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Abstract: The prefrontal cortex is the highest stage of integration in the mammalian brain. Its
functions vary greatly, from working memory to decision-making, and are primarily related to higher
cognitive functions. This explains the considerable effort devoted to investigating this area, revealing
the complex molecular, cellular, and network organization, and the essential role of various regulatory
controls. In particular, the dopaminergic modulation and the impact of local interneurons activity are
critical for prefrontal cortex functioning, controlling the excitatory/inhibitory balance and the overall
network processing. Though often studied separately, the dopaminergic and GABAergic systems
are deeply intertwined in influencing prefrontal network processing. This mini review will focus on
the dopaminergic modulation of GABAergic inhibition, which plays a significant role in shaping
prefrontal cortex activity.
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1. The Prefrontal Cortex

The prefrontal cortex (PFC) is thought to be the highest association area in the mam-
malian cortex and is required for proper executive control. Task flexibility and planning [1],
selective attention, attentional set-shifting, rule learning, strategy switching, and goal-
directed behavior [2–4] are just some of the many PFC functions. This considered, it is
not surprising that PFC alterations have been associated with a variety of psychiatric
conditions. For example, several investigations reported PFC-related impaired working
memory [5–8] and altered network oscillations [9,10] in schizophrenia. Though rodent PFC
is less complex than that of primates, it exerts similar functions in the executive domain [11].
For this reason, the rodent represents a valuable model to investigate how PFC functions
are determined at the molecular, cellular, and network levels. However, investigations in
rodents are complicated by the lack of a univocal and unambiguous nomenclature of PFC
subdivisions. Due to its recent evolution and inter-species variability, it is challenging to
identify proper structural and functional criteria to define PFC regions [12,13]. This has
been the subject of many studies aiming at characterizing differences and similarities of
mammalian PFC [14]. Ref [15] introduced a hodological criterium based on the assumption
that the mediodorsal thalamic nucleus (MD) is the primary site of projections toward the
PFC. Therefore, according to this definition, the mammalian PFC could be identified based
on the connectivity with the MD. Following this perspective, the effective existence in rats
of two prefrontal cortex areas receiving projections from the MD, indicated as medial and
orbitofrontal, was demonstrated [16]. Clearly, this definition bears some limitations. Indeed,
other criteria were then adopted. For example, other researchers proposed a cytoarchitec-
tural criterion, though this method was deemed valid only for closely related species [12].
To date, the best way to define PFC parcellation is proposed to be a combination of four
criteria: function, architecture, connectivity, and topography [17,18]. In particular, the
relevance of the connectivity aspect grew over time. Recent works have described the
organization of cortical interconnectivity into modules along the whole brain [18,19] and
identified a prefrontal cortical module. The areas within the prefrontal module show
dense interconnections [20,21] and are believed to be devoted to similar functions [22].
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The regions recognized as a component of the prefrontal module are the prelimbic area,
the infralimbic area, the anterior cingulate area, the frontal pole cerebral cortex, and the
orbital areas. Another widely used distinction, mainly based on connectivity mapping
including thalamocortical, corticothalamic, corticostriatal, and corticocortical projections,
recognizes three broad PFC subdivisions: the dorsomedial PFC (dmPFC), ventromedial
PFC (vmPFC), and ventrolateral PFC (vlPFC). Considering the complex scenario of rodent
PFC nomenclature and the absence of a standard reference for the different studies available
in the literature, it is not surprising that many studies focusing on the PFC report vague
indications of the subregion actually subjected to analysis. In particular, most investi-
gations on the highest-level cognitive functioning in rodents target the so-called medial
PFC (mPFC), comprising the infralimbic, prelimbic, and anterior cingulate areas [2,13]. It
is worth specifying that there is no direct anatomical equivalence between human and
rodent PFC. However, the rodent mPFC is anatomically located in correspondence with the
anterior cingulate cortex (ACC) in humans (see [13] for a detailed review of the comparison
between rodent and human PFC). Here, we will mainly refer to rodent reports on the
mPFC, which is the most commonly addressed PFC area. The cytoarchitecture and the
connectivity patterns are similar in rodents and humans, with the significant difference
represented by the lack of the granular layer (layer IV) in rodent PFC. In both cases, the
PFC is mainly composed of pyramidal neurons (PN, 80–90%) and inhibitory interneurons
(IN, 10–20%) [23]. The main excitatory output is provided by the PNs, which are strongly
interconnected to form a local network that projects to other cortical and subcortical areas.
PN activity is modulated by a strong network of GABAergic INs [24,25], which proved to
be essential for controlling PN firing and generating neuronal network oscillations [26–28].
The interplay between PNs and INs modulates PFC activity and is crucial to maintain
proper cognitive functions.

