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Abstract: (1) Background: Arterial stiffness is an important predictor of cardiovascular events.
Perindopril and physical exercise are important in controlling hypertension and arterial stiffness, but
the mechanisms are unclear. (2) Methods: Thirty-two spontaneously hypertensive rats (SHR) were
evaluated for eight weeks: SHRC (sedentary); SHRP (sedentary treated with perindopril—3 mg/kg)
and SHRT (trained). Pulse wave velocity (PWV) analysis was performed, and the aorta was collected
for proteomic analysis. (3) Results: Both treatments determined a similar reduction in PWV (−33%
for SHRP and −23% for SHRT) vs. SHRC, as well as in BP. Among the altered proteins, the proteomic
analysis identified an upregulation of the EH domain-containing 2 (EHD2) protein in the SHRP group,
required for nitric oxide-dependent vessel relaxation. The SHRT group showed downregulation of
collagen-1 (COL1). Accordingly, SHRP showed an increase (+69%) in the e-NOS protein level and
SHRT showed a lower COL1 protein level (−46%) compared with SHRC. (4) Conclusions: Both
perindopril and aerobic training reduced arterial stiffness in SHR; however, the results suggest
that the mechanisms can be distinct. While treatment with perindopril increased EHD2, a protein
involved in vessel relaxation, aerobic training decreased COL1 protein level, an important protein of
the extracellular matrix (ECM) that normally enhances vessel rigidity.

Keywords: SHR; pulse wave velocity; perindopril; collagen and aerobic training

1. Introduction

An important predictor of cardiovascular events is arterial stiffness, which is assessed
by pulse wave velocity (PWV). It is present in hypertension and has been considered an
index of vascular aging [1–4]. In this sense, the imbalance between collagen and elastin,
the rupture of elastic fibers, and alterations in several proteins of the vascular components
contribute to increased arterial stiffening [5–9].

Both pharmacological and non-pharmacological treatments are promising; however,
the mechanisms are still uncertain. Among antihypertensive drugs, it has been shown that
perindopril, a renin–angiotensin system (RAS) inhibitor, has higher effectiveness, lower
mortality rate among others from the same class, and prevents vascular remodeling [10–12],
which helps to reduce arterial stiffening when compared to others drugs [13,14]. Recently,
our group [15] demonstrated that perindopril reduces blood pressure and does improve-
ments in the RhoA/Rho-kinase/LIMK/Cofilin-1 pathway.
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Likewise, physical exercise is a globally accepted tool to control hypertension and
PWV [16–18], mainly by adjusting the structural components of the vessel wall such as
subendothelial matrix proteins and elastic fibers [19].

This study used proteomic analysis to provide a deeper understanding of vascular
wall modulations under perindopril treatment and exercise training. Our hypothesis was
that both treatments would be effective in controlling arterial stiffening, but probably
through different mechanisms.

2. Materials and Methods

Thirty-two spontaneously hypertensive rats (SHR, 200–250 g, 2 months old) were
obtained from the Animal Facility of the Institute of Biomedical Sciences, University of
São Paulo, (USP) Brazil. All rats were housed in the animal facility maintenance at the
School of Sciences, São Paulo State University—UNESP, campus of Bauru. All rats received
water and food (Biobase, Águas Frias, SC, Brazil) ad libitum and were maintained in a
dark–light cycle (12–12 h) and temperature-controlled room (22 ± 2 ◦C). The animal study
protocol was approved by the Committee for Ethical Use of Animals (CEUA) of School
of Sciences (UNESP, Bauru, #1320/2019 Vol. 1) and are in accordance with the Brazilian
Ethical Principles in Animal Research.

2.1. Pharmacological Protocol

All rats were separated into 3 groups with similar body weight (BW) and randomly
assigned to undergo an experimental protocol through 8 weeks: SHRC (n = 12): sedentary
SHR, daily treated with filtered water; SHRP (n = 10): sedentary SHR, daily treated with
perindopril (Conversyl, 3 mg/kg of BW, via gavage); SHRT (n = 10): aerobic-trained SHR
throughout the experimental protocol.

The dose of perindopril was chosen based on previous publications [17]. In order
to test the effectiveness of the pharmacological treatment, a bolus of Angiotensin I was
infused after the treatment period (100 µL, at a dose of 1 µg/µL, i.v.) in 2 treated and
2 control rats and the blood pressure (BP) response was evaluated.

2.2. Physical Training

After 7–10 days adaptation period on the treadmill (5–10 min, at 0.3–0.5 km/h), a
maximum physical capacity test (Tmax) was performed on all rats, as published [20]. Then,
the trained group was subjected to a physical training program on a treadmill (1 h/day,
5 days/week, at 50–60% of their maximum capacity). The Tmax was repeated after 4 weeks
for the adjustment of the speed and at the end to evaluate the effects of training [17].

2.3. Pulse Wave Velocity

At the end of the experimental protocol, PWV was assessed, as previously published [8,15].
In summary, each rat was anesthetized with xylazine hydrochloride (Anasedan®, 10 mg/kg,
i.p) and ketamine hydrochloride (Dopalen®, 50 mg/kg, i.p), and two pOpet® probes (Axelife
SAS, Saint Nicolas de Redon, France) were positioned on the right forelimb (close to elbow)
and hindlimb (close to knee). After stabilization of the signal (in a quiet room), the transit time
(TT, ms) was recorded for 10 s and registered using pOpet 1.0 software. Taking together the
distance between probes (D, cm) and TT, PWV was calculated using the following formula, as
previously published [8]:

PWV (m/s) = D (m) /TT (s) (1)

For PWV values, 10 measurements of each rat were obtained, and the average was calculated.

