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Abstract: The minimum sample volume for capillary electrophoresis-Fourier transform mass spec-
trometry (CE-FTMS) useful for analyzing hydrophilic metabolites was investigated using samples
obtained from colorectal cancer patients. One, two, five, and ten biopsies were collected from tumor
and nontumor parts of the surgically removed specimens from each of the five patients who had
undergone colorectal cancer surgery. Metabolomics was performed on the collected samples using
CE-FTMS. To determine the minimum number of specimens based on data volume and biological
interpretability, we compared the number of annotated metabolites in each sample with different
numbers of biopsies and conducted principal component analysis (PCA), hierarchical cluster analysis
(HCA), quantitative enrichment analysis (QEA), and random forest analysis (RFA). The number
of metabolites detected in one biopsy was significantly lower than those in 2, 5, and 10 biopsies,
whereas those detected among 2, 5, and 10 pieces were not significantly different. Moreover, a binary
classification model developed by RFA based on 2-biopsy data perfectly distinguished tumor and
nontumor samples with 5- and 10-biopsy data. Taken together, two biopsies would be sufficient for
CE-FTMS-based metabolomics from a data content and biological interpretability viewpoint, which
opens the gate of biopsy metabolomics for practical clinical applications.

Keywords: metabolomics; CE-FTMS; colorectal cancer

1. Introduction

According to the World Health Organization, in 2020, colorectal cancer ranked third
in incidence and second in deaths among malignant tumors [1]. Since colorectal cancer
is commonly encountered in clinical practice, the analysis of cancer characteristics at the
molecular level and the development of therapeutic agents based on these characteristics
have proceeded at a faster pace than for other cancers. Fluorouracil (5-FU) was developed
in 1957 to play a central role in the treatment of colorectal cancer [2]. In the 1990s, the
efficacy of irinotecan and oxaliplatin was demonstrated [3–6], and after the 2000s, the
usefulness of bevacizumab, cetuximab, panitumumab, ramucirumab, and other molecular
targeting agents was demonstrated, expanding treatment options [7–12].

In recent years, the development of therapeutic agents for colorectal cancer has been
dominated by the development of new molecularly targeted agents. The use of genomics, a
type of omics, is essential for the development of these molecularly targeted drugs. Omics
analysis includes genomics targeting DNA sequences, transcriptomics targeting RNAs,
proteomics targeting proteins, and metabolomics targeting metabolites, among others.
Genomics is currently the primary application field in clinical practice. However, limited
information can be provided on the actual phenotypes since genomics is based on the
analysis of upstream gene sequences in homeostasis. Conversely, metabolomics analyzes
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the most downstream metabolites in homeostasis and thereby allows a better understanding
of signals directly associated with phenotypes. Thus, in the future, therapeutic agents
targeting metabolites identified by metabolomics.

Several studies have shown metabolites and metabolic pathways characteristic of
colorectal cancer using real tissues, and these metabolites are mostly measured by capillary
electrophoresis (CE), liquid chromatography, and gas chromatography (GC) connected to
mass spectrometry (MS) [13,14]. Among these, CE-MS is best suited for analyzing ionic
metabolites, especially highly charged or phosphate compounds, the main components
of energy metabolism in cancer. However, in these conventional methods, the required
specimen amount is up to 20–40 mg, and the difficulty of obtaining a sufficient amount of
specimen using nonsurgical means has greatly limited their clinical application. Therefore,
capillary electrophoresis-Fourier transform mass spectrometry (CE-FTMS) has been devel-
oped and applied, showing approximately tenfold higher sensitivity than conventional CE
connected to time-of-flight MS.

The development of CE-FTMS may enable the analysis with a smaller sample volume
and actual clinical application in the future; however, the specific minimum amount of
sample has not been clarified for CE-FTMS-based metabolome analysis. Therefore, this
study aimed to evaluate the minimum amount of biopsied samples needed to ensure the
quality of metabolomics by collecting colorectal tumor specimens and analyzing them
with CE-FTMS.