2. Dopamine Receptors in the PFC

Dopamine (DA) is released in the mPFC by projections originating from the midbrain
nuclei of the ventral tegmental area (VTA) and substantia nigra pars compacta [29,30].
Once released, DA interacts with five different receptors subtypes (D1, D2, D3, D4, D5)
subdivided into two families: D1-like receptors comprising D1 and D5, and D2-like recep-
tors comprising D2, D3, and D4 [29,31,32]. Receptors belonging to the D1-like family are
more abundant than those of the D2-like family and are expressed in all PFC layers. On the
other hand, receptors of the D2-like family are primarily expressed in deeper layers (mainly
layer V) [33], and their affinity is 10–100 times higher than that of D1-like receptors [34].
Both DA receptor families are expressed on pyramidal and non-pyramidal neurons, thus
modulating excitation and inhibition [29,33]. Finally, these two receptor classes differ in the
intracellular signaling pathway mediating their effects. Since DA receptors are G-protein
coupled receptors (GPCRs), they all activate heteromeric G-proteins, but the second mes-
senger and the effector proteins activated are usually different for different receptors and,
in most cases, mediate opposite responses.

In particular, D1-like receptors activation is coupled with the G-proteins Gαs and Gαolf
which, in turn, are associated with adenylyl cyclase (AC) that, once activated, increases
the level of cyclic adenosine monophosphate (cAMP) leading to the activation of protein
kinase A (PKA). PKA modulates most D1-like functions by phosphorylating many sub-
strates including voltage-gated K+, Na+, and Ca2+ channels, GABA receptors, and NMDA
receptors [32,35]. One of the main PKA targets is the DA and cAMP-regulated phospho-
protein DARPP-32, which is crucial in regulating downstream signaling pathways. When
phosphorylated, DARPP-32 inhibits the protein phosphatase 1 (PP1) that opposes PKA
action, eventually amplifying PKA signaling. On the other hand, the activation of D2-like
receptors leads to the opposite effect. When activated, these receptors couple with Gαi and
Gαo that inhibit the activation of AC, thus limiting PKA signaling. Moreover, the activation
of D2-like receptors determines the activation of the calmodulin-dependent protein phos-
phatase (PP2B), which turns DARPP-32 into a strong inhibitor of PKA signaling [32]. Thus,
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DARPP-32 can bidirectionally modulate PKA activity. Besides their regulation through
PKA pathways, ion channels can also be modulated directly via binding the Gβγ subunit or
indirectly via activation of the phospholipase C (PLC) by both D1-like and D2-like receptors
(Figure 1). The latter is most common for modulating Ca2+ conductance, determining a
decrease in CaV2.2 (N-type) and CaV1 (L-type) currents. PLC can also be activated through
coupling with Gαq, though limited to cells expressing D5 and D1/D2 heterodimers [36,37].
Lastly, D1-like and D2-like receptors can modulate NMDA and GABA receptors through
direct protein–protein interactions or PKA/IP3 signaling [35]. The mechanism by which
D2-like receptors, particularly D4, regulate GABA receptors involves a pathway comprising
the dephosphorylation of cofilin (an actin depolymerizing factor) via PP1 activation. This
leads to the loss of actin stability, with a consequent interruption of myosin motor-mediated
transport of GABA receptor-containing vesicles in the membrane, resulting in a reduced
GABA receptor-mediated current [38].
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Figure 1. Main intracellular pathways activated by dopamine receptors. The scheme shows different
pathways in which dopamine (DA) affects the modulation of intracellular signaling. DA can regulate
the activation state of (a) adenylyl cyclase (AC) or (b) phospholipase C (PLC) binding either D1-
like or D2-like receptors. (c) Both pathways lead to a modulation (either positive or negative) of
DARPP-32 which regulates the expression of GABA receptors. DA also affects neuronal excitability by
modulating voltage-dependent ion channels via activation of (d) β/γ subunit or (e) AC pathway. The
forward and stop arrows indicate activation or inhibition of the next element in the chain, respectively.
This figure was created with BioRender.com.

