
Citation: Tang, J.; Han, J.; Xue, J.;

Zhen, L.; Yang, X.; Pan, M.; Hu, L.; Li,

R.; Jiang, Y.; Zhang, Y.; et al. A

Deep-Learning-Based Method Can

Detect Both Common and Rare

Genetic Disorders in Fetal

Ultrasound. Biomedicines 2023, 11,

1756. https://doi.org/10.3390/

biomedicines11061756

Academic Editors: Ming-Horng Tsai

and Marco Manfrini

Received: 9 May 2023

Revised: 25 May 2023

Accepted: 6 June 2023

Published: 19 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

A Deep-Learning-Based Method Can Detect Both Common and
Rare Genetic Disorders in Fetal Ultrasound
Jiajie Tang 1,2,3,4,†, Jin Han 1,2,3,*,†, Jiaxin Xue 2, Li Zhen 2, Xin Yang 2, Min Pan 2, Lianting Hu 5,6, Ru Li 2,
Yuxuan Jiang 1, Yongling Zhang 2, Xiangyi Jing 2, Fucheng Li 2, Guilian Chen 2, Kanghui Zhang 1, Fanfan Zhu 1,
Can Liao 2 and Long Lu 1,2,4,7,*

1 School of Information Management, Wuhan University, Wuhan 430072, China
2 Prenatal Diagnosis Center/Clinical Data Center, Guangzhou Women and Children’s Medical Center,

Guangzhou Medical University, Guangzhou 510623, China
3 Obstetrics and Gynecology Medical Center, Dongguan Kanghua Hospital, Dongguan 523080, China
4 Center for Healthcare Big Data Research, The Big Data Institute, Wuhan University, Wuhan 430072, China
5 Medical Big Data Center, Guangdong Provincial People’s Hospital, Guangzhou 510317, China
6 Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangzhou 510317, China
7 School of Public Health, Wuhan University, Wuhan 430072, China
* Correspondence: hanjin1123gmu@gmail.com (J.H.); lulong@whu.edu.cn (L.L.)
† These authors contributed equally to this work.

Abstract: A global survey indicates that genetic syndromes affect approximately 8% of the popu-
lation, but most genetic diagnoses can only be performed after babies are born. Abnormal facial
characteristics have been identified in various genetic diseases; however, current facial identification
technologies cannot be applied to prenatal diagnosis. We developed Pgds-ResNet, a fully automated
prenatal screening algorithm based on deep neural networks, to detect high-risk fetuses affected by
a variety of genetic diseases. In screening for Trisomy 21, Trisomy 18, Trisomy 13, and rare genetic
diseases, Pgds-ResNet achieved sensitivities of 0.83, 0.92, 0.75, and 0.96, and specificities of 0.94, 0.93,
0.95, and 0.92, respectively. As shown in heatmaps, the abnormalities detected by Pgds-ResNet are
consistent with clinical reports. In a comparative experiment, the performance of Pgds-ResNet is
comparable to that of experienced sonographers. This fetal genetic screening technology offers an
opportunity for early risk assessment and presents a non-invasive, affordable, and complementary
method to identify high-risk fetuses affected by genetic diseases. Additionally, it has the capability to
screen for certain rare genetic conditions, thereby enhancing the clinic’s detection rate.

Keywords: deep learning; artificial intelligence; genetic diseases; prenatal diagnosis; fetal face;
ultrasound image

1. Introduction

Genetic diseases, which make up around 80% of rare diseases, are caused by variations
in the genome. They can result in disabilities, deformities, and intellectual disabilities in
patients, and in severe cases, they can even lead to the death of children. According to
a global survey, genetic syndromes affect approximately 8% of the population [1]. More
than half of them impacted multiple human body systems, posing a significant burden on
society [2,3]. Despite the fact that medical institutions have been using prenatal genetic
technologies to screen for affected individuals, 51–89% of genetic diagnoses in the United
States are made after birth [2]. According to the official documents of the Chinese govern-
ment, published in 2018, the overall estimated neonatal defect rate is 5.6% [3]. Therefore,
the ability to identify genetic diseases in the fetus may allow for life-saving interventions to
be initiated either prenatally or early in the postnatal period.