2.4. Arterial Pressure

Twenty-four hours after the PWV measurement, all rats were anesthetized with xy-
lazine hydrochloride (Anasedan®, 10 mg/mL, i.p) and ketamine hydrochloride (Dopalen®,
50 mg/kg, i.p) and the carotid artery was catheterized, as previously published [21]. On
the next day, the blood pressure of each awake animal was continuously recorded for at



Biomedicines 2023, 11, 1381 3 of 17

least 1 h, in a quiet room, using a pressure transducer (DPT100, Utah Medical Products
Inc., Midvale, UT, USA) connected to the artery cannula, that sent the signal to an amplifier
(Quad Bridge Amp, ADInstruments, Colorado Springs, CO, USA) and then to an acquisi-
tion board (Powerlab 4/35, ADInstruments, New South Wales, Australia), as published [22].
Systolic blood pressure (SBP) was derived from pulsatile AP recordings using computer
software (Labchart pro v7.1, ADInstruments New South Wales, Australia).

2.5. Proteomic Analysis
2.5.1. Protein Extraction

After the cardiovascular parameter measurements, all rats were deeply anesthetized by
an overload of xylazine hydrochloride and ketamine hydrochloride (Anasedan®, 20 mg/kg
and Dopalen®, 160 mg/kg, i.v., respectively) and euthanized by guillotine. The thoracic
aorta was excised, cleaned with saline solution, and homogenized in liquid nitrogen to
prevent protein degradation. For the extraction, a total of 50 mg of tissue was homogenized
in 500 µL of lysis buffer (7 M urea, 2 M thiourea, and 40 mM Dithiothreitol, all diluted in
50 mM of AMBIC solution) for 2 h in the refrigerator with continuous shaking and, in the
end, centrifuged at 20,817× g for 30 min at 4 ◦C, after which the supernatant was taken.
Total protein was quantified using the Quick Start ™ Bradford Protein Assay kit (Bio-Rad,
Hercules, CA, USA) in duplicate, as described in the literature [23].

2.5.2. Proteomic Analysis of the Aorta

The proteomic analysis was performed as previously described [15,24,25]. A pooled
sample of the aorta from 2 rats was analyzed and the proteomic analysis was performed
in biological triplicates. They were subdivided into 50 µL aliquots containing 50 µg of
proteins (1 µg/µL) and then 25 µL of a 0.2% RapiGest SF solution (Waters Corporation,
Milford, MA, USA) was added, followed by agitation and another addition of 10 µL 50 mM
of AMBIC. The samples were incubated at 37 ◦C for 30 min, after which the samples were
reduced using 5 mM of dithiothreitol (DTT, Merck KGaA, Darmstadt, Germany), incubated
at 37 ◦C for 40 min and alkylated with 10 mM of iodoacetamide (IAA, Sigma-Aldrich,
Darmstadt, Germany), agitated and incubated in the dark at room temperature for 30
min. The samples were digested with the addition of 2% (w/w) trypsin (Thermo Scientific,
Santa Clara, CA, USA) at 37 ◦C overnight. After the digestion, 10 µL of 5% trifluoroacetic acid
(TFA) was added, followed by agitation and incubation at 37 ◦C for 90 min. Subsequently,
the samples were centrifuged at 20,817× g at 6 ◦C for 30 min. The supernatants were purified
and desalinated using a Pierce C18 Spin column (Thermo Scientific, Santa Clara, CA, USA).
The supernatant was resuspended in 3% acetonitrile and 0.1% formic acid as standard.
The peptide identification was performed on a nanoAcquity UPLC-Xevo QTof MS system
(Waters Corporation, Manchester, United Kingdom), as previously described [26]. Protein
identification and quantification were obtained using ProteinLynx Global Server (PLGS)
version 3.0, using the ion-counting algorithm incorporated into the software. The data
obtained were searched in the database of the species Rattus Norvegicus (UniProtKB/Swiss-
Prot). The protein profile was obtained using the CYTOSCAPE® software v.3.7.0 (Java®

1.8.0_162) and the plugins ClusterMarker and ClueGO. All proteins identified by the mass
spectrometer were inserted into the software, using their access number, and can also be seen
in the UniProt database, free of charge available on the virtual platform (Uniprot 2022). After
confirming the proteins in the Uniprot_acession database, the first network was created in
STRING CONSORTIUM 2022 (STRING version 11.5). Then, it was necessary to make a filter
with the taxonomy used in this study (Rattus norvegicus; 10116).

Within this classification, proteins were separated with a ratio value greater than 1 for
those found to be upregulated, or with a ratio less than 1 for downregulated. Different
numbers were assigned to identify the proteins specific to each group in the comparison.
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2.6. Protein Analysis of the Aorta