3. Dopamine Modulation of GABAergic Inhibition
3.1. On Pyramidal Neurons (PN)

As nicely reviewed by [29], the net effect of DA release onto the PFC also depends on
cell type, synaptic properties, and interactions with other neurotransmitters. One of the
critical DA roles in the PFC is the modulation of the GABAergic system. This modulation
contributes to setting the proper excitation/inhibition (E/I) balance in the PFC, which
requires fine-tuning to ensure correct network activity. Indeed, the E/I ratio is disrupted
in a broad range of psychiatric disorders [39–41]. Many studies focused on the role of D4
receptors in preserving the correct E/I balance. D4 receptors are enriched in the PFC and
are usually expressed in dendritic processes [42–44], while D1 receptors are most prominent
at PN dendritic spines [45]. In particular, D4 receptors are mainly expressed nearby GABAA
receptors in PFC PNs [46]. Experimental evidence showed that D2/D4 receptor agonists
decrease the inhibitory post-synaptic currents (IPSCs) of layer V PN in rodent PFC, while a
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D1 receptor agonist increases IPSCs amplitude in the same neurons [46–48]. When D1- and
D2-like receptors activation combines, an initial downregulation of the IPSCs mediated
by D2-like receptors is followed by a D1-like receptors-dependent IPSCs increase. This
suggests the biphasic nature of DA modulation of GABAergic responses in PFC PNs [29,47].

DA is reported to regulate inhibition through different intracellular mechanisms.
In particular, high DA concentrations increase spontaneous inhibitory postsynaptic po-
tentials (sIPSP) in PFC layer II/III [49] and layer V-VI PNs [50], revealing DA-mediated
enhancement of GABA release. On the other hand, DA can depress evoked IPSP (eIPSP)
in layer V-VI PNs [47,51,52]. This evidence shows that DA can modulate spontaneous
and evoked IPSPs affecting GABA release mechanisms, hence regulating the presynaptic
machinery [29]. This effect was also described in IN-PN pair recordings [53]. A possible
explanation of the different DA impact on spontaneous and evoked IPSCs is proposed
by [29]. The authors highlighted that the eIPSCs derive from activating a specific fiber
through electrical stimulation, while sIPSCs derive from multiple diverse inputs. Therefore,
the effect of DA on IPSCs may depend on the neuronal type generating the IPSC and the
different neurons originating the GABAergic terminals impinging on that same neuron [29].
The heterogeneity of DA modulation reported in different studies might also depend on
the recording sites. Indeed, D1- and D2-like receptors have different expression patterns:
while D1-like receptors mRNA are also expressed in superficial layers, D2-like receptors
are restricted to deeper layers such as layer V [33] (Figure 2).
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Figure 2. Dopaminergic receptors distribution in the PFC and main effects on inhibition. The
distribution of dopamine (DA) receptors among PFC layers and their expression on different neuronal
types can variably affect inhibition. In layer II/III, DA (green dots) binding D1-like receptors (orange)
on pyramidal neurons (PNs, (a)) increases spontaneous IPSC (sIPSC); (b) on vasoactive intestinal
peptide (VIP) neurons, it starts internal loops inhibiting deeper layers’ inhibitory interneurons (INs);
and (c) on fast-spiking interneurons (FS) increases intrinsic excitability. DA binding D1-like receptor
expressed in layer V PNs (d) increases the IPSC. DA binding D2-like receptors (blue) expressed
in layer V PNs (e) decreases the IPSC. Expression of both D1-like and D2-like receptors in layer V
PNs (f) increases the IPSC mediated by D2-like receptor activation (1) followed by a IPSC decrease
mediated by D1-like receptor activation (2). On INs (g), the decrease in the IPSC mediated by D1-like
receptors (1) is followed by an increased IPSC mediated by D2-like receptors (2). (h) In layer VI PNs,
the activation of DA receptors by high DA concentration leads to an increase in sIPSC and a decrease
in evoked IPSC (eIPSC).
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3.2. On Inhibitory Interneurons (IN)