Prenatal screening has been used to assess the risk of a fetus affected with genetic
diseases since the 1970s, with the initial focus on Trisomy 21 [4]. Maternal serum assays and
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maternal plasma fetal cell-free fetal DNA (cffDNA) have been used to detect aneuploidy
and certain types of microdeletions, such as 22q11 deletion syndrome [5]. Expanded carrier
screening (ECS) has been increasingly used in recent years to reduce the risk of having
a child affected by genetic diseases [6]. Nevertheless, the current costs of cffDNA and
ECS are not as budget-friendly as the first-tier prenatal tests. Additionally, apart from
the ECS, there have been no successful developments in effectively screening for fetal
monogenetic syndrome so far. Thus, prenatal diagnosis of genetic diseases presents a
global challenge, particularly in middle- or low-income countries and underdeveloped
regions [7]. As a result, developing a low-cost, deployable prenatal screening strategy and
diagnostic method is imperative.

Ultrasonography is a low-cost, real-time, non-invasive technique for malformation
diagnosis and is widely used in prenatal screening [8]. With the development of ultrasound
technology, high-quality images of the fetus can be obtained with ultrasound equipment.
Prenatal screening of some diseases can be performed by a professional sonographer,
and abnormalities can be detected and identified through multidisciplinary collaboration
between obstetricians and geneticists. However, this process depends to a large extent on a
doctor’s experience and the available equipment.

There has been significant progress in the development of deep-learning-based ar-
tificial intelligence (AI) algorithms for aiding in prenatal diagnosis [9,10], especially for
structural deformity screening [11–13]. There are high expectations of AI applications for
innovative healthcare solutions [14]. In the analysis of facial images for genetic diseases,
Loos et al., first utilized facial recognition technology to diagnose five syndromes, including
Cornelia de Lange syndrome (CdLS), achieving a high accuracy rate [15]. In 2016, Basel-
Vanagaite et al., developed a facial recognition system called facial dysmorphology novel
analysis (FDNA) technology and used it to identify facial images of patients with genetically
diagnosed CdLS [16]. In 2017, Lumaka et al., conducted screening for Down syndrome
patients using the Face2Gene software based on FDNA technology [17]. In the analysis of
fetal facial images, Yasunari et al., successfully developed an artificial intelligence classifier
to identify fetal facial expressions related to fetal brain development [18]. In 2022, the team
further analyzed fetal brain activity by recognizing fetal expressions [19]. Valentine et al.,
used computer technology to analyze fetal facial dysmorphology and identify fetal alcohol
spectrum disorders [20]. These studies demonstrate the feasibility of analyzing fetal facial
information using artificial intelligence technology. However, to our knowledge, there
are very few or no fetal facial analysis models developed specifically for common genetic
diseases such as Down syndrome.

In this research, we developed Pgds-ResNet, a fully automated prenatal screening
algorithm based on deep neural networks, to detect a variety of genetic diseases, especially
some rare genetic diseases. The Grad-CAM visualization technique [21] was then used
to highlight the abnormal point regions of the fetal forehead, nasal area, mouth, lip, and
jaw on fetal ultrasound images. In a comparative experiment, Pgds-ResNet performed
on par with senior sonographers. Our study provided an objective method for analyzing
the relationship between fetal ultrasound index and genetic diseases. It also presents
a solution that can assist obstetricians and sonographers in enhancing genetic disease
screening during prenatal diagnosis. This solution is particularly valuable in middle- or
low-income countries and underdeveloped regions.

2. Materials and Methods
2.1. Data Acquisition

From March 2020 to October 2021, the Guangzhou Women and Children’s Medical
Center in China enrolled a total of 1000 pregnant women aged 23 to 38 years who underwent
prenatal diagnosis (Figure 1). All ultrasound examinations were performed prior to the
conduct of the research by a team of specialists with more than five years of experience.
We excluded (n = 333), from the initial list of 1000 cases, those without genetic results,
3D volume images, and complete clinical data. Thus, our dataset contained 556 normal
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pregnancies and 111 pregnancies with genetic abnormalities. This is a retrospective study
with genetic test results available in all cases, and the genetic results were used as the gold
standard for diagnosis. The decision to induce labor or not is up to the patient.
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The static 3D volume acquisition of the fetal face was performed with a high-frequency
probe (6–12 MHz) equipped by a GE Voluson 730 Expert/E10 (GE Healthcare, Chicago, IL,
USA). The volumes in midsagittal view were acquired using high or max quality mode
and the lowest angle sweep, which allowed the inclusion of the total facial surface from the
forehead to the chin. Following the collection of the ultrasound images, the sound beam
angle was tilted as much as possible to 45◦, the scanning volume angle range was adjusted
to 50–70◦, and the high-3 to max quality mode was used to set a three-dimensional volume
acquisition frame of appropriate size.