From the aorta, 30 µg of protein was electrophoretically size-separated by using a poly-
acrylamide gel system (12%) in a running buffer solution for 55 min at 200 V/500 mA/150 W
and then transferred to a nitrocellulose membrane at 120 V/500 mA/150 W for 90 min
in a buffer solution. The membranes were stained with Ponceau for verification of the
protein bands obtained by electrophoresis and washed in a Tris-buffered saline solution
with tween-20 (TBS-T). Membranes were incubated within nonfat dry milk for 15 min
in TBS-T solution for 10 min. Using the SNAP i.d. 2.0 Protein Detection system (Merck
Millipore, Darmstadt, Germany), the membranes were incubated for 10–30 min in their
respective primary antibodies (1% albumin bovine serum, BSA): e-Nos (Anti-eNOS/NOS,
BD Transduction Laboratories (biosciences), cat #610297, 1:800), cofilin-1 (cofilin-1 (Ab-3),
SAB Signalway Antibody cat#21164, 1:500), p-cofilin-1 (cofilin phosphoSer3, cat#ABP54967,
1:500), Collagen-1 (COL1A1, Antibody, Cell Signaling #84336S, 1:800) and Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH FL-335, Santa Cruz Biotechnology, INC #sc-25778,
1:800). Membranes were washed with TBS-T and incubated with their respective secondary
antibody: anti-mouse (Polyclonal Peroxidase AffiniPure Goat Anti-Mouse IgG, Jackson
ImmunoResearch®, #115035003, 1:1000) or anti-rabbit (Polyclonal Peroxidase AffiniPure
goat anti-rabbit IgG, Jackson ImmunoResearch®, #111035003, 1:1000 or 1:800) according to
each source of the primary antibody (diluted in 1% BSA). Then, membranes were washed
again with TBS-T. The secondary antibodies were detected using a chemical reaction
with enhanced luminescence (Immobilon® Crescendo western HRP substrate, Millipore
cat#WBLUR0500), and the blots were visualized on C- Digit, Blot Scanner, Li-Cor. The
bands were analyzed by using the software Image Studio Digits v. 5.2. The values were
normalized by the amount of GAPDH and presented as % of the control group.

2.7. Statistical Analysis

All values were presented as mean ± standard error of the mean (SEM). Shapiro–Wilk
test was used to test data for normality. For the samples with normal distribution, a one-
way analysis of variance (ANOVA) was performed. When the data failed the normality
test, we used the transform command in the SigmaStat software to adjust them to meet
the normality requirements. All data were analyzed using Sigma Stat software (v4.0.0.37).
Tukey’s test was used for the necessary post hoc analysis (p < 0.05).

For the proteomic analysis, the comparison between groups was obtained using the
Student t-test in the PLGS software, considering p < 0.05 for the significantly expressed pro-
teins.

3. Results

All groups presented similar BW at the beginning of the experimental protocol
(252 ± 22, 258 ± 28, and 245 ± 16 g for SHRC, SHRP, and SHRT, respectively; p > 0.05) and
similar gain during the eight weeks, since the final BW was similar (307 ± 32, 311 ± 44, and
309 ± 21 g for SHRC, SHRP, and SHRT, respectively; p > 0.05). The maximal physical capac-
ity (seconds during Tmax) was similar between the groups at the beginning (819 ± 244,
789 ± 288, and 726 ± 333 s for SHRC, SHRP, and SHRT, respectively; p > 0.05). The trained
rats ran during the first four weeks at a speed of 1.02 km/h (60% of max). After the second
Tmax, the treadmill speed was increased by 1.65 km/h in order to maintain the intensity.
At the end of eight weeks, the trained group had higher Tmax compared with the control
and perindopril groups (577 ± 189, 743 ± 252, and 1511 ± 432 s for SHRC, SHRP, and
SHRT, respectively; p < 0.0001). After eight weeks of training or perindopril treatment,
the values of SBP (206 ± 10, 131 ± 5, and 150 ± 6 mmHg for SHRC, SHRP, and SHRT,
respectively; p < 0.0001), MBP (184 ± 11, 115 ± 4 and 130 ± 7 mmHg for SHRC, SHRP, and
SHRT, respectively; p < 0.0001) and DBP (175 ± 12, 108 ± 5 and 120 ± 8 mmHg for SHRC,
SHRP, and SHRT, respectively; p = 0.0001) were lower than the control group.
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Arterial Stiffness

As shown in Figure 1, both SHRP (−33%) and SHRT (−23%) groups presented lower
PWV values, compared with SHRC. There was no difference between the perindopril-
treated and trained rats.

1 
 

 
 

 
 

Figure 1. Pulse wave velocity (PWV) values of all SHR groups: sedentary control (SHRC, n = 12),
perindopril-treated sedentary (SHRP, n = 10), and trained control (SHRT, n = 10). Significance: * vs.
SHRC, p < 0.05.

The ClueGo® analysis, comparing SHRP vs. SHRC (Figure 2), demonstrates that
38 subcategories of the cellular component category were modulated. Among them, some
subcategories, such as supramolecular fiber, actin cytoskeleton, supramolecular polymer,
and membrane raft had the highest modulation. As shown in the Supplementary Materials,
the process biologic category included 67 modulated subcategories, and the most modu-
lated were the structural constituent of the cytoskeleton, energy derivation by the oxidation
of organic compounds, supramolecular fiber organization and response to reactive oxy-
gen species (Table S1, Supplementary Materials). Finally, in the immune system category
(Figure S1, Supplementary Materials), only five subcategories were modulated: mature
B cell differentiation involved in immune response, T-helper 1 cell differentiation, regula-
tion of T cell-mediated cytotoxicity, negative regulation of myeloid leukocyte mediated
immunity and dendritic cell chemotaxis.

