate into pancreatic islets via their expression of the chemokine receptor CXCR4/SDF-1
(stromal cell-derived factor-1) mechanism [71].

6. Conclusions

Human islets are well-vascularized and innervated organs with specialized cells to pre-
cisely release different hormones and maintain the homeostasis through the ENI networks
at the systematic level and local networks of intrapancreatic islets. To date, clinical evidence
and animal studies substantiate the functional importance of neural input to pancreatic
islets. Both sympathetic and parasympathetic innervation of human islets contribute to the
metabolic control and the regulation of hormone release. During the pathogenesis of T1D,
this integrity and neural pathways of islets are damaged by the infiltration of autoimmune
cells, leading to the collapse of islet microarchitectures (e.g., distribution and number of islet
cells, vasculature, nerve fibers, neuronal projections, and extracellular matrix). Therefore,
T1D pathophysiology is not only the selective destruction of the islet β cells but also the
product of targeting of the islet nerve system by autoimmune cells. This concept needs to
be updated to ultimately heal the T1D patients. To eliminate these autoimmune cells, it is
essential to fundamentally overcome the autoimmune memory. Expanded clinical studies
are required to further explore this capability through the ongoing FDA-approved clinical
trial of Stem Cell Educator TM therapy in T1D (IND 19247, ClinicalTrials.gov Identifier:
NCT04011020) and other potential approaches to comprehensively restore the integrity and
neural pathways of functional islets.
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