2.2. Data Processing

All fetal facial volume images obtained were analyzed offline, using 4D View software
(GE Medical Systems, Version 7.0) and activating the Volume Contrast Imaging function
to optimize the volume contrast resolution. This study utilized selected 3D ultrasound
volume data, ensuring that the fetal head occupied 3/4 of the screen image by adjusting the
magnification. Subsequently, the image was rotated by 7◦ and 14◦ to capture the fetal facial
information, with the sagittal position serving as the initial plane of interception. An auto-
mated preprocessing workflow was used to remove the identification of the information
and eliminate unintended human labels. Each ultrasonic image was cropped and masked
to remove text, electrocardiogram and respirometer information, and other information
outside the scanning sector.

Overall, our dataset contained 845 normal images and 275 genetic disease images
(including 12 genetic diseases) from 1000 pregnancies (Figure 1), with gestational week
ranges from 11 to 27 years (14.8 ± 2.6). The violin diagram of gestational week values is
shown in Figure S1. Finally, a program script divided all images into training and test sets.
Importantly, the division of this dataset occurred at the case level rather than at the image
level.

This study also employed data augmentation techniques to enhance the feature repre-
sentation of images and prevent overfitting [22]. Our experiments use distortion, zoom-in,
tilt, zoom-out, crop, and a combination of multiple methods to augment the training data
set (Figure S2). Considering the difference in the amount of data between positive and
negative samples, 2× data augmentation was used for normal images, and 6× data aug-
mentation was used for genetic disease images. Finally, 3246 images were obtained for the
training and test set samples, including 1690 normal and 1650 abnormal images.

2.3. Development of Deep Learning Models

Specific screening models were obtained using the fetal ultrasound images. The
ResNet-18, ResNet-34, VGG-19, and VGG-16 models were trained to choose the appropriate
network architecture. They are widely used in medical image analysis, especially for facial
recognition [23,24]. ResNet can effectively address the vanishing gradient problem during
training, allowing the network to learn deeper and more complex features [25]. The network
structure of the present study consisted of the following two parts: (1) a screening model
to assess the risk of fetal genetic diseases and (2) the model prediction focus areas, which
were located by overlaying the heatmap and the original image.

The ResNet network model was obtained with 18 and 34 layers and the VGG model
with 16 and 19 layers as the deep neural network model of this experiment. Initially, the
training set was used following data enhancement to train the four aforementioned models,
and the initial learning rate was set to 0.0001. Because there have been no relevant studies
or models available for transfer learning or parameter initialization before, this study
selected the random initialization method. The convolution kernel was set to (3,3), and
Adam was employed as an optimizer. Subsequently, ReLU was selected as the activation
function, and we applied binary cross-entropy to the output of the last dense layer, and the
batch size was set to 32. The batch normalization module was added to each layer of the
model, and weight decay (L2 regularization) was applied by us to avoid model overfitting.
Subsequently, the epoch was set to 25, 50, 100, 150, and 200, and 5 models for each network
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structure were saved. The model with the smallest verification set loss was selected as the
optimal model of the network structure.

All the functionality, experiments, and analyses were implemented using Python
(NumPy 1.16 for array manipulation; opencv-python 4.1.0 and Pillow 6.0 for image opera-
tions; and scikit-learn 0.19.1 for performance quantification) and Google TensorFlow (for
the implementation of the deep learning architecture).

2.4. Statistical Analysis

The original patient data were divided into a training set and a test set in the experi-
ments. TensorFlow, Keras, and Python were used for statistical analysis. The performance
of the genetic diseases screening model was evaluated by calculating the area under the
receiver operating characteristic curve (AUROC), sensitivity, specificity, and F1*-score
on the test set. The 95% CIs were the Wald CIs for sensitivity, specificity, and AUROCs,
which were calculated with empirical bootstrap containing 1000 replicates. In addition, by
analyzing the output results of the model on the training set, the highest F1-value was used
as the selection criterion for the best threshold value.