On the other hand, the ClueGo® analysis, comparing SHRT vs. SHRC (Figure 3),
demonstrated that 16 subcategories were modulated in the cellular component category and
the highest modulated subcategory was collagen-containing extracellular matrix, followed
by lamellipodium, actin filament bundle and cortical cytoskeleton. In the process biologic
category (Table S2, Supplementary Materials), there were 48 modulated subcategories,
such as actomyosin structure organization, response to heat, regulation of reactive oxygen
species metabolic process, and myofibril assembly. In the immune system category, only
four subcategories were modulated: positive regulation of leukocyte-mediated cytotoxicity,
myeloid dendritic cell differentiation, regulation of T cell-mediated cytotoxicity, and negative
regulation of regulatory T cell differentiation (Figure S2, Supplementary Materials).
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Table S3 (Supplementary Materials) shows all the 138 expressed proteins under the
effects of perindopril on hypertension (SHRP vs. SHRC). Among them, 73 were upregu-
lated and only 2 were downregulated. Figure 4 illustrates the network performed by the
CYTOSCAPE® software using the proteins up- and downregulated present in Table S3
(Supplementary Materials) showing the results between the perindopril-treated rats com-
pared with the control group (SHRP vs. SHRC). The upregulated proteins are in green color:
(P36201, Crip2) Cysteine-rich protein 2; (Q6AY56, Tuba8) Tubulin alpha-8 chain; (Q62736,
Cald1) Caldesmon 1; (Q4QRB4, Tubb3) Tubulin beta-3 chain; (P31000, Vim) Vimentins;
(Q3KRE8, Tubb2b) Tubulin beta-2B chain; (Q00715, Hist1h2bh) Histone cluster 1; (P04636,
Mdh2) Malate dehydrogenase, mitochondrial; (P12346, Tf) Serotransferrin; (P47875, Csrp1)
Cysteine and glycine-rich protein 1; (P07150, Anxa1) Annexin A1; (Q6P6Q2, Krt5) Keratin,
type II cytoskeletal 5;(Q6AYZ1, Tuba1c) Tubulin alpha-1C chain; (P55063, Hspa1l) Heat
shock 70 kDa protein 1-like; (P62963, Pfn1) Profilin-1; (P15999, Atp5a1) ATP synthase sub-
unit alpha_ mitochondrial; (P69897, Tubb5) Tubulin beta-5 chain; (Q07936, Anxa2) Annexin
A2; (P08010, Gstm2) Glutathione S-transferase Mu 2; (P05065, Aldoa) Fructose–bisphosphate
aldolase A; (P63102, Ywhaz) 14-3-3 protein zeta/delta; (Q7M0E3, Dstn) Destrin; (P02454,
Col1a1) Collagen alpha-1(I) chain; (Q9Z1P2, Actn1) Alpha-actinin-1; (P63269, Actg2) Actin,
gamma-enteric smooth muscle; (Q5XI73, Arhgdia) Rho GDP-dissociation inhibitor 1; (P15650
Acadl) Long-chain specific acyl-CoA dehydrogenase, mitochondrial; (Q9ER34, Aco2) Aconi-
tate hydratase, mitochondrial; (Q5XIF6, Tuba4a) Tubulin alpha-4A chain; (P31232,Tagln)
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Transgelin; (P18666, Myl12b) Myosin regulatory light chain 12B; (P63018 Hspa8) Heat shock
cognate 71 kDa protein; (P85108, Tubb2a) Tubulin beta-2A chain; (P02600, Myl1) Myosin
light chain 1/3, skeletal muscle isoform; (Q6P9T8, Tubb4b) Tubulin, beta 4B chain; (P06399,
Fga) Fibrinogen alpha chain; (Hspa5) 78 kDa glucose-regulated protein; (P70623, Fabp4)
Fatty acid-binding protein 4, adipocyte; (Q68FR8, Tuba3b) Tubulin, alpha 3b; (P21807,
Prph) Peripherin; (Q10758, Krt8) Keratin, type II cytoskeletal 8; (Q5RKI0, Wdr1) WD
repeat-containing protein 1; (P62630, Eef1a1) Elongation factor 1-alpha 1; (Q9QXQ0, Actn4)
Alpha-actinin-4; (P20760, Igg-2a) Ig gamma-2A chain C region; (P68136, Acta1) Actin, alpha
skeletal muscle; (Q62812, Myh9) Myosin, heavy chain 9, non-muscle-like 1; (P68035, Acta2)
Actin, alpha cardiac muscle 1; (Ptrf) Polymerase 1 and transcript release factor; (P02770,
Alb) Serum albumin; (P60711, Actb) Actin, cytoplasmic 1; (Q6IG12, Krt7) Keratin; (P13832,
Myl12a) Myosin regulatory light chain RLC-A; (P48675, Des) Desmin; (Q4V8H8, Ehd2) EH
domain-containing protein 2; (P47853, Bgn) Biglycan; (Q9WVH8, Fbln5) Fibulin-5; (P14659,
Hspa2) Heat shock-related 70 kDa protein 2; (P11762, Lgals1) Galectin-1; (Q9JLT0, Myh10)
Myosin heavy chain 9/10/11/14; (P42930, Hspb1) Heat shock protein family b (small)
member 1; (P85973, Pnp) Purine-nucleoside phosphorylase; (P68370, Tuba1a) Tubulin alpha-
1A chain; (Q64122, Myl9) Myosin regulatory light chain 9; (P10111, Ppia) Peptidyl-prolyl
cis-trans isomerase A; (P42930, Hspa1a) Heat shock 70kd protein 1b (mapped); (Q01129,
Dcn) Decorin; (P16409, Myl3) Myosin light chain 3. On the other side, only two proteins
were downregulated which are in red: (P01946, Hba1) Hemoglobin subunit alpha-1/2 and
(P02091, Hbb) Hemoglobin subunit beta-1 after perindopril treatment (Figure 4).
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Figure 3. The ClueGo® analysis, comparing SHRT vs. SHRC (Figure 3), demonstrated that 16 subcat-
egories were modulated in the cellular component category and the highest modulated subcategory
was collagen-containing extracellular matrix, followed by lamellipodium, actin filament bundle, and
cortical cytoskeleton. The categories are presented and based on the gene ontology according to the
cellular component in which they participate, provided by the Cytoscape® software v.3.7.0. Only
significant terms were used, and the distribution was made according to the percentage of genes
associated with each category. The protein access numbers were made available by UniProt.
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Figure 4. Network illustrating the results between the perindopril-treated rats compared with the
control group (SHRP vs. SHRC), performed by the CYTOSCAPE® software using the proteins up-
and downregulated present in Table S3. The upregulated proteins are in green color: (P36201, Crip2)
Cysteine-rich protein 2; (Q6AY56, Tuba8) Tubulin alpha-8 chain; (Q62736, Cald1) Caldesmon 1;
(Q4QRB4, Tubb3) Tubulin beta-3 chain; (P31000, Vim) Vimentins; (Q3KRE8, Tubb2b) Tubulin beta-2B
chain; (Q00715, Hist1h2bh) Histone cluster 1; (P04636, Mdh2) Malate dehydrogenase, mitochondrial;
(P12346, Tf) Serotransferrin; (P47875, Csrp1) Cysteine and glycine-rich protein 1; (P07150, Anxa1)
Annexin A1; (Q6P6Q2, Krt5) Keratin, type II cytoskeletal 5;(Q6AYZ1, Tuba1c) Tubulin alpha-1C
chain; (P55063, Hspa1l) Heat shock 70 kDa protein 1-like; (P62963, Pfn1) Profilin-1; (P15999, Atp5a1)
ATP synthase subunit alpha_ mitochondrial; (P69897, Tubb5) Tubulin beta-5 chain; (Q07936, Anxa2)
Annexin A2; (P08010, Gstm2) Glutathione S-transferase Mu 2; (P05065, Aldoa) Fructose-bisphosphate
aldolase A; (P63102, Ywhaz) 14-3-3 protein zeta/delta; (Q7M0E3, Dstn) Destrin; (P02454, Col1a1)
Collagen alpha-1(I) chain; (Q9Z1P2, Actn1) Alpha-actinin-1; (P63269, Actg2) Actin, gamma-enteric
smooth muscle; (Q5XI73, Arhgdia) Rho GDP-dissociation inhibitor 1; (P15650 Acadl) Long-chain
specific acyl-CoA dehydrogenase, mitochondrial; (Q9ER34, Aco2) Aconitate hydratase, mitochondrial;
(Q5XIF6, Tuba4a) Tubulin alpha-4A chain; (P31232,Tagln) Transgelin; (P18666, Myl12b) Myosin
regulatory light chain 12B; (P63018 Hspa8) Heat shock cognate 71 kDa protein; (P85108, Tubb2a)
Tubulin beta-2A chain; (P02600, Myl1) Myosin light chain 1/3, skeletal muscle isoform; (Q6P9T8,
Tubb4b) Tubulin, beta 4B chain; (P06399, Fga) Fibrinogen alpha chain; (Hspa5) 78 kDa glucose-
regulated protein; (P70623, Fabp4) Fatty acid-binding protein 4, adipocyte; (Q68FR8, Tuba3b) Tubulin,
alpha 3b; (P21807, Prph) Peripherin; (Q10758, Krt8) Keratin, type II cytoskeletal 8; (Q5RKI0, Wdr1)
WD repeat-containing protein 1; (P62630, Eef1a1) Elongation factor 1-alpha 1; (Q9QXQ0, Actn4)
Alpha-actinin-4; (P20760, Igg-2a) Ig gamma-2A chain C region; (P68136, Acta1) Actin, alpha skeletal
muscle; (Q62812, Myh9) Myosin, heavy chain 9, non-muscle-like 1; (P68035, Acta2) Actin, alpha
cardiac muscle 1; (Ptrf) Polymerase 1 and transcript release factor; (P02770, Alb) Serum albumin;
(P60711, Actb) Actin, cytoplasmic 1; (Q6IG12, Krt7) Keratin; (P13832, Myl12a) Myosin regulatory
light chain RLC-A; (P48675, Des) Desmin; (Q4V8H8, Ehd2) EH domain-containing protein 2; (P47853,
Bgn) Biglycan; (Q9WVH8, Fbln5) Fibulin-5; (P14659, Hspa2) Heat shock-related 70 kDa protein 2;
(P11762, Lgals1) Galectin-1; (Q9JLT0, Myh10) Myosin heavy chain 9/10/11/14; (P42930, Hspb1)
Heat shock protein family b (small) member 1; (P85973, Pnp) Purine-nucleoside phosphorylase;
(P68370, Tuba1a) Tubulin alpha-1A chain; (Q64122, Myl9) Myosin regulatory light chain 9; (P10111,
Ppia) Peptidyl-prolyl cis-trans isomerase A; (P42930, Hspa1a) Heat shock 70kd protein 1b (mapped);
(Q01129, Dcn) Decorin; (P16409, Myl3) Myosin light chain 3. On the other hand, only two proteins
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were downregulated which are in red: (P01946, Hba1) Hemoglobin subunit alpha-1/2 and (P02091,
Hbb) Hemoglobin subunit beta-1 after perindopril treatment. Highlighted: (P60711, Actb) Actin,
cytoplasmic 1; (P42930, Hspb1) Heat shock protein family b (small) member 1; (Q5XI73, Arhgdia) Rho
GDP-dissociation inhibitor 1; (Q4V8H8, EHD2) EH domain-containing protein 2; (Ptrf) Polymerase 1
and transcript release factor; (P31232, Tagln) Transgelin.

