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Abstract: Research into genetic and physiological mechanisms of widespread disorders such as
arterial hypertension as well as neuropsychiatric and other human diseases is urgently needed
in academic and practical medicine and in the field of biology. Nevertheless, such studies have
many limitations and pose difficulties that can be overcome by using animal models. To date,
for the purposes of creating animal models of human pathologies, several approaches have been
used: pharmacological/chemical intervention; surgical procedures; genetic technologies for creating
transgenic animals, knockouts, or knockdowns; and breeding. Although some of these approaches are
good for certain research aims, they have many drawbacks, the greatest being a strong perturbation (in
a biological system) that, along with the expected effect, exerts side effects in the study. Therefore, for
investigating the pathogenesis of a disease, models obtained using genetic selection for a target trait
are of high value as this approach allows for the creation of a model with a “natural” manifestation
of the pathology. In this review, three rat models are described: ISIAH rats (arterial hypertension),
GC rats (catatonia), and PM rats (audiogenic epilepsy), which are developed by breeding in the
Laboratory of Evolutionary Genetics at the Institute of Cytology and Genetics (the Siberian Branch of
the Russian Academy of Sciences).

Keywords: animal model; hypertension; ISIAH rat strain; audiogenic epilepsy; catatonia; stereotypy;
genetic catatonia rat strain; pendulum-like movements rat strain

1. ISIAH (Inherited Stress-Induced Arterial Hypertension) Rats

Arterial hypertension is a widespread disorder that can lead to fatal complications;
therefore, understanding the pathogenesis and prevention of hypertension is very impor-
tant. Despite many years of research, hypertension remains a major medical problem, and
the primary causes and mechanisms of essential hypertension are still unclear. This is
because hypertension is a complex multifactorial disorder that has a polygenic basis and
interacts with many environmental factors, including social and psychosocial stressors.
Therefore, the creation of an animal model of stress-sensitive arterial hypertension is a
useful achievement that may help to clarify the pathogenesis and pathophysiology of
arterial hypertension.

1.1. A Short History of the ISIAH Rat Strain

The ISIAH rat strain was obtained by using genetic selection from an outbred nor-
motensive Wistar rat colony. Systolic blood pressure (BP) is measured by using the tail-cuff
method. The basal BP is determined when a rat is anesthetized for a short time (several
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minutes) with ether to exclude the influence of the BP measurement procedure on the
basal BP level. The response of BP to stress has been evaluated in unanesthetized rats
after 30 min of confinement in a wire-mesh cylindrical cell (restraint stress). The detailed
history of the selection procedure and establishment of the ISIAH rat strain is presented
in [1]; here, we only provide a brief description. The selection was started in 1972. The
mean basal BP level in the original Wistar rat population was 118 mmHg (n = 283). In
some rats, however, the stress-induced BP increased to 150 mmHg or even higher. This
made it possible to begin genetic selection for the stress-induced hypertensive response
in rats. As a result of crossings of closely related rats in several tens of generations, an
inbred strain of rats with stress-sensitive arterial hypertension (named the ISIAH rat strain)
was obtained. Of note, the selection of an enhanced BP response to stress also led to an
increase in the basal BP. Long-term measurements of BP in ISIAH rats show that at the
age of 3–4 months, the systolic BP is lower in females than in males by 10–15 mmHg [2].
Recent studies have mainly been conducted on males. Currently, the mean basal BP in
the male population of this strain is 170–180 mmHg, and in ISIAH male rats exposed to
short-term restraint stress, the BP reaches 190–200 mmHg. Thus, the hypertensive status of
ISIAH rats can be regarded as persistent arterial hypertension with significant aggravation
occurring in stressful environments [2,3]. In addition to the above characteristics of elevated
BP at rest and its sharp increase under conditions of short-term restraint stress, ISIAH
rats exhibit many features that are characteristic of human hypertension. These include
both neuroendocrine aberrations that are associated with an increase in the reactivity of
the sympathoadrenal and hypothalamic–pituitary–adrenal systems as well as a number of
morphophysiological indicators of a hypertensive state [2–4]. A description of the main
strain-specific traits of ISIAH rats is given in Table 1. The major findings of recent years are
described in more detail in the text below.

Table 1. Strain-specific traits of ISIAH rats.

Phenotype Approach References

Strain-specific traits

ISIAH rat strain breeding and general assessment [basal and
stress-induced BP, hypertrophy of target organs (kidney and heart),
age-dependent changes in basal and restraint stress–induced BP,
age-dependent changes in activity of the
hypothalamic–pituitary–adrenocortical system, age-dependent
changes in dopamine and norepinephrine levels in brain structures
(pons, medulla, hypothalamus, cortex)]

Genetic selection, BP measurement, body
and target organs’ weight measurement,
high-performance liquid
chromatography (HPLC)

[2,3]

The structural organization of the adenohypophysis corresponds to
an enhanced response of the hypothalamic–pituitary–adrenal axis in
prehypertensive ISIAH rats

Electron microscopic analysis [5]

Morphological signs of natriuretic peptide hypersecretion precede
the development of genetically programmed high BP; in adult
hypertensive rats, hypertrophic and degenerative changes in
myocytes have been described

Electron microscopic analysis [6]

Changes in hemodynamics and brain metabolites have
been evaluated

Magnetic resonance imaging (MRI),
MRI spectroscopy [7]

Hypertrophy of renal corpuscles accompanied by structural changes
that lead to an increase in the filtration barrier functional load and
glomerular sclerosis

Electron microscopic analysis [8]

Characteristics of the neurohormonal system HPLC,
immunohistochemistry [4,9–11]

Behavior The open field test and measuring the
total activity in the home cage [12–14]
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Table 1. Cont.