Furthermore, receiver operating characteristic curves (ROCs) were plotted to demon-
strate the screening performances and the identification of genetic diseases using the
Pgds-ResNet models. The ROCs were drawn by plotting the sensitivity against the 1–
specificity at different operating thresholds. Additionally, ROC analysis was performed
to determine the optimal operating thresholds by using the outputs of the models on the
tuning dataset. To further evaluate the performance of the deep learning model, we also
used ANOVA to record the significant difference between the performance of the deep
learning model and the gold standard.

2.5. Visualization of Facial Features in Heat Maps

The Grad-CAM visual interpretation technique was employed to generate a heatmap.
This heatmap highlights the areas within the images that have a significant impact on the
final classification judgment, thereby enhancing the interpretability of the model algorithm.
By heatmap visualization, we were able to observe the contribution of different areas of the
image to the final prediction and establish potential associations between facial features
and genetic diseases.

The facial features of various genetic diseases are not clear. In order to make the
prediction effect of Pgds-ResNet more convincing, the heatmap was compared with the
ultrasound image.

2.6. Competition between Humans and AI

Three levels (junior, attending, and senior) of seniority sonographers participated in
a comparison study. Initially, Pgds-ResNet and each sonographer received 100 images
from the test set at random and determined whether the fetus exhibited certain genetic
abnormalities independently. Secondly, the statistical analysis compared the diagnostic
results with the genetic counseling report. We gave instructions to the sonographers that
the examination time for each image was within 10 min. The sonographer was allowed to
take a break for every 20 images examined.

The accuracy, sensitivity, and specificity were used to compare Pgds-ResNet’s screen-
ing performance with those of the human doctors. Apart from the images, the doctors were
masked from all information provided.

3. Results
3.1. The Overall Framework of Pgds-ResNet

The overview of the acquisition and pretraining processing of datasets workflow
is shown in Figure 1. A total of 1120 images (including 845 normal and 275 abnormal
images) recorded from March 2020 to October 2021 were retrieved for developing the deep
learning model named Pgds-ResNet. The case group included original images consisting
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of 60 for Trisomy 21 (60/275, 21.8%); 85 for Trisomy 18 syndrome (85/275, 30.9%); 45
for Trisomy 13 syndrome (45/275, 16.4%); and 85 for other genetic syndromes (85/275,
30.9%). Additionally, the control group contained 845 images without facial deformities
from normal pregnancies. Finally, a total of 970 images were used for data augmentation to
obtain 3340 images for training and 186 original images for testing.

The overall framework of this research is shown in Figure 2. The test set was used
to evaluate the model performance of the four network structures, including ResNet-18,
ResNet-34, VGG-16, and VGG-19. The optimal model was assessed by ROC performance,
and the network structure with the best effect was used to produce the heatmap. In the
experiment of training deep neural networks, ResNet-18 exhibited the best classification
effect on the test set. Subsequently, it was optimized (see Figure S3 for details) to obtain the
best model effect according to the characteristics of the data set and named Pgds-ResNet.
Moreover, we input the gradient of prediction results into the final convolutional layer
to produce a coarse localization map highlighting the important regions in the image.
Therefore, it can visualize the classification basis of the model through deconvolution
technology.
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Figure 2. Overview of this study. Data acquisition, including clinical information and fetal ultrasound
images, was performed at Guangzhou Women and Children’s Medical Center. Data preprocessing
included distortion, zoom-in, tilt, zoom-out, crop, and other methods to augment the training data
set. The training and testing were performed by using fetal ultrasound images to develop a deep
learning model named Pgds-ResNet for the screening of genetic diseases. The model performance
was assessed by AUROC, sensitivity, specificity, and F1*-score. Sonographers with three levels (junior,
attending, and senior) of seniority were invited for the human–AI comparison. In case a genetic
disease was detected, the abnormal areas were located by exporting the class activation mapping
from the networks.