2. Materials and Methods
2.1. Specimen Collection and Pretreatment

This study was approved by the ethical review committee of Tokyo Medical and
Dental University Hospital (M2019-225). All biopsied samples were collected from five
patients with colorectal cancer at Tokyo Medical and Dental University Hospital. Based
on preoperative examination findings, we selected lesions with sufficient tumor volume
that would not affect the diagnosis even if tumor tissue was collected. Tissue collection
was initiated within 15 min after surgically removing the specimen. Using biopsy forceps
for lower gastrointestinal endoscopy, 1, 2, 5, and 10 sites were taken from the tumor sites,
and each was placed by batch. They were also similarly collected from the normal mucosa
and placed in a batch. The collected tissues were frozen with liquid nitrogen in batches and
stored in a freezer at ≤−80 ◦C until metabolome analysis.

2.2. Metabolite Extraction

Metabolite extraction and metabolome analysis were conducted at Human Metabolome
Technologies, Inc. (HMT), Tsuruoka, Japan. Biopsied frozen tissue samples were weighed
and placed in homogenization tubes along with zirconia beads (5 mm and 3 mm). Next, 50%
of acetonitrile/Milli-Q water containing internal standards (H3304-1002, HMT, Tsuruoka,
Yamagata, Japan) was added to the tubes, and samples were completely homogenized at
1500 rpm at 4 ◦C for 60 s using a bead shaker (Shake Master NEO, Bio-Medical Science,
Tokyo, Japan). Then, the homogenate was centrifuged at 2300× g at 4 ◦C for 5 min. Sub-
sequently, the upper aqueous layer was centrifugally filtered through a Millipore 5-kDa
cutoff filter (UltrafreeMC-PLHCC, HMT) at 9100× g at 4 ◦C for 180 min to remove macro-
molecules. The filtrate was evaporated to dryness under a vacuum and reconstituted in
Milli-Q water for metabolome analysis at HMT.

2.3. Metabolome Analysis

Metabolome analysis was conducted using HMT’s ω Scan package with CE-FTMS
based on the previously described methods [15]. Briefly, CE-FTMS analysis was performed
using an Agilent 7100 CE capillary electrophoresis system equipped with a Q Exactive
Plus (Thermo Fisher Scientific Inc., Waltham, MA, USA), an Agilent 1260 isocratic HPLC
pump, an Agilent G1603A CE-MS adapter kit, and an Agilent G1607A CE-ESI-MS sprayer
kit (Agilent Technologies, Inc., Santa Clara, CA, USA). The systems were controlled by
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the Agilent MassHunter workstation software LC/MS data acquisition for 6200 series
TOF/6500 series Q-TOF version B.08.00 (Agilent Technologies) and Xcalibur (Thermo
Fisher Scientific) and connected by a fused silica capillary (50 µm i.d. × 80 cm total length)
with commercial electrophoresis buffer (H3301-1001 and I3302-1023 for cation and anion
analyses, respectively; HMT) as the electrolyte. The spectrometer was scanned from m/z 60
to 900 and from m/z 70 to 1050 in positive and negative modes, respectively [16]. Peaks with
S/N > 3 were extracted using MasterHands 2.18.0.1, an automatic integration software (Keio
University, Tsuruoka, Yamagata, Japan), to obtain peak information, including m/z, peak
area, and migration time (MT) [16]. Signal peaks corresponding to isotopomers, adduct
ions, and other product ions of known metabolites were excluded, and the remaining peaks
were annotated based on their m/z values and MTs using HMT’s metabolite database,
which was developed by running authentic chemical standards under the same analytical
conditions. Areas of the annotated peaks were then normalized to internal standards and
also by sample weights to obtain relative levels of each metabolite (Table S1).