DA receptors are expressed in a wide array of GABAergic interneurons and, therefore,
DA release onto the PFC affects IN activity, too [33,54,55]. DA is known to induce an
increase in intrinsic excitability favoring depolarization in fast-spiking interneurons (FS)
via a D1-like receptor-dependent mechanism [56,57]. Moreover, the effect of D1-like and
D2-like receptors on PFC GABAergic INs may differ on a temporal scale. The activation of
D1-like receptors induces both a depolarization and an increase in the neuronal excitability
of FS. Different mechanisms mediate these two effects. The DA-induced depolarization
lasts less than the increased excitability, meaning that DA can act through the same re-
ceptors to modulate different ionic currents at different time scales [56]. Interestingly, the
activation of D2-like receptors at the peak of D1-like mediated IPSC determines a decrease
in the IPSC amplitude [47,56]. Consistent with the biphasic hypothesis of DA modula-
tion of the GABAergic system, D2-like receptors mediate a reduction in inhibition, and
D1-like receptors mediate an increase in inhibition on PFC PNs, influencing IN activity
(Figure 2). Lastly, D1-like receptors in superficial layers are often associated with vasoactive
intestinal peptide (VIP) GABAergic INs and inhibit deeper INs via internal loops and inter-
actions [58]. This supports the D1-like receptor role in determining circuit disinhibition,
which is fundamental to appropriately modulating the PFC range of activity.

3.3. Evidence In Vivo

Several studies showed that DA exerts a predominantly inhibitory effect on PFC PN
in vivo, primarily suppressing spontaneous firing [59–61]. Importantly, microdialysis data
in vivo revealed a tonic level of DA in the PFC [62,63]. Most studies reported here were
performed on anesthetized animals, where little VTA activity is presumably present at
rest. Nevertheless, the stimulation of fiber bundles at the medial forebrain, or direct VTA
stimulation, effectively increased DA levels in the PFC. It should also be considered that
the absence of not experimentally evoked DA release is an advantage in characterizing
transient DA effects on PFC neurons. For these reasons, these studies are considered
suitable to address the consequences of DA release on the PFC in vivo. Indeed, VTA
stimulation induces a fast EPSP-IPSP sequence in PFC PNs, with the IPSP consistent with
GABAA receptors activation [60]. Interestingly, the inhibitory component is eliminated
not only by GABAA receptor antagonists [64] but also by D2-like receptor antagonists,
which tonically inhibit neuronal excitability [65–67]. When the D2-like receptor tone is
abolished, the entire network physiology changes: neurons increase their firing, and the
inhibition produced by VTA stimulation is occluded [29]. Overall, these studies show that
DA released from dopaminergic terminals in the PFC, as well as exogenous DA, modulates
spontaneous firing in vivo through complex mechanisms depending on the endogenous
DA tone, the amount of DA released, and the activated receptor subtype. This effect
was also confirmed by a computational model in which increasing DA concentrations
elicited the facilitation of FS activity, with consequent suppression of pyramidal neurons
firing. Moreover, enhancing basal DA levels rescues the initial condition, through the
downregulation of the GABAergic tone, with consequent hyperactivity of PN firing [68].
Interestingly, computational models primarily based on in vivo studies have proposed a
dual mechanism by which D1-like receptors can modulate working memory. First, the
spontaneous activity of PN is decreased by upregulating inhibitory GABA currents; then,
high-activity states are induced by upregulating excitatory NMDA currents [69,70]. This
effect is believed to be mediated by D1-like receptors, which might induce inhibition
by amplifying IPSCs in PNs [71], or an excitatory effect by enhancing NMDA receptor-
mediated responses [72,73]. The same computational model was also used to implement
D2-like receptors modulation of PFC activity. It was proposed that D2-like receptors
activation decreases inhibitory currents in PNs while increasing IN excitability to maintain
E/I balance [74].
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Taken together, these findings provide evidence for a delicate homeostatic interplay be-
tween dopaminergic and GABAergic systems necessary to maintain PFC network stability
and output selectivity.