3.2. Pgds-ResNet Outperforms Commonly Used Deep Learning Models

Pgds-ResNet yielded the following values on the test dataset after training: 0.98,
0.89, 0.96, and 0.92, corresponding to AUROC, sensitivity, specificity, and F1, respectively
(Figure 3 and Table 1). When the number of network layers was increased, the AUROC
of the ResNet-34 model decreased to 0.83. Notably, the sensitivity decreased from 0.89 to
0.50 due to the increase in the model complexity. If we used the VGG network without the
residual blocks for comparison, the AUROC of the VGG-16 and VGG-19 models were 0.84
and 0.92, respectively, while the sensitivity could only reach 0.41 and 0.45, which indicated
significant degradation in the deep neural network. The comparative experiment results
indicated Pgds-ResNet is suitable for our classification task. It is worth noting that an
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excessively complex structure of the convolution network will reduce the sensitivity due
to the relatively small sample size of the patients. Therefore, when the network depth
reaches a certain degree, the performance of the deep network structure is inferior to that
of the shallower neural network 19. By contrast, the residual network has reduced the
degradation problem of deep learning to a certain extent due to the addition of the residual
block, which significantly outperforms the VGG networks.

Biomedicines 2023, 11, x FOR PEER REVIEW 7 of 14 
 

3.2. Pgds-ResNet Outperforms Commonly Used Deep Learning Models 
Pgds-ResNet yielded the following values on the test dataset after training: 0.98, 0.89, 

0.96, and 0.92, corresponding to AUROC, sensitivity, specificity, and F1, respectively (Fig-
ure 3 and Table 1). When the number of network layers was increased, the AUROC of the 
ResNet-34 model decreased to 0.83. Notably, the sensitivity decreased from 0.89 to 0.50 
due to the increase in the model complexity. If we used the VGG network without the 
residual blocks for comparison, the AUROC of the VGG-16 and VGG-19 models were 0.84 
and 0.92, respectively, while the sensitivity could only reach 0.41 and 0.45, which indi-
cated significant degradation in the deep neural network. The comparative experiment 
results indicated Pgds-ResNet is suitable for our classification task. It is worth noting that 
an excessively complex structure of the convolution network will reduce the sensitivity 
due to the relatively small sample size of the patients. Therefore, when the network depth 
reaches a certain degree, the performance of the deep network structure is inferior to that 
of the shallower neural network 19. By contrast, the residual network has reduced the 
degradation problem of deep learning to a certain extent due to the addition of the resid-
ual block, which significantly outperforms the VGG networks. 

 
Figure 3. Evaluation results for Pgds-ResNet. (a) ROC curves for screening the presence of genetic
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diseases in the fetal ultrasound images. (c) Comparative experiment between Pgds-ResNet and
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darker colors indicating a smaller quantity. The dotted line represents the ROC curve of a completely
random classifier.
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Table 1. Performance of four deep learning algorithms in the test datasets.

AUROC (95%CI) Sensitivity (95%CI) Specificity (95%CI) F1 p-Value F-Value

Pgds-ResNet 0.98 (0.97–0.99) 0.89 (0.80–0.95) 0.96 (0.89–0.99) 0.92 0.658 0.196
ResNet-34 0.83 (0.80–0.86) 0.50 (0.40–0.60) 0.97 (0.91–0.99) 0.65 <0.01 15.921
VGG-16 0.84 (0.81–0.86) 0.41 (0.30–0.52) 0.98 (0.92–0.99) 0.57 <0.01 30.014
VGG-19 0.92 (0.89–0.93) 0.45 (0.34–0.56) 1.00 (0.95–1.00) 0.62 <0.01 28.125

“95%CI”: 95% confidence intervals (CI) are included in brackets. “AUROC”: area under the receiver operating
characteristics curve.

The p-value and F-value presented in Table 1 correspond to the statistical analysis
performed on the performance of the deep learning algorithms. For the Pgds-ResNet
algorithm, the p-value is 0.658, indicating no significant difference in performance compared
to the gold standard. The F-value is 0.196, suggesting a relatively small difference. In
general, the results indicate that the predicted outcomes of the models are fairly close to
the gold standard, suggesting good predictive performance of the models. On the other
hand, the corresponding F-values for ResNet-34, VGG-16, and VGG-19 are 15.921, 30.014,
and 28.125, respectively, indicating a larger difference between the performance of these
algorithms and the gold standard.