2.4. Statistical Analysis

Principal component analysis (PCA) [17] was performed using the HMT’s propri-
etary R program. Statistical significance was evaluated using Welch’s t-test, and detected
metabolites were plotted on metabolite pathway maps using VANTED 2.1.0 software [18].
For subsequent data analyses, as a pre-processing of metabolome data, metabolites with
missing values of ≥5 out of 10 samples were excluded for statistical analysis. By default,
missing values were imputed by 1/5 of the minimum positive values of each detected
metabolite, and metabolite levels were transformed to z values (mean-centered and di-
vided by the standard deviations of each metabolite). Hierarchical clustering analysis
was conducted using the MeV v4.9.0 software with Euclidean distance as the distance
calculation method [19]. Quantitative metabolite set enrichment analysis (QMSEA) was
performed using the MetaboAnalyst 5.0 software [20,21]. The Kyoto Encyclopedia of Genes
and Genomes database was selected as the metabolite set library [22]. Random forest was
performed with twofold cross-validation to make the binary classification model. The
number of metabolites in each tree was optimized, and the number of decision trees for
ensembles was set at 500. Metabolite selection was performed using recursive feature
elimination and fivefold cross-validation. The importance of metabolites in the random
forest model was measured by the mean decrease in accuracy. All computations regarding
the random forest were performed using the caret package in R.

3. Results
3.1. Patient Characteristics

Patient characteristics are shown in Table 1. All five colorectal cancers were left-sided
colorectal cancers, and four of these were well-differentiated adenocarcinomas.

3.2. Comparison of the Number of Metabolites Detected in Different Numbers of Biopsied Samples

Table 2 shows the number of metabolites detected in the different biopsy samples
after mass correction. Figure 1 shows the tissue weight on the X-axis and the number of
metabolites detected on the Y-axis. The average numbers of metabolites detected in 1, 2, 5,
and 10 pieces of biopsied samples were 424 ± 34 (average ± SD), 458 ± 18, 455 ± 23, and
450 ± 22, respectively, and thus, in >2 pieces of biopsied samples, the number of detected
metabolites was >450. As a result, the number of metabolites detected in 1 piece of the
biopsied sample was significantly lower than that in 2, 5, and 10 pieces of the biopsied
sample (vs. 2 pieces, p = 0.015; vs. 5 pieces, p = 0.027; vs. 10 pieces, p = 0.058). The number
of metabolites detected among 2, 5, and 10 pieces was not significantly different.
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Table 1. Tumor Characteristics.

Patient A1 A2 A3 A4 A5

Age (years) 56 73 59 78 57
Gender M M M M M
BMI (kg/m2) 25.5 25.5 30.7 21.3 23.3
Blood sugar (mg/dL) 108 104 131 114 99
AST (IU/L) 30 19 10 35 25
ALT (IU/L) 27 9 7 20 27
γ-GTP (IU/L) 178 21 19 134 59
Cr (mg/dL) 0.7 0.96 0.76 1.05 0.89
eGFR (mL/min/1.73 m2) 90.7 59.4 81.7 52.7 69.4
Tumor location rectum rectum sigmoid colon rectum rectum
Tumor size (mm) 41 × 42 20 × 20 47 × 35 29 × 28 40 × 35
Histological type tub2 tub1 > tub2 tub1 > pap tub1 > tub2 tub1 > tub2
Depth of tumor invasion T2 T1 T4 T4 T3
Lymphatic invasion ly1 ly0 ly0 ly0 ly0
Venous invasion v1 v1 v1a v1a v1b
Lymph node metastasis N0 N0 N0 N0 N0

Abbreviations: BMI, body mass index; AST, aspartate aminotransferase; ALT, alanine aminotransferase;
γ-GTP, γ-glutamyl transpeptidase; Cr, creatinine; eGFR, estimated glomerular filtration rate; tub1, well-
differentiated tubular adenocarcinoma; tub2, moderately differentiated tubular adenocarcinoma; pap,
papillary adenocarcinoma.
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Figure 1. Number of metabolites detected in different weights of each sample. Red dots represent
the samples with one biopsy count. Blue dots represent the samples with two, five, and ten biopsy
counts. The number of metabolites detected in 1 piece of the biopsied sample was significantly lower
than that in 2, 5, and 10 pieces of biopsied samples.
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Table 2. Number of metabolites detected in different numbers of biopsied samples.