Phenotype Approach References

Decreased bioavailability of nitric oxide in blood plasma 19F NMR measurement of
NO production [15]

Increased levels of triglycerides, very LDL and LDL cholesterols, a
decreased content of HDL cholesterol, a high level of apolipoprotein
B-100, and a decreased level of apolipoprotein A-I

Immunoblotting analysis [16]

Increased basal activity of the central (brain)
renin–angiotensin–aldosterone system (RAAS) in ISIAH rats. The
RAAS is inhibited in the kidneys of adult ISIAH rats

Real-time PCR [17–19]

Homozygosity of ISIAH rats DNA fingerprinting [20]

Genetic specificity of the ISIAH rat strain Single nucleotide polymorphisms (SNPs) [21,22]

Steps toward drug discovery and translational medicine

A long-term reduction in basal and stress-induced BP has been
obtained via injections of dopamine precursor L-DOPA during early
development (21–25 days after birth).

[23]

The BP-lowering effect in ISIAH rats treated with reishi (Ganoderma
lucidum) for 7 weeks is comparable with that of losartan. Unlike
losartan, intragastric administration of reishi significantly increases
cerebral blood flow.

[24]

Arginase inhibitor L-norvaline administered intraperitoneally
(30 mg/kg) for 7 days to ISIAH rats causes a decrease in BP and
an increase in diuresis.

[25,26]

A single intraperitoneal injection of nanocomposites containing
antisense oligonucleotides (targeting ACE1 or AT1A mRNA)
conjugated with SiO2 or TiO2 nanoparticles leads to a decrease
(pronounced within a week: ~30 mmHg) in systolic BP in ISIAH rats.

[27,28]

Molecular markers of the hypertensive state in ISIAH rats

In two groups of male F2(ISIAH×WAG) hybrids at the ages of 3 and
6 months, genetic loci that are associated with traits related to the
manifestation of the hypertensive status of ISIAH rats have been
identified. The following has been analyzed: BP at rest and under
short-term restraint stress; body weight; weights of target organs
(kidneys, heart, and adrenal glands); plasma corticosterone
concentration at rest and under stress; and behavior of the rats in the
open field test. In a group of male F2(ISIAHxWAG) hybrids at an age
of 6 months, QTLs for dopamine concentration in the brainstem, for
norepinephrine concentration in the hypothalamus, as well as spleen
weight were also determined.

Quantitative trait locus (QTL) analysis [14,29–35]

A comparative analysis of the transcriptomes of the brainstem,
hypothalamus, adrenal glands, renal cortex, and renal medulla has
been carried out in hypertensive ISIAH rats and control (WAG) rats
at the age of 3 months.

RNA-seq [36–41]

Identification of candidate genes in genetic loci that are associated
with BP and increased stress reactivity in ISIAH rats

QTL analysis
RNA-seq [42–44]

Identification of candidate genes that are associated with the
manifestation of hypertensive status in ISIAH rats and changes in
transcription levels during short-term restraint stress

RNA-seq
Real-time PCR [17,19,45–50]

Validation of candidate genes Enzyme-linked immunosorbent assay
(ELISA) [51]

1.2. Characteristics of the Main Neuroendocrine Pathways

It is known that the neuroendocrine system plays a central role both in the regulation of
stress and in the pathogenesis of arterial hypertension. The stress response is implemented
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via two main neuroendocrine pathways: the sympathoadrenal and hypothalamic–pituitary–
adrenocortical pathways. The regulation of BP levels is closely related to both of these
systems and to the functioning of the renin–angiotensin–aldosterone system (RAAS), which
in turn is functionally linked to neuroendocrine regulation.

Signs of elevated reactivity in the hypothalamic–pituitary–adrenal system of ISIAH
rats are already observed at the age of 3 weeks (prehypertensive period). A comparative
study on the morphology of the adenohypophysis in ISIAH rats and normotensive control
rats (WAG strain) revealed features of the ultrastructural organization of cells indicating
their functional activation, which may be associated with natural stress during the transition
to self-feeding [5].

At the age of 2 months, concentrations of excitatory (glutamine and glutamate) and
inhibitory (GABA and glycine) neurotransmitters in the cerebral cortex and hypothalamus
of ISIAH rats and normotensive Wistar rats were studied using nuclear magnetic resonance
spectroscopy. The results of the analysis suggested a reduced excitability of the cerebral
cortex and enhanced excitability of the hypothalamus in ISIAH rats. A positive correlation
was found between the levels of excitatory neurotransmitters and the mean arterial BP,
which is in agreement with the existing theories about the activation of the hypothalamic
centers in arterial hypertension [52].

In adult rats under restraint stress, a significant increase in the transcription of genes
that encode the central hormones of the pituitary–adrenocortical system has been shown for
CRH in the hypothalamus and POMC in the pituitary gland. Additionally, under different
types of stress, ISIAH rats manifested a significantly greater increase in the secretion of
ACTH by the pituitary gland and corticosterone by the adrenal cortex as compared with
control (WAG) rats [4]. In ISIAH rats, compared with WAG rats, an elevated concentra-
tion of aldosterone in blood plasma was detected, as were higher rates of the secretion of
corticosterone, 11-dehydrocorticosterone, and deoxycorticosterone, which was measured
in the blood flowing from the adrenal vein after its cannulation. The decrease in the 11-
dehydrocorticosterone/corticosterone ratio observed in ISIAH rats indicates a reduced
functional activity of type 2 11-β-hydroxysteroid dehydrogenase (11-β-HSD), which
converts corticosterone into its inactive form, cortisone. The response of both aldosterone
and corticosterone to exogenous ACTH administered to rats with a dexamethasone block-
ade of endogenous ACTH was significantly higher in hypertensive ISIAH rats than in
normotensive rats [11]. The most important stimulator of aldosterone secretion, angiotensin
II, is upregulated by RAAS activation.