3.4. Comments on PFC Regional Specificity

As pointed out in the first section, the PFC can be subdivided into several regions. It
might then be of interest to consider whether a regional specificity has been observed in
dopaminergic and GABAergic interplay. However, the intricate PFC subregions identifica-
tion and nomenclature complicate the picture. Considering the literature reviewed here
and mentioning to whatever extent the interaction between dopaminergic and GABAer-
gic systems, it is not possible to infer a region specificity. Indeed, out of 24 studies, 14
reported to be generally on the mPFC (10) or PFC (4), 8 addressed the prelimbic or pre-
limbic/infralimbic region (without discrimination), and 2 specified the anterior cingulate
cortex and the shoulder region or Fr2 region of the frontal cortex (without discrimination).
Therefore, it is not possible to extrapolate differences in dopaminergic–GABAergic interac-
tion among the mPFC subdivisions. Indeed, the prelimbic region seems to be the preferred
target of most studies.

However, searching for a regional distinction might be pointless. Accumulating
evidence suggests that current subdivisions might not reflect actual PFC functioning
segregation. Recently, besides the cytoarchitecture and connectivity distinction criteria, the
PFC gene expression profile has also been reported [75]. Interestingly, this study did not
identify distinct subregions, but the genetic profile was, in fact, common to the multiple
regions composing the PFC. Therefore, the PFC subdivisions based on connectivity or
cytoarchitecture criteria, already not matching one another, are not confirmed by gene
expression. This is of particular interest since it highlights a crucial aspect when considering
PFC functions. The scenario that is emerging suggests that assigning different functions
to the different PFC subdivisions is indeed deeply misleading. Based on connectivity
alone, some distinctions seem to emerge, at least among the three main subdivisions
(dmPFC, vmPFC, and vlPFC), which show different densities of specific connections.
Nevertheless, their connectivity is not entirely differentiated, and the connections are
shared but differ quantitatively [18]. Further based on this evidence, the dmPFC is often
studied for sensorimotor behavior, the vmPFC is often associated with emotions and
memory, while the vlPFC, though much less studied than the other two subdivisions, is
often correlated to reward-related information and addictive behavior. However, this might
reflect the common practice of the researchers rather than actual functional segregation.
Several behavioral studies suggested that the perturbation of any PFC subdivision is
sufficient to disrupt behavior and the whole cortical activity, independent of the type of
task at hand (see [18] for an extensive discussion on this topic). Therefore, despite the
different supposed roles of each subdivision, it is most likely that the PFC processes higher
cognitive functions as a whole and cannot be assigned to a specific subregion [76].