3.3. Pgds-ResNet Is Effective in Screening Common Genetic Diseases (Trisomy 21, Trisomy 18, and
Trisomy 13 Syndromes)

This study conducted separate statistical analyses for each type of genetic disease. The
sensitivity, specificity, and F1-score of each type of genetic disease were obtained by defining
the target category (a certain type of genetic disease) as positive and the other categories as
negative. In screening for Trisomy 21, Trisomy 18, and Trisomy 13, Pgds-ResNet achieved
sensitivities of 0.83, 0.92, and 0.75 and specificities of 0.94, 0.93, and 0.95, respectively. With
the classified threshold at 0.16, the percentage of correctly classified images into positive
cases was 0.83 (10/12) in Trisomy 21, 0.92 (12/13) in Trisomy 18, and 0.75 (12/16) in Trisomy
13. In total, two Trisomy 21 images, four Trisomy 13, and one Trisomy 18 were misclassified
by Pgds-ResNet as normal fetuses (false negative classification). The misclassification
is primarily due to the poor image quality of those samples (Figure S5), and the main
reasons for this are fetal position and sonographer experience. Compared with Trisomy 13,
Pgds-ResNet performs better in Trisomy 21 and Trisomy 18. Further information, including
accuracy, sensitivity, specificity, and F1-value of screening different genetic diseases, is
shown in Table 2.

Table 2. Performance of Pgds-ResNet in the test datasets.

Number Accuracy Sensitivity (95%CI) Specificity (95%CI) F1

All genetic diseases 86 0.90 (77/86) 0.89 (0.80–0.95) 0.96 (0.89–0.99) 0.92
Trisomy 13 syndrome 16 0.75 (12/16) 0.75 (0.47–0.92) 0.95 (0.90–0.97) 0.65
Trisomy 18 syndrome 13 0.92 (12/13) 0.92 (0.62–0.99) 0.93 (0.88–0.96) 0.65
Trisomy 21 syndrome 12 0.83 (10/12) 0.83 (0.51–0.97) 0.94 (0.89–0.97) 0.61
Rare genetic diseases 45 0.95 (43/45) 0.96 (0.84–0.99) 0.92 (0.86–0.96) 0.87

3.4. Pgds-ResNet Detects Facial Abnormalities Consistent with Clinical Reports

During the image classification, we found Pgds-ResNet focused on abnormalities
within the facial region. The most prominent areas among 86 images of genetic diseases in
our test set were the areas of the jaw, flat frontal bone, and nasal bone.

The ultrasound images were used to demonstrate the screening performance of Pgds-
ResNet (Figure 4). The contrast results showed that Trisomy 21 exhibited the phenotypic
characteristics of absent and hypoplastic nasal bones; Trisomy 13 with cebocephaly and
premaxillary agenesis; Trisomy 18 with cleft lip and jaw deformity; and Turner syndrome
with jaw dysplasia.
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Figure 4. The heatmap by Grad-CAM algorithm overlaid on original images (with red regions
corresponding to more attention in the heatmap on each row). The figure indicates the original images
(A) and heatmaps from Grad-CAM (B). The types of diseases are as follows: (1) Turner syndrome,
(2) PDHA1 gene mutation, (3) Trisomy 13, (4) Trisomy 18, (5) Trisomy 21, (6) 17q22 microdeletion,
(7) 1q21.1q21.2 microdeletion, (8) Helsmoortel–Van der Aa syndrome, (9) 15q26.1–q26.3 deletion and
20p13 duplication, and (10) 15q11.2q13.1 duplication syndrome. As shown in the color bar chart, the
importance values in the graph range from −10 to 15. A higher value indicates a greater importance
of the pixel for the classification result. The color red represents a higher level of importance, while
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3.5. Pgds-ResNet Detects Rare Genetic Diseases Often Overlooked in Clinical Practice