The results of several studies indicate the presence of increased basal activity in the
cerebral RAAS of ISIAH rats [17,53]. This observation is confirmed by the finding that the
blockade of the brain RAAS lowers BP in ISIAH rats [18]. In contrast, in the kidneys of
adult ISIAH rats, the RAAS is inhibited [9,19]. In blood plasma, concentrations of renin
and angiotensin-converting enzyme (ACE) in ISIAH rats are unchanged. At the same time,
a significant increase in the concentrations of angiotensin II and aldosterone in the blood
serum has been noted [53]. Taking into account the above observations and the presence
of increased secretory activity in the adrenal cortex of ISIAH rats, we can say that, when
at rest, ISIAH rats are nevertheless characterized by elevated functional activity of the
hypothalamic–pituitary–adrenal and sympathoadrenal systems as well as some specific
features of the functioning of several other hormonal systems that are associated with the
manifestation of the hypertensive status in ISIAH rats. Another important characteristic of
ISIAH rats is their enhanced responsiveness to stressors [4,11].

To identify the molecular genetic mechanisms that determine the distinctive traits
of the manifestation of the hypertensive status in ISIAH rats, comparative analyses of
transcriptomes from the brain stem [40], hypothalamus [36], adrenal glands [38], and
renal cortex and medulla [37,39] have been carried out. The functional annotation of
genes showing inter-strain differences in transcription levels between hypertensive ISIAH
and control WAG rats has revealed that many of these genes are associated with a stress
response. These results confirm that the basal state of functional tension (stress) in the
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key physiological mechanisms that form the hypertensive phenotype of ISIAH rats is
genetically determined.

1.3. Genetic Mapping of Hypothalamic Norepinephrine Concentration in ISIAH Rats and Its
Relations with Other Traits

Previously, we performed a quantitative trait locus (QTL) analysis to identify genetic
loci that were associated with the key traits that determine the manifestation of hyper-
tensive status in ISIAH rats. The following traits were analyzed: BP at rest and during
short-term (30 min) restraint stress; the increase in BP during stress; body weight; absolute
and relative weights of target organs (heart, kidneys, and adrenal glands); plasma corti-
costerone concentration at rest and under stress; the elevation of plasma corticosterone
concentration under stress; and the behavior of ISIAH rats in the open field test [14,31,33].
Recently, the hypothalamic norepinephrine concentration was mapped in adult ISIAH rats
to determine the genetic loci that were associated with the increase in the concentration
of norepinephrine in the hypothalamus; loci that were shared with other characteristic
features of the hypertensive state (listed above) were identified as well [35]. The locus that
was most statistically significantly associated with the concentration of norepinephrine
in the hypothalamus was found on chromosome 18. This QTL proved to be associated
with both an increase in the concentration of norepinephrine in the hypothalamus and
a higher heart weight in ISIAH rats. Accordingly, this locus may contain genes that are
involved in enhanced sympathetic myocardial stimulation in ISIAH rats. Nevertheless, this
QTL was found to not be associated with control over BP. The locus (on chromosome 1)
associated with both arterial BP and cardiac hypertrophy in ISIAH rats has been previously
described by our group [33]. Thus, the development of heart hypertrophy in ISIAH rats is
governed by different genetic loci, one of which (on chromosome 18) correlates with the
concentration of norepinephrine in the hypothalamus; the other locus (on chromosome 1)
is associated with high BP [35].

The locus on chromosome 18 that is associated with the concentration of norepinephrine
in the hypothalamus is quite long. In its proximal part, the QTL overlaps with the loci
associated with several traits of rat behavior in the open field test (locomotor activity in
the first minute of the first test trial, locomotor activity at the periphery of the open field
area, and rearing at the periphery of the open field area), and in the central part of the
chromosome, it overlaps with a QTL for the latency period [14]. The open field test allows
researchers to evaluate basic psychophysiological characteristics, such as the severity of
fear and anxiety reactions, locomotor activity, and levels of exploratory and displacement
activities [54]. The existence of a relationship between the level of norepinephrine in the
hypothalamus and the locomotor activity of animals has been demonstrated in various
experimental models [55–57], but genetic control of these relations has not been studied
thus far. The mapping of norepinephrine concentration in the hypothalamus, which was
carried out for the first time by our group, turns over a new leaf in the research on these
relationships, as our results suggest that genes located in the QTL in the proximal part of
chromosome 18 in rats can play a key role in these processes.

1.4. Similarities and Differences in the Genetic Background between ISIAH Rats and Other
Hypertensive Rat Strains

During the genetic mapping of traits (QTL analysis), all of the above-mentioned
traits of ISIAH rats were only partially mapped to the same genetic loci, just as in other
hypertensive strains. Many trait-associated loci were found to be specific for ISIAH rats
and were identified for the first time, implying the existence of differences in the genetic
control of the analyzed traits between ISIAH rats and other hypertensive strains. Therefore,
the results of the QTL analysis showed that there are both similarities and differences in
the genetic background between ISIAH rats and other hypertensive rat strains.