Sample Name Number of Biopsies Amount (mg) Group Name Detected Number of Metabolites

A1-N1 1 1.2

Nontumor-1

405
A1-N2 2 7.2 449
A1-N3 5 12.7 428
A1-N4 10 26.6 437

A2-N1 1 3.8

Nontumor-2

441
A2-N2 2 7.3 472
A2-N3 5 12.2 480
A2-N4 10 34.2 449

A3-N1 1 1.0

Nontumor-3

360
A3-N2 2 5.6 454
A3-N3 5 14.9 459
A3-N4 10 36.3 436

A4-N1 1 2.6

Nontumor-4

447
A4-N2 2 7.0 477
A4-N3 5 19.2 463
A4-N4 10 38.3 467

A5-N1 1 3.3

Nontumor-5

412
A5-N2 2 6.9 444
A5-N3 5 21.7 434
A5-N4 10 37.4 424

A1-T1 1 10.2

Tumor-1

423
A1-T2 2 6.2 459
A1-T3 5 19.7 422
A1-T4 10 87.2 431

A2-T1 1 1.8

Tumor-2

425
A2-T2 2 3.5 446
A2-T3 5 6.2 489
A2-T4 10 35.7 473

A3-T1 1 7.6

Tumor-3

403
A3-T2 2 11.8 437
A3-T3 5 22.4 445
A3-T4 10 48.4 459

A4-T1 1 6.4

Tumor-4

488
A4-T2 2 6.3 493
A4-T3 5 15.2 475
A4-T4 10 44.9 494

A5-T1 1 10.6

Tumor-5

438
A5-T2 2 20.1 446
A5-T3 5 18.3 459
A5-T4 10 84.0 433

The number of metabolites detected in the tumor and nontumor sites was not signifi-
cantly different.

The following 13 substances were detected in ≥2 pieces of biopsied samples but
not in one piece: 2,4-dichlorobenzoic acid, 2-amino-2-methyl-1,3-propanediol, 5-oxo-2-
tetrahydrofurancarboxylic acid, betonicine, dATP, dCTP, digalacturonic acid, dTTP, isobuty-
lamine, N-ethylglycine, oxamic acid, pyruvic acid, and sucrose 6’-phosphate.

3.3. PCA and Heat Maps

PCA showed that the tumor and nontumor sites were separated by the PC2 axis
(Figure 2). Most samples from the same patient were plotted close to each other. However,
A1-N1, A2-T1, and A3-N1 were separated by the PC1 axis but showed a similar trend to
the separation of tumor and nontumor sites in the PC2 axis.
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Figure 2. PCA plot of CE-FTMS metabolite profiles. PCA score plot for tumors and nontumors, with
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Figure 3A shows the heat map with clustering; the heat map suggests that metabolomic
profiles in one piece of the biopsied sample tend to be different from those in other samples.
Figure 3B shows the heat map created using only those metabolites detected in 2, 5, and
10 pieces of biopsies, showing a statistically significant difference between tumor and
nontumor sites, when excluding data from one biopsy. Figure 3B visually shows metabolite
differences between tumor and nontumor sites, with similar metabolite sets detected in
each of the two sites.

3.4. Pathway Maps and QMSEA

Pathway maps were created for 2, 5, and 10 pieces of biopsied samples (Figures S1–S4),
and QMSEA was performed (Table 3). Among the pathways enriched, cysteine and
methionine metabolism (p < 0.001), purine metabolism (p < 0.001), taurine and hypotaurine
metabolism (p < 0.001), glycerophospholipid metabolism (p = 0.002), pyrimidine metabolism
(p = 0.003), nitrogen metabolism (p = 0.004), tryptophan metabolism (p = 0.002), pyrimidine
metabolism (p = 0.006), D-glutamine and D-glutamate metabolism (p = 0.010), fructose and
mannose metabolism (p = 0.024), and propanoate metabolism (p = 0.034) showed significant
differences between tumor and nontumor sites in all 2, 5, and 10 pieces of biopsied samples.
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Figure 3. (A) Heat map with bi-clustered metabolomics data. (B) Heat map of metabolites with statistical significance between tumor and nontumor in any of 2, 5, or
10 pieces of biopsies.
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Table 3. Comparison of statistically significant metabolic pathways enriched by QMSEA between tumor and nontumor in 2, 5, and 10 pieces of biopsies.