Pgds-ResNet also detects rare genetic diseases and achieves a surprisingly high degree
of accuracy, especially in cases without apparent fetal structural abnormalities. Pgds-
ResNet detected 43 of the 45 other genetic disease images in the test set. The sensitivity
and F1-value were 0.96 and 0.87, respectively (Table 2). The heat map also maintained
consistency with their facial features. Pgds-ResNet detected abnormal signals in the middle
facial area, notably in the connecting area between the nose and eyes in 1q21.1 microdeletion
syndrome, areas of the nose and mouth in 15q11q13 duplication syndrome, nasal bone,
and forehead in 15q26.1–q26.3 deletion with 20p13 duplication, and forehead and mouth in
17q22 microdeletion syndrome. The abnormalities in facial features in these areas overlap
with ultrasound images (Figure 4) and are similar to those postnatal cases reported in the
literature. Moreover, Pgds-ResNet also showed the efficacy of screening in the cases of
monogenic diseases of Pyruvate dehydrogenase E1-alpha deficiency cases with mutation
of PDHA1 and Helsmoortel–Van der Aa syndrome with ADNP mutation. In summary,
Pgds-ResNet can effectively identify the abnormal manifestations of rare genetic diseases,
which are frequently missed during sonographers’ clinical diagnoses.

3.6. Pgds-ResNet’s Performance Is on Par with Senior Sonographers

We also compared Pdgs-ResNet’s performance with three sonographers (Table 3 and
Figure 3). The accuracies of the junior and attending sonographers were lower compared
with those of the Pgds-ResNet model in screening the images for genetic diseases, i.e.,
accuracies of 63% by the junior sonographers, 71% by the attending sonographers, and 93%
by Pgds-ResNet. Sonographers may lack training and experience in detecting facial abnor-
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malities because they often focus on structural abnormalities in other organs, such as the
heart and limbs. The senior sonographers, who had genetics training experience, achieved
the best sensitivity of 0.88 and accuracy of 0.91. Therefore, Pgds-ResNet demonstrated
strong performance on par with senior sonographers.

Table 3. The screening performance of the Pgds-ResNet model and three sonographers.

Pgds-ResNet Junior Attending Senior

Accuracy 0.93 0.63 0.74 0.91
Sensitivity 0.86 0.42 0.79 0.88

(95%CI) (0.70–0.95) (0.26–0.61) (0.61–0.90) (0.71–0.96)
Specificity 0.97 0.73 0.72 0.93

(95%CI) (0.88–0.99) (0.61–0.83) (0.59–0.82) (0.83–0.97)
95% confidence intervals (CI) are included in brackets.

To develop a deep learning model for predicting the brain age of preterm neonates
using routine clinical brain MR images, we enrolled 281 preterm infants aged 28 to 37 weeks
(Figure 1 shows the distribution of participants). This was a retrospective study in which
each subject received an MRI scan of the head after birth. The holdout method was
employed to randomly divide the 281 MR images into two parts, one part with 211 MR
images used for training and tuning and the other part containing 70 images as a test
dataset.

4. Discussion

We propose a deep learning model called Pgds-ResNet for detecting high-risk fetuses
affected by genetic diseases, especially some rare genetic diseases. Pdgs-ResNet analyzes
ultrasound images and makes decisions based on the imaging characteristics that are
associated with genetic diseases. Pdgs-ResNet discovers fetal facial abnormalities as the
most effective features in detecting genetic diseases. The screening accuracy is on par with
the senior sonographers who received genetics training before this study. Comparing the
heatmaps to the ultrasound images also confirms that Pgds-ResNet is able to correctly
identify Trisomy 21, 18, and 13 syndromes and a number of rare types of genetic diseases
prenatally.

Recent genetic studies have shown that facial abnormalities in patients with genetic
diseases are closely related to the mutation of certain genes [26,27]. For example, 10q25.3,
8q24, VAX1, IRF6, and other genes are associated with cleft lip disease and affect the
development of the human jaw and maxilla, resulting in abnormalities in the nasal wing,
cheek, lips, and other parts of the face. Rs287104 locus in the KCTD15 gene is related to
the morphology of the nasal tip and alar; Rs9995821 locus in the DCHS2 gene is related
to nostril aperture; Rs2977562 locus in the 3q21.3 gene is associated with the thickness of
the upper lip; and Rs10176525 locus in the 2q36.1 gene is related to the height of the nasal
bridge [28–31].