A study on the genetic similarity of ISIAH rats with other known rat strains has also
been conducted using the SNPs that were identified during a transcriptomic analysis of
ISIAH rats. A comparison was performed using the genome sequences of 42 strains and
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sub-strains of rats, 11 of which emulate spontaneous or induced types of hypertension [58].
In that paper, 1849 SNPs were identified that are in the homozygous state in ISIAH rats
and are absent in any of the 42 strains and sub-strains of the other rats, strongly indicating
the presence of specific genetic determinants in the transcriptome of ISIAH rats. Nonethe-
less, the most interesting discovery is a set of 158 polymorphisms that are only present
in hypertensive rat strains (in ISIAH rats and in one or more of 11 other hypertensive
strains and sub-strains: FHH/EurMcwi, LH/MavRrrc, MHS/Gib, SBH/Ygl, SHR/OlaIpcv,
SHRSP/Gla, SHR/NCrlPrin, SHR/NHsd, SHR/OlaIpcvPrin, SS/Jr, and SS/JrHsdMcwi)
but are absent in the other analyzed rat strains (non-hypertensive ones) [21]. An aspect of
particular interest is that the maximum frequency of the same SNPs in various hypertensive
strains and sub-strains is 0.58 (i.e., only in 7 of 12 hypertensive strains/sub-strains) [22].
This result is consistent with the evidence that hypertension is an extremely genetically
heterogeneous disorder, and this conclusion may be true for humans.

The estimation of the distances (by multivariate scaling) between the genotypes
of hypertensive ISIAH/Icgn rats and the 11 hypertensive strains and sub-strains of the
rats listed above has uncovered significant differences in the ISIAH genotype from the
genotypes of all analyzed strains [21]. On the other hand, the genotype of ISIAH rats
turned out to be quite similar to that of the OXYS [59] rat strain, which was also selected
at the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy
of Sciences (ICG SB RAS) from the same outbred stock of Wistar rats as the ISIAH rats.
The selection of OXYS rats was based on a trait that was not related to BP; nevertheless,
OXYS rats have moderately elevated BP [60]. The results described above suggest that in
the human population, groups that have historically lived close to each other may have
more similar types of arterial hypertension than populations that have been historically
spatially separated.

The findings reviewed above allow us to conclude that the ISIAH rat strain represents
an original model in which both the development of hypertension and the genetically
determined enhanced responsiveness to stressors are determined by a specific genetic
background. It follows from the foregoing brief description of the ISIAH rat strain that its
stress-sensitive type of hypertension is one of the adequate models of arterial hypertension
that develops in humans under the conditions of urbanization and increased social stress.
The ISIAH rat strain is a natural and internationally recognized addition to the plethora
of experimental models that are currently being investigated regarding genetic predispo-
sition to hypertension in humans [61,62]. The evidence base accumulated to date on the
neurophysiological and molecular genetic pathogenesis of stress-sensitive hypertension in
ISIAH rats allow investigators to proceed to the identification of potential pharmacological
targets in this form of hypertension [1,44]. Lately, transcriptomic data from ISIAH rats,
along with sequencing data that are available from other models of hypertension, have
been used to identify common genetic determinants of the manifestation of various types
of hypertension [63] and other age-related diseases [64].

2. GC (“Genetic Catatonia”) Rats

The mental health of a population is the most important medical, biological, and social
issue available; the problem affects 792 million people around the world [65]. Investigations
into the pathogenesis of neuropsychiatric diseases in humans have a number of limita-
tions; therefore, to solve emerging problems, it is advisable to use experimental animal
models [66]. Creating an adequate experimental model for neuropsychiatric pathologies is
urgently needed, but this task is difficult due to their multifactorial nature [67,68].

Catatonia (from the Greek katàtonos: strained, tense) is a neuropsychiatric syndrome
characterized by movement disorders, which are manifested both as freezing and hyperexci-
tation (psychomotor agitation) [69,70]. Catatonia was considered a subtype of schizophrenia
until a large amount of evidence accumulated indicating that catatonic reactions occur
in patients with various mental disorders. This realization has led to the recognition of
catatonia as an independent (nonspecific) syndrome [71,72]. Currently, catatonia occurs
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in catatonic schizophrenia [73,74], bipolar disorder [75], depression [76], autism [77–79],
and anti-NMDA receptor encephalitis [80], as well as due to adverse effects or an over-
dose of certain drugs. It is known that the prevalence of catatonic manifestations in these
psychopathologies is quite high and reaches 7–31% (for a review, see [81]). Despite the
high prevalence of catatonia, treatments are still nonspecific and are not based on evidence-
based criteria [82]; this state of affairs once again highlights the importance of studying the
mechanisms of catatonic disorders.

2.1. A Short History of the GC Rat Strain

The reactions consisting of freezing or excitation in animals can be attributed to
normal adaptive reactions. Nonetheless, an excessively pronounced predisposition to these
reactions, i.e., an extremely low genetically determined threshold, can lead to pathological
conditions. Considering this, a model of catatonia that was named as the GC rat strain
was created by professor V.G. Kolpakov via a selection approach [69]. The selection for
a predisposition to catatonic reactions began in 1976 at the ICG SB RAS. The breeding
program started with the mating of outbred Wistar rats, some of which were prone to a
spontaneous “hanging” on the cage ceiling in a vertical catatonic posture. Unfortunately,
the selection for this trait was not successful, but it was observed that a different type
of catatonic posture could be induced in some “hanging” animals by gently lifting them
with a stick by their front paws into a corner of the cage (Figure 1). These rats maintained
their posture when the stick was removed, demonstrating a cataleptic state (catalepsy is
an immobile condition with specific muscle tone in which an animal (or person) fails to
change the imposed postures, and it is one of the main symptoms of catatonia [83]). Further
selection was carried out according to the following criteria: The rats were tested five times
by lifting their front paws with a test stick. A rat was considered to be cataleptic if it kept
the given posture for at least 10 s in three out of five trials [84].
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Although the selection was performed to enhance cataleptic freezing, individuals ap-
peared in the population of the selected rats in which hyperkinetic reactions predominated,
i.e., an increased defensive reaction, nondirectional locomotor agitation, and vocaliza-
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tion [85,86]. Moreover, the same rat could react with either freezing or hyperexcitation
responses during consecutive tests. This observation confirms the validity of GC rats as
an adequate model of catatonia because the same symptoms are observed in patients with
catatonic syndrome [69].