(1) N2 vs. T2
(Two Pieces of Biopsied Samples) Raw p (2) N3 vs. T3

(Five Pieces of Biopsied Samples) Raw p (3) N4 vs. T4
(Ten Pieces of Biopsied Samples) Raw p Statistical Significance

Taurine and hypotaurine metabolism 1.47 × 10−3 Nitrogen metabolism 1.24 × 10−3 Cysteine and methionine metabolism 9.28 × 10−5 (1)–(3)
Tryptophan metabolism 2.57 × 10−3 Tryptophan metabolism 2.43 × 10−3 Purine metabolism 9.48 × 10−4 (1)–(3)
Cysteine and methionine metabolism 4.04 × 10−3 Pyrimidine metabolism 3.83 × 10−3 Taurine and hypotaurine metabolism 1.19 × 10−3 (1)–(3)

Histidine metabolism 5.44 × 10−3 Glyoxylate and dicarboxylate
metabolism 7.01 × 10−3 Glycerophospholipid metabolism 1.82 × 10−3 (1)–(3)

Folate biosynthesis 7.52 × 10−3 Purine metabolism 7.16 × 10−3 Pyrimidine metabolism 2.97 × 10−3 (1)–(3)

Nitrogen metabolism 8.20 × 10−3 D-glutamine and D-glutamate
metabolism 8.87 × 10−3 Nitrogen metabolism 3.71 × 10−3 (1)–(3)

Pyrimidine metabolism 1.29 × 10−2 Fructose and mannose metabolism 1.06 × 10−2 Tryptophan metabolism 3.79 × 10−3 (1)–(3)

Riboflavin metabolism 1.30 × 10−2 Propanoate metabolism 1.49 × 10−2 D-glutamine and D-glutamate
metabolism 9.56 × 10−3 (1)–(3)

D-glutamine and D-glutamate
metabolism 1.46 × 10−2 Cysteine and methionine metabolism 2.04 × 10−2 Sulfur metabolism 1.37 × 10−2 (3) only

Purine metabolism 1.95 × 10−2 Inositol phosphate metabolism 2.17 × 10−2 Glycerolipid metabolism 1.42 × 10−2 (3) only

Propanoate metabolism 1.98 × 10−2 Beta-alanine metabolism 2.27 × 10−2 Glyoxylate and dicarboxylate
metabolism 1.48 × 10−2 (2), (3) only

Glycerophospholipid metabolism 2.15 × 10−2 Amino sugar and nucleotide sugar
metabolism 2.35 × 10−2 Histidine metabolism 2.22 × 10−2 (1), (3) only

Fructose and mannose metabolism 2.21 × 10−2 Taurine and hypotaurine metabolism 2.46 × 10−2 Fructose and mannose metabolism 2.42 × 10−2 (1)–(3)
Butanoate metabolism 2.25 × 10−2 Starch and sucrose metabolism 3.36 × 10−2 Folate biosynthesis 2.72 × 10−2 (1), (3) only

Pantothenate and CoA biosynthesis 2.91 × 10−2 Alanine, aspartate, and glutamate
metabolism 3.50 × 10−2 Primary bile acid biosynthesis 2.93 × 10−2 (3) only

Arginine and proline metabolism 2.94 × 10−2 Neomycin, kanamycin, and
gentamicin biosynthesis 3.70 × 10−2 Propanoate metabolism 3.38 × 10−2 (1)–(3)

Porphyrin and chlorophyll
metabolism 3.36 × 10−2 Fatty acid biosynthesis 3.70 × 10−2 Sphingolipid metabolism 3.45 × 10−2 (3) only