The comparison between SHRT and SHRC, regarding the effects of training on hyper-
tension as shown in Table S4 (Supplementary Materials), showed that 123 proteins were
differently expressed. While 7 of them were upregulated, 22 were downregulated. The net-
work made with the proteins in Table S4 (Supplementary Materials) is illustrated in Figure 5
(SHRT vs. SHRC). As shown, the upregulated proteins are in green color: (P68035, Acta2)
Actin_ alpha cardiac muscle 1; (P63269, Actg2) Actin_ gamma-enteric smooth muscle;
(P47853, Bgn) Biglycan; (P06761, Hspa5) Endoplasmic reticulum chaperone BiP; (P70490,
Mfge8) Lactadherin; (Q6AY56, Tuba8) Tubulin alpha-8 chain; (Q9JLT0, Myh10) Myosin-10.
The downregulated proteins are shown in red: (P47875, Csrp1) Cysteine and glycine-rich
protein 1; (Q7M0E3, Dstn) Destrin; (P02454, Col1a1) Collagen alpha-1(I) chain; (P06866,
Hp) Haptoglobin; (P50399, Gdi2) Rab GDP dissociation inhibitor beta; (P68136, Acta1)
Actin_ alpha skeletal muscle; (P62738) Actin_ aortic smooth muscle; (P60711, Actb) Actin_
cytoplasmic 1; (P63259) Actin_ cytoplasmic 2; (Q9Z1P2, Actn1) Alpha-actinin-1; (P36201,
Crip2) Cysteine-rich protein 2; (P04797, Gapdh) Glyceraldehyde-3-phosphate dehydro-
genase; (P42930, Hspb1) Heat shock protein beta-1; (P01946, Hba1) Hemoglobin subunit
alpha-1/2; (P02091, Hbb) Hemoglobin subunit beta-1; (P11517, ENSRNOP00000048546)
Hemoglobin subunit beta-2; (P20760, Igg-2a) Ig gamma-2A chain C region; (P51886, Lum)
Lumican; (Q64119, Myl6) Myosin light polypeptide 6; (Q64122, Myl9) Myosin regulatory
light polypeptide 9; (P10111, Ppia) Peptidyl-prolyl cis-trans isomerase A; (P02770, Alb)
Serum albumin (Figure 5).