2.2. Features of the GC Rat Strain

In clinical practice, various catatonia rating scales are used to diagnose catatonia and
quantify its severity [87], with the Bush–Francis Catatonia Rating Scale being the most
accurate and most popular [88,89]. According to this scale, the following diagnostic criteria
are assessed in GC rats: (1) hyperexcitation (extreme nondirectional locomotor activity),
(2) stupor (immobility, lack of a response to stimuli), and (3) frozen posture/catalepsy.
Some GC rats also exhibit waxy flexibility, negativism, and rigidity.

Cataleptic freezing occurs in both GC males and females [84]. Rats with a catatonic type
of reaction are characterized by behavioral aberrations in various tests. In particular, strong
fear and anxiety in an aversive situation as well as impaired development of instrumental
behavior during food reinforcement are observed in GC rats [85,86,90]. Anomalies have
also been revealed in the social behavior of GC male rats, particularly in the form of a
decrease in social interactions in the three-chamber test. On the other hand, in relation to an
intruding unfamiliar male, GC rats show significantly longer social exploration in the home
cage [91]. This discrepancy in social activity in the above two tests may be explained by
differences in the environmental conditions that affect the emotional state and motivation.
In the Barnes maze test, GC rats perform much worse in the probe trial than control rats do,
possibly indicating the presence of memory impairment and cognitive disturbances in GC
rats [91]. Most of our research has been conducted on male GC rats. GC female rats show
altered maternal behavior (spending more time with pups inside the nest) and altered daily
activities in lactating females compared with Wistar (control) rats [92]. We can hypothesize
that inter-strain differences in maternal behavior may be related to greater anxiety in GC
rats. The elevated activity of lactating GC females at night is similar to that of rats with
increased anxiety and depression-like behavior [93,94].

The excessive pathological reaction of GC rats, even to weak stimuli, may be attributed
to a deficiency in the filtration of sensorimotor information in the central nervous sys-
tem [86]. This notion is evidenced by a decrease in prepulse inhibition and enhanced startle
reflex [86,95,96]. The deficit of prepulse inhibition is considered an endophenotype of
neuropsychiatric diseases and is widely used in the characterization of new experimental
animal models [97]. Plasma corticosterone levels are elevated in GC rats but can be reduced
by antidepressants [98].

In our work, some steps have been taken to find pharmacological ways to correct the
phenotypic abnormalities (associated with the manifestation of catatonia) acquired by GC
rats during the original selection process. The oral administration of different polymorphs
of glycine has a beneficial effect on the behavior of GC rats. Both α- and γ-polymorphs
of glycine increase the exploratory activity in the open field test, but only the γ-form of
glycine has been reported to have a beneficial impact on catalepsy and exploratory activity
in the light–dark box test. In addition, this compound alleviates anxiety in the elevated
plus maze test [99]. Treatment with D-serine has been shown to increase anxiety and reduce
the locomotor activity of GC rats in the elevated plus maze test in contrast to a Wistar
(control) rat group [100]. Moreover, a positive effect of imipramine administration has been
demonstrated [98,101]. Nonetheless, the effects of the main drugs that are clinically used to
treat catatonia, benzodiazepines, have yet to be elucidated.

Compared with the original Wistar population, GC rats manifest deviations in the
size of brain structures; the area of the striatum in the right hemisphere is smaller, while
the area of the cortex is larger. Furthermore, a more than twofold decrease in the area of
anterior horns of lateral ventricles has been registered in GC rats [102].

The search for molecular markers of catatonia in GC rats has revealed a decrease in
α1A adrenoreceptor mRNA expression in the medulla oblongata and midbrain and α2A



Biomedicines 2023, 11, 1814 9 of 21

adrenoreceptor mRNA overexpression in the frontal cortex, implying an alteration of the
adrenoreceptor component of the noradrenergic system of the brain [86,96].

A brief description of all of the above traits that are associated with the manifestation
of catatonia in GC rats is presented in Table 2.

Table 2. The strain-specific traits of GC rats.

Phenotype Tests References

Strain-specific traits

Cataleptic freezing (immobility and posturing/catalepsy) and
hyperkinetic reactions (hyperexcitation: extreme nondirectional
locomotor activity)

Test for catalepsy
Open field test
Light-dark box test

[85,86,90]

Impaired development of food-reinforced instrumental behavior Instrumental conditioning [90]

Altered social behavior in different situations
Decreased social interactions in a new place
Increased social exploration in a home cage

Three-chamber test
Resident–intruder test [91]

Slower solving of the Barnes maze Barnes maze test [91]

Increased startle reflex SR-Pilot (San Diego Instruments)
Startle response system (TSE) [85,95]

Deficit of prepulse inhibition Startle response system (TSE) [96]

Altered maternal behavior Visual registration in a home cage [92]

High plasma corticosterone level
Reduced plasma corticosterone level by chronic oral
imipramine administration

ELISA kits [98]

Smaller striatum area (in the right hemisphere)
Larger cortex area (in the right hemisphere)
Smaller area of anterior horns of lateral ventricles

MRI (magnetic resonance imaging) [102]

Steps toward drug discovery and translational medicine

Chronic per os administration of imipramine reduces
cataleptic freezing Test for catalepsy [98,101]