Citrate cycle (TCA cycle) 4.07 × 10−2 Glycerophospholipid metabolism 4.12 × 10−2 Alanine, aspartate, and glutamate
metabolism 3.69 × 10−2 (2), (3) only

One carbon pool by folate 4.18 × 10−2 Galactose metabolism 4.91 × 10−2 Nicotinate and nicotinamide
metabolism 4.50 × 10−2 (3) only

Arginine and proline metabolism 4.79 × 10−2 (1), (3) only
Amino sugar and nucleotide
sugar metabolism 4.80 × 10−2 (2), (3) only
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3.5. Random Forest

Finally, random forest analysis with twofold cross-validation was performed using
2-biopsy data to develop a binary classification model for distinguishing tumor and nontu-
mor samples. As a result, 15 metabolites were selected as multi-metabolite markers based
on their variable importance (Table 4). The top three metabolites, 5-hydroxyindoleacetic
acid (5-Hydroxy-IAA), indoleacetaldehyde, and formylanthranilate, are all Trp metabolites.
5-Hydroxy-IAA was significantly lower in tumor tissues (p < 0.012), whereas formylan-
thranilate was rather higher (p < 0.037). Then, the classification model was applied to 5- and
10-biopsy data and predicted the tumor or nontumor status with 100% accuracy, suggesting
the possibility that 2 biopsies could be sufficient for developing a classification model
that can distinguish tumors and nontumors as accurately as when using 5 or 10 biopsies
(Figure 4).

Table 4. List of 15 metabolites selected by random forest analysis as multi-metabolite markers based
on their variable importance.

Metabolite Importance

5-Hydroxyindoleacetic acid 100
Indoleacetaldehyde 69.60
Formylanthranilate 67.28
XA0012 66.93
1-Methylnicotinamide 62.38
Taurine 62.02
Octanoylcarnitine 58.29
γ-Glu-Taurine 55.30
β-Ala 49.10
5′-Deoxy-5′-methylthioadenosine 42.98
1-Aminocyclopropane-1-carboxylic acid homoserine lactone 42.30
O-Succinylhomoserine 42.13
Myo-inositol 2-phosphate 36.75
Imidazole-4-acetic acid 34.39
Uridine 0
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Figure 4. Probability scores of the classification model with 2-biopsy data applied to 5- and 10-biopsy
data. The classification model predicted the tumor or nontumor status with 100% accuracy, suggesting
the possibility that 2 biopsies could be sufficient for developing a classification model that can
distinguish tumors and nontumors as accurately as when using 5 or 10 biopsies.
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4. Discussion

In this study, metabolomic analysis of colorectal biopsies was performed using the
newly developed CE-FTMS and examined for the minimum number of specimens required
for analysis. The metabolic characteristics of colorectal cancer were also examined based
on the results of the CE-FTMS analysis.

Results of the CE-FTMS analysis showed that the number of detected metabolites
was equivalent if ≥2 pieces of biopsies were used. In addition, Figure 1 implies that we
need roughly 5 mg or more to secure appropriate data in terms of the number of detected
metabolites. The weight of one piece of biopsy, however, varies significantly (from 1.0 to
10.6 mg), and thus, there is a risk in using just one piece of biopsy sample for CE-FTMS-
based metabolomics and biological interpretation. Not only the number of metabolites
detected but also the metabolomic profiles also resembled each other among the data
obtained by ≥2 biopsies. Indeed, in the heat map, the detected metabolite profiles in
2, 5, and 10 biopsies were similar. QMSEA, using the data from >2 biopsies, identified
10 common pathways enriched in tumor and nontumor comparisons. Previous studies
have also shown that most of these 10 pathways are altered in colorectal cancer metabolism.
Furthermore, the classification model developed based on 2-biopsy data perfectly predicted
tumor or nontumor status when applied to the 5- and 10-biopsy data, suggesting that a
crucial metabolite set for distinguishing two groups can be captured with 2-biopsy data.
Thus, CE-FTMS can detect the same biological features as conventional analysis methods
with a smaller sample amount, such as biopsy specimens. Therefore, the minimum number
of biopsies required for CE-FTMS analysis was considered to be two pieces (average
8.2 ± 4.6 mg in the mass). Since previous studies using conventional methods required
sample volumes of 50–100 mg, CE-FTMS, which can perform accurate analysis with an
average sample volume of 8.2 mg, is considered very useful clinically [23,24].