Figure 6 illustrates the densitometric analysis of the e-NOS (Figure 6A) and COL1
(Figure 6B) protein levels in the aorta of all rats. As shown, the SHRP group had higher
values of aortic e-NOS protein level (+69%) when compared with the control group. Thus,
it can be said that only perindopril treatment in SHR was able to increase e-NOS expression,
while training did not significantly increase it when compared to the control group.

On the other hand, aortic COL1 level was lower in the SHRT group, compared with
the control group (−46%, Figure 6B), suggesting that training was able to reduce COL1
expression in SHR, but treatment with perindopril did not significantly reduce it.

The values of aortic cofilin-1 (Figure 7A), p-cofilin-1 (Figure 7B), and the ratio p-
cofilin/cofilin-1 (Figure 7C) were similar between the groups, as shown in Figure 7. There-
fore, neither perindopril treatment nor aerobic physical training was able to significantly
modulate the total and/or phosphorylated cofilin-1 behavior in these SHR animals.
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Figure 5. Network illustrating the effects of training on hypertension showed that 123 proteins were
differently expressed (Table S4). While 7 of them were upregulated, 22 were downregulated (SHRT

vs. SHRC), performed by the CYTOSCAPE® software using the proteins up- and downregulated.
The upregulated proteins are in green color: (P68035, Acta2) Actin_ alpha cardiac muscle 1; (P63269,
Actg2) Actin_ gamma-enteric smooth muscle; (P47853, Bgn) Biglycan; (P06761, Hspa5) Endoplasmic
reticulum chaperone BiP; (P70490, Mfge8) Lactadherin; (Q6AY56, Tuba8) Tubulin alpha-8 chain;
(Q9JLT0, Myh10) Myosin-10. The downregulated proteins are shown in red: (P47875, Csrp1) Cysteine
and glycine-rich protein 1; (Q7M0E3, Dstn) Destrin; (P02454, Col1a1) Collagen alpha-1(I) chain;
(P06866, Hp) Haptoglobin; (P50399, Gdi2) Rab GDP dissociation inhibitor beta; (P68136, Acta1) Actin_
alpha skeletal muscle; (P62738) Actin_ aortic smooth muscle; (P60711, Actb) Actin_ cytoplasmic
1; (P63259) Actin_ cytoplasmic 2; (Q9Z1P2, Actn1) Alpha-actinin-1; (P36201, Crip2) Cysteine-rich
protein 2; (P04797, Gapdh) Glyceraldehyde-3-phosphate dehydrogenase; (P42930, Hspb1) Heat shock
protein beta-1; (P01946, Hba1) Hemoglobin subunit alpha-1/2; (P02091, Hbb) Hemoglobin subunit
beta-1; (P11517, ENSRNOP00000048546) Hemoglobin subunit beta-2; (P20760, Igg-2a) Ig gamma-2A
chain C region; (P51886, Lum) Lumican; (Q64119, Myl6) Myosin light polypeptide 6; (Q64122, Myl9)
Myosin regulatory light polypeptide 9; (P10111, Ppia) Peptidyl-prolyl cis-trans isomerase A; (P02770,
Alb) Serum albumin. Highlighted: (Q64122, Myl9) Myosin regulatory light polypeptide 9; (P02454,
Col1a1) Collagen alpha-1(I) chain; (P60711, Actb) Actin_ cytoplasmic 1; (P51886, Lum) Lumican;
(P02770, Alb) Serum albumin; (P68035, Acta2) Actin_ alpha cardiac muscle 1; (P47853, Bgn) Biglycan.
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 Figure 6. Illustration of the protein level in aortic endothelial nitric oxide synthase protein (e-NOS,

(A)) and collagen 1 (COL1, (B)) protein in all groups: sedentary control SHR (SHRC, n = 6), sedentary
treated with perindopril (SHRP, n = 6) and trained control (SHRT, n = 6). Figure 6 (bottom panel) also
illustrates the representative Gel Blot of e-NOS and COL1 levels in the aorta of all groups, namely,
SHRC, SHRP, and SHRT, respectively. Significance: * vs. SHRC, p < 0.05. 