4. Clinical Relevance

Given the evidence summarized so far, it is not surprising that several PFC-related
pathologies involve alterations in both the dopaminergic and GABAergic systems. In the
following paragraphs, we will briefly summarize the involvement of the dopaminergic
and GABAergic systems in the main pathologies with a prominent PFC component, in
particular schizophrenia and autism spectrum disorders.

Schizophrenia is one of the most studied cognitive pathologies, with a renowned
involvement of the dopaminergic system, which is responsible for maintaining the proper
E/I balance [77]. The “revised dopamine hypothesis” proposes that schizophrenic patients
have hyperactive dopamine transmission in mesolimbic areas and hypoactive dopamine
transmission in PFC [78]. The positive symptoms of schizophrenia include hallucinations
and delusion due to an augmented dopamine release in subcortical areas, leading to an
increase in D2-like receptors activation [79], and are thought to be caused by disrupted



Biomedicines 2023, 11, 1276 7 of 13

cortical pathways through the nucleus accumbens [80]. On the other hand, negative symp-
toms, such as anhedonia, lack of motivation, and speech impairments, result from reduced
D1-like receptors activation in the PFC [79]. As computational models highlighted, the
imbalance between D1-like and D2-like receptor activity might explain the positive and
negative symptoms and the cognitive alterations in schizophrenia [81]. Interestingly, be-
sides other players recently found involved (as the glutamatergic system and the NMDA
receptors, [82,83]), the GABAergic system has been reported to be altered. In particu-
lar, a reduction in GABAergic inhibition is often reported (e.g., a reduced expression of
GAD67, GAT1, and GABAA receptors; a decreased number of inhibitory interneurons;
reduced inhibitory currents; [84] for details). The investigations on GABAergic disruption
in schizophrenia are complicated since the alterations differ depending on the specific
targeted PFC region [85]. In any case, GABAergic signaling alterations will contribute to
the E/I balance disruption associated with this disease, both in humans and animal models.
Alterations in GABA release have been correlated with impaired gamma oscillations and,
as such, to the cognitive symptoms of the disease [86]. Interestingly, the GABAergic system
deficit in the PFC has been proposed to result from the altered dopaminergic tone in the
striatum in a mouse model with striatal D2 receptors overexpression [87]. Though the
idea that the GABAergic and dopaminergic systems influence each other and collaborate
in determining the pathological alterations in schizophrenia is not new [88,89], further
research on this interaction might reveal critical to disentangle the complex pathophys-
iology of the disease. This would have a relevant impact from the clinical perspective.
Independent of where the primary alteration occurred, a clinical intervention might need
to impact both systems to regain a proper balance in PFC network activity. Moreover, a
complete view of such a complex pathology will need to integrate the alterations seen in
other neurotransmitter systems (such as the glutamatergic one) and the impact on the E/I
balance of the glutamate/GABA interplay [77].

Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized
by deficits in social cognition, repetitive and stereotyped behavior, and restricted interests.
The investigation of the pathophysiology of ASD is complicated by the incredibly heteroge-
neous genetic and phenotypic profiles that can be found in humans and the several animal
models of the disease [90,91]. Nevertheless, the diverse molecular, cellular, and network
alterations reported in literature seem to converge on a common outcome characterized
by altered E/I balance (in favor of excitation), network hyperexcitability, and hyperre-
sponsivity, often accompanied by altered long-range connectivity [92–94]. The GABAergic
system is considered central for ASD research, and its interplay with the glutamatergic
one to determine the E/I balance is one of the most studied topics in this field [95]. The
most common alteration reported is a decrease inhibition efficiency, ultimately leading
to the complex cognitive dysfunctions reported and the comorbidity with anxiety and
other disorders [84]. The involvement of the dopaminergic system in ASD is supported by
significant evidence in humans and animal models [96] and confirmed by the contribution
of alterations in genes related to DA neurotransmission and its modulation [97]. The pre-
frontal cortex and striatum are considered the most affected brain regions. Given the role
of the dopaminergic system in fine-tuning network transmission and signal-to-noise ratio
during behavior, alterations in this system are considered causal for the reduced sociability
and increased repetitive behavior that characterize ASD phenotype in mice and, most likely,
in humans [98,99]. Therefore, ASD physiopathology could be the ideal ground to study the
correlation between DA and GABAergic system alterations.