Oral administration of the γ-polymorph of glycine reduces catalepsy,
alleviates anxiety in the elevated plus maze test, and increases
exploratory activity in rats in the light-dark box test
Oral administration of both α- and γ-polymorphs of glycine
enhances the exploratory activity of rats in the open field test

Test for catalepsy
Open field test
Light-dark box test
Elevated plus maze test

[99]

Treatment with D-serine heightens anxiety and diminishes locomotor
activity in the elevated plus maze test Elevated plus maze test [100]

Molecular markers of catatonia

Decreased transcription of α1A adrenoreceptor in the medulla
oblongata and midbrain
Elevated transcription of α2A adrenoreceptor in the frontal cortex

Real-time PCR [86,96]

2.3. Other Animal Models of Catatonia

Animal catatonic reactions are not only observed in rats but also among many verte-
brates, and they are considered to be a type of passive defensive behavior. An animal in a
state of catalepsy is able to maintain an uncomfortable position for a long time; depending
on the species and situation, this can range from several seconds to many hours [103]. In
this paper, only rodent models of catatonia will be considered.

The most widely studied class of models are models of drug-induced catatonia based
on behavioral effects of antipsychotic drugs such as haloperidol [104–107]. These models
have emerged because of the known risk of catatonia in patients taking first-generation
antipsychotics [108]. The use of dopamine (D2) and α-adrenergic receptor antagonists such
as haloperidol limits the investigation into the etiopathogenesis of catatonia to monoamines.
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Nevertheless, data have recently been accumulating on the participation of other neuro-
transmitter systems (including glutamatergic) in catatonia in anti-NMDA receptor en-
cephalitis [80]. Antibodies to the NR1 subunit of NMDA glutamate receptors play a leading
role in the pathogenesis of this disorder [109]. The clinical picture in most cases is character-
ized by psychotic symptoms, often with such phenomena as psychomotor hyperexcitation
and/or stupor. In rodents, drugs that antagonize NMDAR function induce a cataleptic
freeze and stereotypical behaviors [110]. Furthermore, catatonia can be induced by the
administration of other substances with different mechanisms of action: arecoline [111],
histidine [112], zolpidem [113], or benzodiazepines [114], as well as by benzodiazepine
withdrawal [115], high concentrations of lipopolysaccharides [116], and other factors. Such
a variety in the substances that cause catatonic reactions underscores the complexity of
the etiopathogenesis of this syndrome. Several theories have been proposed based on the
available evidence, but the pathophysiology of catatonia is still unclear [81,117,118].

In contrast to chemically induced catalepsy, which can be reproduced in almost any
mouse or rat, nonpharmacological catatonia is a rare phenomenon. Catatonic freezing in
animals can be caused by various mechanical stimuli, for example by pinching the neck
(“pinch-induced” catalepsy). Pinch-induced catalepsy (demonstrated in rats and mice) is
regarded as a change in muscle tone and is related to the nonresponsiveness to external
stimuli [119–121]. An example of this type of catalepsy model is the ASC strain of mice,
which is characterized by a high predisposition to pinch-induced catalepsy [122] combined
with a set of depressive-like behavioral and physiological features [123]. Experimental
catatonic freezing in animals can also be induced by other mechanical modalities such
as centrifugation [124] or exposure to flickering light (photogenic catalepsy) [125]. There
have been reports that Wistar Kyoto (WKY) rats exposed to acute 1 h restraint stress can
show greater freezing in behavior tests [126]. Krushinsky–Molodkina (KM) rats have
well-pronounced postictal catalepsy [127], as do rats with pendulum-like movements
(PM strain) [128].

Unlike the models of catalepsy described above, GC rats tend to respond with catalep-
tic freezing in tests involving a weak stimulus. Cataleptic freezing of GC rats occurs without
a painful stimulus (in contrast to pinch-induced catalepsy) and without a prior epileptic
seizure, in contrast to Krushinsky–Molodkina and PM strains. Aside from catatonic freez-
ing, in behavioral tests, GC rats can respond with catatonic arousal, which makes them the
model that most adequately reflects the nature of catatonia in patients.

3. PM (“Pendulum-like Movements”) Rats

Epilepsy is a neurological disorder that is characterized by spontaneous, recurrent
seizures. It is the third most common chronic brain disease.

Epilepsy is accompanied by depression, anxiety, and substantially higher morbidity
and mortality [129,130]. Although the pathogenesis of epilepsy has been intensively stud-
ied for a long time, quite a high percentage of cases are not amenable to pharmacotherapy.
The diversity of pathogenetic mechanisms of epilepsy requires designing new experimental
models. There is a range of conditions under the umbrella term of epilepsy, where each con-
dition has distinct acquired, genetic, and epigenetic etiopathogeneses and various distinct
behavioral traits, electrographic signatures, and pharmacological profiles. In this regard,
the modeling of epilepsy in animals is a complex task that requires an integrated approach.

Animal models of epilepsy involve either an induced or hereditary predisposition to
different types of seizure [131]. For example, audiogenic seizures are a known phenomenon.
The kind of model based on inherited predisposition to epilepsy (the PM rat strain) has
been developed at the ICG SB RAS (Russia) and has a propensity for audiogenic epilepsy.