2 

 
Figure 7. Values of aortic cofilin-1 protein (A), p-cofilin-1 protein (B), and the p-cofilin-1/cofilin-1
ratio (C) in all groups: sedentary control (SHRC, n = 6), sedentary treated with perindopril (SHRP,
n = 6) and trained control (SHRT, n = 6). Figure 7 also illustrates the representative Gel Blot of Cofilin-1,
p-Cofilin-1, and GAPDH of the aorta in all groups, namely, SHRC, SHRP, and SHRT, respectively.

4. Discussion

The main results of the present study were that either perindopril or physical training
significantly reduced the pulse wave velocity of hypertensive rats. On the other hand, the
proteomic analysis indicated that pharmacological and non-pharmacological treatments
regulated distinct proteins in the aorta, suggesting that the mechanisms may be different.
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Since arterial stiffness has been considered a marker of vessel aging and a predictor for
cardiovascular diseases and future events [2,27], there is a strong recommendation to include
this measure in clinical practice [28], sometimes even for pediatric routine [29]. Although it
is not clear if arterial stiffness precedes hypertension or vice versa [30,31], several studies
clearly demonstrate that hypertensive individuals have higher PWV [8,15,32,33]. Therefore,
the maintenance of normal values for blood pressure and PWV are the goals suggested by
worldwide guidelines for the management of hypertension [34–36]. It has been shown that
an increase of 1 m/s in PWV induces an increase of 15% in cardiovascular risk [37].

It is well-known that increased activity of the renin–angiotensin system (RAS) in-
creases BP and causes vessel remodeling [13]. Therefore, angiotensin-converting enzyme
(ACE) inhibitors are highly recommended, mainly because they alter the structure of vessels
beyond BP lowering. Ong et al. [38] compared different antihypertensive drug classes, such
as diuretic, beta-blocker, calcium antagonist, and ACEi, on arterial stiffness and BP improve-
ment and concluded that the reduction in arterial stiffness is higher under ACEi than under
calcium antagonist in a four-week treatment, while all classes had similar responses after
four weeks of treatment. In addition, ACEi allows the circulating bradykinin bioavailability,
which contributes to the formation of nitric oxide [39] and induces vasodilation.

Recently, our group has shown that SHR rats had higher BP and PWV, compared
with normotensive rats, and eight weeks of perindopril treatment reduced both BP and
PWV [17]. Likewise, the results of this present study (Figure 1) confirmed our previous
results and showed that perindopril-treated SHR had lower BP and PWV compared with
the control SHR.

Physical training has been considered an important adjunct to pharmacological treat-
ment to control hypertension and is highly recommended by hypertension societies around
the world [34–36], and the mechanism involves a better control of cardiac output and
peripheral vascular resistance [40–43]. In addition, exercise training significantly decreases
PWV, and the clinical relevance of different types of exercise on PWV reduction has been
shown in several pathologies and hypertension [44–48]. In agreement, this present study
showed that eight weeks of aerobic exercise training also reduced BP and PWV, and, inter-
esting to note, both groups, the perindopril, and the trained SHR, presented similar values
of BP and PWV compared with the control SHR.

From human studies, most of the mechanisms shown to be involved with PWV reduc-
tion are systemic, such as increases in plasma nitrite concentration and plasma NOx [48–50]
and decreases in plasma levels of endothelin-1 and noradrenaline [48,49]. On the other
hand, animal studies have shown important alterations both in the aortic extracellular
matrix proteins and in the hypertrophy of vascular smooth muscle cells (VSMC), which
contribute to altering vessel remodeling, but not all animal studies evaluate PWV [51].
Therefore, the present study used a non-invasive technique, previously validated by our
group [8], which allows measuring PWV and performing histological and molecular analy-
ses in the vessel of the same animal for a better understanding of the possible mechanisms.

The present study carried out a proteomic analysis in the aorta, which allowed the
identification of differently expressed proteins of both groups, trained and perindopril-
treated SHR. Previously, our group has identified an upregulation of GDP dissociation
inhibitor protein (GDIs) in the aorta of perindopril-treated SHR, which is an internal
regulator of RhoA pathway activation, suggesting that treated SHR had an inhibition of the
RhoA/ROCK/LIMK/Cofilin-1 pathway [15]. Accordingly, Morales-Quinones et al. [52]
showed that LIMK inhibition reduces p-Cofilin/Cofilin, which was followed by a reduction
in arterial stiffness. Although the results of this present study also showed an upregulation
of GDIs after treatment with perindopril followed by a reduction in arterial stiffness,
the results of aortic p-Cofilin/Cofilin protein level were only slightly reduced. Probably
the higher variability between rats interfered with the results, and this is a limitation of
this study.