In fact, craniofacial manifestation has aided in the screening for genetic diseases [27].
Recent studies have shown that AI-based facial analysis technologies can identify ge-
netic syndromes with similar capabilities as those of expert clinicians [32–35]. Notably,
Gurovich et al., presented the facial image analysis framework DeepGestalt using com-
puter vision and deep learning algorithms that quantify similarities of hundreds of genetic
syndromes [35]. Porras et al., developed a facial deep phenotyping technology based on
deep neural networks and facial statistical shape models to screen children for genetic
syndromes [33]. In the field of prenatal diagnosis, the majority of studies have focused
on the recognition of standard planes and the detection of anatomical structures. Only
a few studies have utilized deep learning techniques to identify facial expressions for
evaluating fetal development. These studies have not fully explored the potential of deep
learning in identifying genetic diseases associated with facial abnormalities in fetuses. We
believe that this limitation arises from the fact that deep learning techniques require a large
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amount of data for training, and the low prevalence of genetic diseases results in the limited
availability of accumulated data in medical institutions. Additionally, factors such as image
quality and the selection of standard planes in ultrasound imaging pose challenges in the
development of deep learning models.

However, these genetic disease screening and diagnosis methods cannot be applied to
prenatal diagnosis because the set of key facial points commonly used in facial recognition
algorithms cannot be obtained in fetal ultrasound images. Our research addressed this limi-
tation and revealed an association between fetal facial features and various genetic diseases,
especially in rare genetic diseases, which enables automated screening and identification of
genetic diseases based on fetal ultrasound images.

The “fetal profile” plane is a required component for standard examination during
pregnancy [36]. Micrognathia, cleft lip, cleft palate, and proboscis in some cases of Trisomy
13 caused by alobar holoprosencephaly can be diagnosed by this plane. Therefore, we
select this plane as the “fetal face” for AI learning.

To better interpret Pgds-ResNet’s results and minimize the black-box effect of deep
learning models, we used Grad-CAM’s visualization technique to highlight the identified
abnormal regions. Pgds-ResNet discovers abnormalities primarily in the areas of the facial
forehead, nasal part, mouth, and jaw in different types of cases. Comparative studies on
humans and AI further showed that Pgds-ResNet could discover features imperceptible
to operators. Moreover, Trisomy 21, 18, and 13; Turner syndrome; 1q21.1 microdeletion;
15q11–q13 duplication; Helsmoortel–Van der Aa syndrome; 15q26.1–q26.3 deletion; and
20p13 duplication all show distinctive variations in the heatmap.

Being the first study that applies AI techniques to detect facial features in fetal ultra-
sound images for prenatal screening of genetic diseases, there is certainly ample room for
improvement. Firstly, the limited availability of samples of fetal genetic diseases resulted
in a relatively small sample size for this study. Moreover, due to the small dataset used
for algorithm validation and the absence of external test sets, the results may be overly
optimistic [37]. Secondly, the data utilized in this study originated from a single center,
thereby constraining the applicability of deep learning models. Lastly, due to technological
and theoretical constraints, the focus of this study was solely on screening for genetic
diseases rather than diagnosing specific conditions. It is believed that incorporating larger
and more diverse datasets in future research endeavors can enhance the robustness and
generalizability of our framework, thus fostering greater advancements in the field. Moving
forward, we intend to explore the potential of expanding our study to a multicenter study.

Despite these limitations, further development of our method could make a profound
impact on prenatal genetic disease screening. It is well known that training a qualified
sonographer is costly and time-consuming. Rapid detection and accurate diagnosis also
largely depend on a clinician’s experience. A well-verified AI model with good robustness
is expected to relieve the shortage of qualified sonographers, a challenge especially in
under-developed regions, and hopefully reduce the financial burdens of the patients.
It will also assist clinicians in making prenatal care decisions and thus improve early
intervention outcomes. It can further be used as a triage scheme in clinical practice to
reduce the application of NIPT or invasive procedures and save social resources. This type
of screening tool could be extremely useful and is currently not available to clinicians by
any other means.

In summary, this study has successfully developed an AI framework that utilizes fetal
faces from ultrasound images for effective and automated screening of genetic diseases.
Additionally, the framework provides informative heat maps in the context of fetal genetic
conditions. Pgds-ResNet found that the fetal nose, jaw, forehead, etc., contained diagnostic
information. It could help with prenatal ultrasound diagnosis, reduce false-negative results,
and compensate for the lack of medical resources. However, it is worth noting that this
deep-learning-based algorithm serves as an aid to doctors in diagnosis, saving them time
rather than replacing them.
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