Affective disorders, such as major depression and bipolar disorder, and anxiety
disorders are commonly associated with altered serotoninergic tone and glutamate/GABA
systems imbalance. Nevertheless, many symptoms are considered to rely on dopaminergic
miscontrol leading, for example, to a lack of motivation and anhedonia in depression [100,101].
In particular, many forms of depression have been correlated with PFC hyperactivity, and
acting on the systems controlling the E/I balance in this region is the primary treatment
approach to date [100]. The circuits responsible for the stress response, including the
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hippocampus and amygdala, are also involved in the altered PFC-related communication
found in these disorders [100,102]. Altered DA signaling is also reported in post-traumatic
stress disorder [103]. Moreover, the involvement of the dopaminergic system in pain
modulation and chronic pain can be considered related to the previous disorders [104,105].
Interestingly, the increased mPFC output observed in neuropathic pain conditions has
been correlated with altered VTA-mediated DA control over the prelimbic region in rats,
associated with impaired integration of GABAergic inhibition [106].

5. Conclusions

The dopaminergic system modulates the PFC network activity state, finely tuning the
signal-to-noise ratio and the E/I balance. These effects are partially exerted influencing the
GABAergic system through complex intracellular pathways that modify GABA receptors
expression and activity, and modulate GABA release by INs. DA control of the PFC activity
state and responsiveness modulates the gain of signal transmission modifying the tonic DA
level and regulates the timing of neuronal responses through its complex phasic component.
The PFC is one of the most integrative areas in the brain, and the interplay between the
dopaminergic and GABAergic systems is one of the critical features that influence input
integration by this network and therefore deserves special attention. Further effort should
also be devoted to exploring the reciprocal influence of these two systems in PFC-related
neuropathologies. More often than not, the alterations in DA and GABAergic systems and
their impact on the clinical perspective are studied separately. This is undoubtedly due to
the intrinsic difficulty in disentangling the relative contribution of the two systems to the
alterations observed and to the limitations of using animal models for addressing cognitive
phenotype. Nevertheless, the data summarized in this mini review strongly support the
idea that the interplay between these two systems significantly contributes to originate the
unbalance seen in pathological models, possibly with a primarily affected system causing
the impairment of the other. The recent technological advancements and the application of
computational models could boost the research in this field and allow us to address this
issue with a renewed effort.
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Abbreviations

AC adenylyl cyclase
ACC anterior cingulate cortex
ASD autism spectrum disorders
cAMP cyclic adenosine monophosphate
DA dopamine
DARPP-32 DA and cAMP-regulated phosphoprotein
dmPFC dorsomedial prefrontal cortex
eIPSP evoked inhibitory postsynaptic potential
EPSP excitatory postsynaptic potential
E/I excitation/inhibition



Biomedicines 2023, 11, 1276 9 of 13

FS fast-spiking interneurons
GAD67 glutamate decarboxylase 67
GAT1 GABA transporter type 1
IN inhibitory interneuron
IP3 inositol triphosphate
IPSP inhibitory postsynaptic potential
mPFC medial prefrontal cortex
PFC prefrontal cortex
PN pyramidal neuron
VTA ventral tegmental area
GPCR G-protein coupled receptor
IPSC inhibitory post-synaptic current
PKA protein kinase A
PLC phospholipase C
PP1 protein phosphatase 1
PP2B calmodulin-dependent protein phosphatase
sIPSP spontaneous inhibitory postsynaptic potential
VIP vasoactive intestinal peptide
vlPFC ventrolateral prefrontal cortex
vmPFC ventromedial prefrontal cortex
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