3.1. A Short History of PM Rats

In 1977, Kolpakov et al. described specific catatonic forms of behavior that occur in
response to a mild emotional stressor [132,133] in albino Norway rats, and the behavior
involved a stereotyped hyperkinesis by way of rhythmic side-to-side swings of the head
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and torso (Figure 2). The selection of rats from a Wistar population for well-pronounced
pendulum-like movements as a putative hyperkinetic pole of catatonia began in 1987. The
proportion of rats with pendulum-like movements became significantly higher than that in
the Wistar control stock after the S2 generation of selection. The selection plateau occurred
in the S5 generation of selection, when the manifestation of pendulum-like movements was
achieved in 100% of the rats [84]. Later, however, it has been noticed that rats of the PM
strain (an abbreviation for “pendulum-like movements”) [133] also have a predisposition
to seizures caused by audiogenic stimuli; thus, PM rats demonstrate a shift from a catatonic
to an epileptiform type of responses. This observation is in good agreement with the fact
that, in some cases, human epilepsy is accompanied by stereotyped behavior [134].
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3.2. Traits of the PM Rat Strain

The first manifestations of this hyperkinesis appear at the age of 3 weeks, reaching
their peak at about 2 months. This pathology does not depend on sex and manifests itself
equally in males and females [84].

Aside from pendulum stereotypy and audiogenic seizures, PM rats demonstrate
certain specific behavioral traits in various tests. For instance, in the open field test, it has
been shown that the dynamics of the locomotor activity of PM rats differs from those of
Wistar rats; having a greater number of crossed squares in the first minute, PM rats show
diminished locomotor activity during minutes 2–6 [135]. Large differences in locomotor
activity in the first minute compared with subsequent minutes indicate increased emotional
excitability. After exposure to an audiogenic stimulus, higher excitability is observed,
which is manifested as erratic jumping and paroxysmal running followed by prolonged
postictal catalepsy (see Table 3) [136,137].

PM rats are characterized not only by postictal catalepsy, which also occurs in other
models of audiogenic epilepsy [138], but also by more pronounced pinch-induced catalepsy
in pups compared with controls [128]. Such stupor is regarded as a manifestation of a
catatonic reaction.

PM rats exhibit heightened offensive behavior in the resident–intruder test [91] and
high aggressiveness in the glove test [137], which may confirm the likely relation between
seizure predisposition and aggressiveness. People with epilepsy also commonly have
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symptoms of neurological or psychiatric illness, such as cognitive impairment, depression,
anxiety, attention deficits, and aggressiveness [139–142].

The high emotional excitability of PM rats contributes to a decrease in attention to
environmental stimuli, thereby complicating spatial orientation. For example, in the Morris
water maze test, PM rats demonstrate longer platform search time and a reduction in the
proportion of successful attempts to find the platform [143]. Moreover, it has been reported
that PM rats do not employ a spatial strategy in the Barnes maze, possibly also indicating
an impairment in their learning and spatial memory [91].

For the early diagnosis of a disease and its timely treatment, it is important to identify
prodromal signs, i.e., symptoms that emerge before the onset of the disease. Such signs have
been detected in PM rats during the early neonatal period, including delayed development
of locomotor responses, increased immobility, a longer eyes-closed period, a shift in circular
movements, a lag of body weight gain, and a greater manifestation of excitable responses,
such as vocalizations and paroxysms [128].

In PM rats, a lower concentration of taurine in the hippocampus has been documented,
which is related to a predisposition to convulsive conditions [102]. In addition, taurine,
which is used in the treatment of epilepsy [144], alleviates audiogenic seizures in adult PM
rats [145]. To date, some data have been obtained on the changes in monoamines’ levels
in the brain structures of these rats [136,137]; however, comprehensive research on the
biochemical and genetic features has not yet been conducted, and PM rats have not been
tested in any preclinical studies.

Table 3. The strain-specific traits of PM rats.

Phenotype Tests References

Pendulum head and torso movements (100% of individuals) Visual detection in a home cage [84,135,137]

In up to 90% of individuals, audiogenic seizures (include wild
running and/or generalized seizures) Test for audiogenic epilepsy [136,137]

Long postictal catalepsy Test for audiogenic epilepsy [137]

High excitability Test for audiogenic epilepsy [135–137,143]

Well-pronounced pinch-induced catalepsy in pups
Increased vocalizations and motor paroxysms in pups Test for pinch-induced catalepsy [128]

Delay of the development of locomotor reactions and greater
immobility in pups Test for the activity of motor subsystems [128]

Enhanced offensive behavior Resident–intruder test [91]

High aggressiveness Glove test [137]

Impaired spatial memory
Lack of a spatial strategy in the Barnes maze
Longer platform search time and a reduction in the proportion of
successful attempts to find the platform in the Morris water maze

Barnes maze test
Morris water maze test [91,143]

Downregulation of norepinephrine and serotonin in
the hypothalamus Fluorometric quantitation of monoamines [136]

Low concentration of taurine in the hippocampus MRI (magnetic resonance imaging) [102]

3.3. Epilepsy Modeling: Strategies and Approaches

Seizures and epilepsy types are usually subdivided into two categories: partial (focal)
and generalized. Partial seizures can start from electrical activity in one area or group of
cells on one side of the brain and may spread to other parts of the brain during the seizure,
whereas generalized seizures are a result of excessive electrical discharges in both cerebral
hemispheres at the same time [146]. A variety of animal species are used to study epilepsy,
including fish, amphibians, and a wide range of mammals [131]. In the present review,
special attention is given to rodent models of epilepsy.
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The first animal models of epilepsy were generalized clonic convulsive seizures caused
by direct electrical stimulation of the cerebral cortex in various mammalian species by
David Ferrier in the late 19th century [147]. Other acute modalities that can trigger seizures
include pentylenetetrazole injection [148,149]. Systemic administration of potent mus-
carinic agonist pilocarpine or kainic acid may lead to a prolonged period of spontaneous
recurrent seizures [150,151]. All of the above models were set up by the induction of
seizures in normal animals that were devoid of spontaneous seizures [152].