Pathway map results are particularly important for the clinical application of metabolomic
analysis results. In recent years, cancer metabolic pathways have been attracting attention
in the fields of tumor markers and new drug development; however, many aspects of
metabolic pathways in colorectal cancer are still unclear. Among the pathways that showed
significant differences in this study, pathways particularly relevant to cancer metabolism
will be discussed.

Random forest analysis generated a tumor versus nontumor classification model
comprising 15 metabolites; however, interestingly, tryptophan metabolites occupied the
top three in the list, which echoes the results obtained in QMSEA. Indeed, the top three
metabolites, 5-hydroxyindoleacetic acid (5-Hydroxy-IAA), indoleacetaldehyde, and formy-
lanthranilate, represent three major pathways in tryptophan metabolism: serotonin, indole,
and kynurenine (Figure 5). In general, in cancer metabolism, indoleamine-2,3-dioxygenase
(IDO)1, IDO2, and tryptophan-2,3-dioxygenase (TDO2) are activated in the first step of tryp-
tophan degradation [25,26]. This phenomenon results in the accumulation of kynurenine,
which suppresses T-cell differentiation and function and promotes immune tumor escape.
This study showed that serotonin and indole pathways were enhanced in nontumor sites
of the colon, whereas the kynurenine pathway was predominantly enhanced in tumor sites,
suggesting the promotion of immune escape in the tumor regions.

In nitrogen metabolism (Figure S1), glutamine has reportedly been metabolized more
than other nonessential amino acids in cancer cells [27]. In the present study, glutamine
metabolism was enhanced in tumor parts, suggesting increased glutamate production.
MYC and KRAS (G12D mutation) are thought to be involved in this glutamine metabolism.
In colorectal cancer, regardless of the presence or absence of KRAS mutations, glutamine
is absorbed into the cell to produce fatty acids, proteins, and nucleic acids essential for
cell survival and growth [28]. To facilitate glutamine entering the cell and activating the
TCA cycle, glutaminase must be activated to change glutamine to glutamate, and previous
studies have shown that this reaction is enhanced in colon cancer [29]. In this study, this
mechanism may have resulted in decreased glutamine and increased glutamate levels at
the tumor site.



Biomedicines 2023, 11, 1706 11 of 14

Biomedicines 2023, 11, x FOR PEER REVIEW 15 of 19 
 

Pathway map results are particularly important for the clinical application of metab-
olomic analysis results. In recent years, cancer metabolic pathways have been attracting 
attention in the fields of tumor markers and new drug development; however, many as-
pects of metabolic pathways in colorectal cancer are still unclear. Among the pathways 
that showed significant differences in this study, pathways particularly relevant to cancer 
metabolism will be discussed. 

Random forest analysis generated a tumor versus nontumor classification model 
comprising 15 metabolites; however, interestingly, tryptophan metabolites occupied the 
top three in the list, which echoes the results obtained in QMSEA. Indeed, the top three 
metabolites, 5-hydroxyindoleacetic acid (5-Hydroxy-IAA), indoleacetaldehyde, and 
formylanthranilate, represent three major pathways in tryptophan metabolism: serotonin, 
indole, and kynurenine (Figure 5). In general, in cancer metabolism, indoleamine-2,3-di-
oxygenase (IDO)1, IDO2, and tryptophan-2,3-dioxygenase (TDO2) are activated in the 
first step of tryptophan degradation [25,26]. This phenomenon results in the accumulation 
of kynurenine, which suppresses T-cell differentiation and function and promotes im-
mune tumor escape. This study showed that serotonin and indole pathways were en-
hanced in nontumor sites of the colon, whereas the kynurenine pathway was predomi-
nantly enhanced in tumor sites, suggesting the promotion of immune escape in the tumor 
regions. 