Additionally, the proteomic analysis showed an interaction between GDIs and EHD2
protein, which was also upregulated in the SHRP group. Cellular homeostasis is maintained
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due to an organized process of internalization of nutrients and molecules that move along
a series of tubular membranes, and this process is known as the endocytic trafficking
system [53]. Likewise, this system is necessary for the product’s degradation to return
to the membrane surface. Several proteins are recruited to orchestrate this endocytic
transport, and among these are the C terminal Eps15 homology domain (EHD)-containing
proteins. EHD2 is one of these proteins (family of 4 EHD) that is highly expressed in
many tissues including fat, skeletal muscle, lung, spleen, kidney, heart, and tissues rich
in caveolae like blood vessels [53–55]. It has been shown that this protein is important for
the eNOS-NO-dependent vessel relaxation since EHD2 knockout mice present lower NO
abundance in the vascular endothelium and impaired acetylcholine-induced relation in
mesenteric arteries [54]. Moreover, the proteomic analysis also demonstrated an interaction
of the EHD2 protein with the caveolae-associated protein 1 (Ptrf), which is an important
protein involved in the formation of caveolae. Ptrf is essential for caveolae recruitment in
the presence of caveolin-1. Matthaeus et al. [54] demonstrated that EHD2 knockout mice
showed a decrease in NO production, regardless of eNOS levels, which did not change.
Furthermore, they showed that, in these mice lacking EHD2, the caveola was detached from
the membrane, which resulted in the redistribution of eNOS into the cytoplasm. Indeed,
EHD2 knockdown HUVECs showed that detached caveolae still contained eNOS; however,
they observed reduced phosphorylation of eNOS Ser1177 in EHD2 knockdown endothelial
cells, which was indicative of reduced eNOS activity. Therefore, these authors concluded
that EHD2 in the caveolae neck is required for correct eNOS localization and signaling, and
therefore for proper endothelial function. Based on this proposition, and on the results of
this present study, we hypothesized that the up-regulated EHD2 observed in the proteomic
results could be contributing to maintaining the stabilization of the caveolae at the plasma
membrane and, in turn, to the correct location and function of eNOS, which could be
modulating vessel relaxation in the perindopril group, as demonstrated by reduced PWV.
Although the level of aortic eNOS protein was increased in the present study, we did
not evaluate its activity. We also did not evaluate NO formation. However, we have
previously shown [15] that perindopril treatment increased plasma nitrite concentration
(indicative of NO formation) by 83% in SHR, and this response was negatively correlated
with PWV. Therefore, we believe that the correct stabilization of caveolae in the plasma
membrane, modulated by the level of the EHD2 protein, could orchestrate the localization
and activity of eNOS. We may assume that the lower PWV observed in the group treated
with perindopril was induced by the eNOS/NO pathway, which was allowed by a correct
stabilization of the caveolae in the membrane, induced by the upregulation of EHD2.

Unlike the effects of perindopril, proteomic analysis revealed that aerobic training
downregulated the COL1a1 protein in the aorta of SHR. The elastic characteristic of arteries
depends on the balance between structural proteins responsible for determining contraction
and relaxation, such as collagen and elastin. Any change in these components, such as
increased collagen synthesis and deposition, elastin degradation, as well as disruption of
elastic fibers, can lead to vessel remodeling and increased stiffness [7,8,32,56]. Collagen
(COL1 and COL3) along with elastin are the major extracellular matrix structural proteins
of the cardiovascular system. It is widely distributed extracellularly in most tissues. Both
collagen types are predominantly secreted by fibroblasts and smooth muscle cells. While
COL1 is the main collagen type present in bone, tendons, dermis, ligaments, and connective
tissue, COL3 is distributed mostly in the skin, vessel walls and reticular fibers of most
tissues [57]. Collagen and elastin have a key role in modulating the tight balance of elasticity,
resilience, and rigidity, which is necessary for physiological functions. Since the elastic
fiber network is the most distensible component of the arterial wall, and the collagen fiber
network provides rigidity and strength of the arterial wall, the vascular balance of COL
and elastin is necessary for vessel physiological function [56,58]. In addition, both fibrillar
collagens have similar physiological functions, but COL1 is stiffer and provides structural
rigidity over COL 3, which is thinner. In this sense, recently, Witting and Szulcek [58] have
proposed that the normal physiologic range of the aortic COL1/COL3 ratio is around 2.04 to
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3.83, which is in agreement with a recent study from our group [59] and that COL1 increases
to collagen-III in all non-physiologic cases, including hypertension and atherosclerosis.

To confirm the proteomic finding, we evaluated the COL1 protein level on the aorta
of the trained SHR and observed that the trained group had a 46% lower level of COL1
when compared with the control SHR group. In addition, less aortic collagen level has
been demonstrated after aerobic training [19,60] which contributes to decreased arterial
stiffening. The mechanism induced by aerobic training to reduce the level of aortic COL1
protein may involve a lower sympathetic drive to the vessel [17,51] since the synthesis of
collagen is mediated by increased sympathetic nerve activity through the beta receptor [61].

Additionally, the network performed in this present work indicated that the down-
regulated COL1a1 protein directly interacted with the protein Lumican, which was also
downregulated. Lumican is a proteoglycan of the extracellular matrix involved in collagen
fibrillogenesis and changes in its content may affect collagen organization and, conse-
quently, blood vessels’ elastic properties [62]. In this sense, higher expressions of lumican
have been found in the aorta of patients with chronic renal failure [63] and in patients with
aortic dissection [64]. The reduced regulation of COL1 and Lumican in the aorta of the
trained SHR could contribute to decreased vessel rigidity observed in hypertension.

5. Conclusions

In conclusion, the present study indicated that both perindopril and aerobic training
similarly reduced arterial stiffness in SHR; however, the proteomic analysis on the aorta
revealed that the mechanisms can be distinct. While treatment with perindopril increased
the EHD2, a protein involved in the vessel relaxation induced by the e-NOS-NO pathway,
aerobic training decreased the aortic COL1 protein level, an important protein of the ECM
that normally enhances vessel rigidity.
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