With advancements in gene-editing techniques, a variety of mice and rats have been
identified as “epileptic” (experiencing spontaneous recurrent convulsions) or “seizure-
susceptible” (having a low threshold for the acute initiation of convulsions) [131]. For
example, “seizure-susceptible” dopamine D2 receptor knockout (D2R−/−) mice show
increased susceptibility to kainic acid-induced seizures [153], as do Gpr39 (one of GPCR
proteins) knockout mice [154,155] and Engrailed-2 knockout (En2−/−) mice, which display
a gradual loss of dopaminergic neurons in the substantia nigra [156]. Genetic “epileptic”
models include Lgi1 (leucine-rich glioma-inactivated 1) knockout rats, which are a model
of autosomal dominant lateral temporal epilepsy [157,158]; Scn1a1+/− (NaV1.1 sodium
channel) knockout mice, which are a model of severe myoclonic epilepsy [159,160]; Sv2a
(transmembrane glycoprotein) knockout mice, which experience lethal seizures [161];
5-HT2C receptor–mutant mice, which also present infrequent and sporadic spontaneous
seizures [162]; and other species (for a full review, see [163,164]).

The models described above are well-suited to investigation into the mechanisms and
biomarkers of epileptogenesis or drug discovery that is targeted to certain genes; they may
reveal treatments that are associated with already known etiopathogenesis pathways rather
than uncover new ones [152].

Accordingly, genetic models that have arisen from the artificial selection of seizure-
susceptible strains over many generations—resulting in high predisposition to epilepsy—
are of particular interest. Such models include GAERS (genetic absence epileptic rats of
Strasbourg) rats and WAG/Rij (Wistar albino glaxo rats from Rijswijk) rats. They emulate
so-called human “absence epilepsy”, which involves brief generalized nonconvulsive
seizures of sudden onset and abrupt termination [165–168].

Alt-hough the WAG/Rij and GAERS strains are better known as genetic models of
absence seizures, they can serve as an audiogenic seizure model, a separate type of epilepsy
induced by sensory stimulation (single acoustic stimulus). Other genetically selected reflex
models that are susceptible to audiogenic seizures are GEPR, DBA/2, WAR, GASH:Sal,
Krushinsky–Molodkina and, of course, PM rats, which are a special subject of this review.
The genetically epilepsy-prone rat (GEPR) and dilute brown agouti coat color (DBA)/2 mice
are models of reflex generalized tonic–clonic seizures [169]. The WAR strain is a genetic
rat model; these rats are prone to audiogenic reflex epilepsy, acutely mimicking brainstem-
dependent tonic–clonic seizures and chronically mimicking temporal lobe epilepsy [170].
GASH:Sal (genetic audiogenic seizure hamster from Salamanca) exhibits generalized tonic–
clonic seizures that are characterized by a short latency period after auditory stimulation,
followed by wild running, a convulsive phase, and finally stupor, with its origin being in
the brainstem [171]. Krushinsky–Molodkina rats demonstrate a stable response to an au-
diogenic stimulus with a short latency period, which ends with a tonic–clonic seizure [172].
Such a large number of experimental options probably reflects the diversity of seizure types
in humans [173].

All of the above models of audiogenic epilepsy involve so-called generalized (primary
or secondary) clonic–tonic convulsions, which entail strong and sufficiently prolonged
muscle rigidity (tonic convulsions) followed by rhythmic alternation of muscle contractions
and relaxations (clonic convulsions). PM rats, in turn, experience abortive seizures, which
resemble complex focal seizures with typical automatisms (aimless repetitive movements,
such as stereotyped jumps reaching a height of 0.5 m at a speed of one jump per second)
and do not result in generalized tonic–clonic seizures [137].
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Locomotor agitation is the characteristic and most consistent component of audiogenic
seizures in rodents, and it is a minimal convulsive response to a sound. Other components
of audiogenic seizures (clonic and tonic seizures) may be absent, and PM rats represent
this first component. More than 50% of PM rats experience these types of abortive seizures,
~20% experience a two-wave seizure with convulsions, and 10% manifest one running
phase with tonic–clonic seizures [136].

4. Conclusions

In this review, our aim was to inform readers about unique animal models that have
been designed in our laboratory through many years of breeding for various traits:

ISIAH (inherited stress-induced arterial hypertension) rats are a stress-sensitive model
of arterial hypertension and are intended to help elucidate the genetic and physiolog-
ical mechanisms of this disease. ISIAH rats can also be used to test and develop new
antihypertensive drugs and new approaches for the treatment of arterial hypertension;

GC (genetic catatonia) rats exhibit catatonic reactions that are consistent with the key
phenotypic traits of catatonic syndrome in humans. They can be utilized for researching
the etiopathogenesis of catatonia, for identifying symptoms associated with catatonia and
relevant psychiatric disorders, and for finding new molecular targets for the development
of new drugs against catatonia;

PM (pendulum-like movements) rats present audiogenic abortive seizures, which re-
semble complex focal seizures with typical automatisms. A unique feature of PM rats is the
presence of stereotypical (pendulum) movements of the head and shoulder girdle, which
occur in response to even a weak stimulus. The catatonic signs of PM rats make it possible
to study the comorbidity of symptoms of epilepsy and catatonic syndrome. They can be
employed for investigations into the mechanisms of epileptogenesis, for studying the co-
morbidities of epilepsies (including catatonia, stereotypies, impulsiveness, and aggression),
and for devising treatments that can reduce the propensity for audiogenic seizures.

Currently, transgenic models of diseases and pharmacological and surgical models
are more popular due to their relatively quick and easy setup; however, breeding models
have their undeniable advantages and are a very valuable tool for studying the genetic and
physiological mechanisms of human pathologies.
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