 
Figure 5. Tryptophan metabolism. Blue and red bars represent nontumor and tumor sites, respec-
tively. Serotonin and indole pathways were relatively enhanced in nontumor sites of the colon, 
whereas the kynurenine pathway was predominantly enhanced in tumor sites. 
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Serotonin and indole pathways were relatively enhanced in nontumor sites of the colon, whereas the
kynurenine pathway was predominantly enhanced in tumor sites.

In purine and pyrimidine metabolism (Figures S2 and S3), these metabolic pathways
may reflect the status of nucleic acid synthesis. In purine metabolism, both AMP and GMP
were increased in tumor sites. In general, in adenosine metabolism, increased conversion
of ATP to ADP and ADP to AMP implies increased energy expenditure. In guanosine
metabolism, increased GMP also indicates a similar event. In adenosine metabolism, the
AMP is increased at the tumor site, and in guanosine metabolism, the GMP is increased
at the tumor site. This phenomenon may be due to the following two reasons: first, the
synthesis of nucleotides at the tumor site may have increased energy consumption and
enhanced conversion from ATP and ADP; second, the purine salvage pathway may have
been enhanced at the tumor site, resulting in increased AMP and GMP production from
adenine and guanine [30]. In pyrimidine metabolism, although no significant difference
was observed in UMP between the tumor and nontumor sites, UDP and UTP were sig-
nificantly enhanced in the tumor area. Therefore, RNA synthesis is also enhanced by
pyrimidine metabolism.

In cysteine and methionine metabolism (Figure S4), the results suggest that cystathion-
ine, a peripheral substance in the methionine circuit, is significantly higher at the tumor
site. Furthermore, cysteine, its peripheral substance, was significantly enhanced at the
tumor site in its conversion to cystine. The majority of malignant cells are in an oxidative
state due to cellular metabolism changes caused by oncogenes. Oxidative stress at the
tumor site may have enhanced the conversion from cysteine to cystine. The mean value
of cysteine/cystine in this study was 0.02 in the tumor and 0.10 in the nontumor sites. A
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lower cysteine/cystine ratio indicates greater exposure to oxidative stress [31], and this
feature is more likely observed in the tumor than in nontumor sites.

Overall, the fact that two biopsies are sufficient is clinically useful. For example, it is
practically impossible to obtain a 20–40 mg specimen, which is required for TOFMS-based
metabolome analysis during pretreatment endoscopy; however, two biopsies can be easily
performed. The ability to analyze such a small amount of specimen eliminates the need
to resect the tumor site for analysis, enabling clinical applications with less invasive and
less expensive procedures. A future challenge is to make the analysis more convenient
and immediate. If the time required for metabolome analysis is further reduced, making a
quick and detailed diagnosis simply by analyzing metabolites in biopsy specimens from
the tumor site is possible in the future. Furthermore, it would be clinically significant to
make decisions in selecting future colorectal cancer drugs targeting metabolites with a
small biopsy specimen collected endoscopically.

Several limitations should be considered in this study. First, because this is a pilot
study, the number of patients is small. In particular, a larger number of patients are needed
to examine metabolic pathways. Second, the study was limited to patients with colorectal
cancer. Since the histological type, genotype, and grade of cancer differ depending on the
primary site, further studies are needed for other types of cancer. Third, the specimens
in this study were not taken directly from patients but from surgically resected colon or
rectum tissues. Therefore, there may be some differences in the metabolites detected when
compared to biopsy samples directly collected from living subjects.

5. Conclusions

This study clarified that CE-FTMS-based metabolomic analysis is feasible with a
minimum of 2 biopsies (8.2 ± 4.7 mg) to obtain data that are comparable when using
5 (16.3 ± 5.0 mg) or 10 (47.3 ± 21.0 mg) biopsies, which was supported by the number
of identified metabolites and biological interpretability tested by QMSEA and random
forest analysis. This paves the way for biopsy-based clinical metabolomics for tumor
characterization and patient stratification in the future.
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