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Abstract: The history of arrhythmogenic cardiomyopathy (AC) as a genetically determined desmo-
somal disease started since the original discovery by Lancisi in a four-generation family, published
in 1728. Contemporary history at the University of Padua started with Dalla Volta, who haemo-
dynamically investigated patients with “auricularization” of the right ventricle, and with Nava,
who confirmed familiarity. The contemporary knowledge advances consisted of (a) AC as a heart
muscle disease with peculiar electrical instability of the right ventricle; (b) the finding of pathological
substrates, in keeping with a myocardial dystrophy; (c) the inclusion of AC in the cardiomyopathies
classification; (d) AC as the main cause of sudden death in athletes; (e) the discovery of the culprit
genes coding proteins of the intercalated disc (desmosome); (f) progression in clinical diagnosis
with specific ECG abnormalities, angiocardiography, endomyocardial biopsy, 2D echocardiography,
electron anatomic mapping and cardiac magnetic resonance; (g) the discovery of left ventricular
AC; (h) prevention of SCD with the invention and application of the lifesaving implantable car-
dioverter defibrillator and external defibrillator scattered in public places and playgrounds as well as
the ineligibility for competitive sport activity for AC patients; (i) genetic screening of the proband
family to unmask asymptomatic carriers. Nondesmosomal ACs, with a phenotype overlapping
desmosomal AC, are also treated, including genetics: Transmembrane protein 43, SCN5A, Desmin,
Phospholamban, Lamin A/C, Filamin C, Cadherin 2, Tight junction protein 1.

Keywords: cardiomyopathies; genetic disease; sudden death

1. The Discovery of Arrhythmogenic Cardiomyopathy

The discovery of arrhythmogenic cardiomyopathy (AC) dates back to the XVIII cen-
tury [1] when, in 1728, the book De motu cordis et aneurysmatibus [2] by Giovanni Maria
Lancisi (1654–1720) (Figure 1) was published posthumously.

He reported in four generations of a family exhibiting palpitations, heart failure and
sudden cardiac death (SCD). The great-grandfather (first generation) died suddenly and, at
autopsy, was found to have an aneurysm of the right ventricle. The grandfather (second
generation) complained of palpitations of the heart, dyspnea, swollen feet and wavelike
motion of the jugular veins. At dissection, the right ventricle was found to be larger
than a clenched fist. The brother of the father (third generation), at over forty years old,
was still living and complained of an annoying pulsation in the right side of the chest.
Lancisi commented: ‘I can only hope that he may not going to end in the same way’. The
proband index child (fourth generation) died of epilepsy (syncopal seizures followed by
cardiac arrest?). Lancisi opened the cadaver and found the same hereditary weakness
of the precordium. The four generations of the family tree were reconstructed (Figure 2)
in keeping with a hereditary dominant disease. Clinical and pathological findings were
pathognomic for the contemporary AC. The following assertion of Lancisi was visionary:
‘It may well be that what I had so far observed only in the right cavities of the heart can
also occur in other cavities of the blood as well’.
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Figure 1. Portrait of Giovanni Maria Lancisi (1654–1720) and title page of his book De motu cordis et 

aneurysmatibus, published posthumously in 1728. From [1]. 

 

Figure 2. A four-generation family tree, reported by Lancisi, in keeping with a hereditary dominant 

genetically determined disease. From [1]. 

In 1736 Lancisi’s book was republished by his heirs, with Chapter V entitled An he-

reditary predisposition to cardiac aneurysm and bulging [3]. 

Figure 1. Portrait of Giovanni Maria Lancisi (1654–1720) and title page of his book De motu cordis et
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In 1736 Lancisi’s book was republished by his heirs, with Chapter V entitled An
hereditary predisposition to cardiac aneurysm and bulging [3].

Moreover, referring to cardiac aneurysms, Lancisi wrote: ‘An important sign of that
hereditary trouble is a certain pulsation of the right side of the heart. Those who suffer
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from it, though in other respects are in good health, assert that they can distinctly feel this
after violent physical exertion’.

In chapter VI, Lancisi mentions Hippocrates, the Father of Medicine: ‘In Hippocrates it
is distinctly taught that diseases may be handed down from parents to children. Therefore
no one will deny that disorders of the heart can be handed down from the very moment of
conception’ [4].

Later, Gregor Mendel (1822–1884) discovered the laws of dominant and recessive
inheritance through groundbreaking trait experiments.

One century later, in 1819, René Laennec (1781–1826) (Figure 3) published in Paris
the book De l’auscultation mediate, a treatise on the diagnosis of chest diseases using the
stethoscope. In Book II, Chapter XV, devoted to the accumulation of fat around the heart,
he noted: ‘In medical writings we find many examples of the heart being overloaded with
fat [ . . . ] and even the sudden death [ . . . ]. The fatter the heart is, the thinner are its walls.
Sometimes these are extremely thin, being reduced almost to nothing, especially at the
apex of the heart and the posterior side of the right ventricle. On examining ventricles, the
scalpel seems to reach the cavity without encountering almost any muscular substance’ [5].
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1819. From [6].

The description of Laennec is unequivocal: the lesions are located in topographic
sites, known nowadays as the ‘triangle of dysplasia’ [7] and confirmed by subsequent
pathological studies [8].

George Eliot (1819–1880), in 1871, published the book Middlemarch, where the protag-
onist Dr. Lydgate, talking with one of his patients, said: ‘I believe that you are suffering
from what is called fatty degeneration of the heart, a disease which was first divined and
explored by Laennec, the man who gave us the stethoscope, not so many years ago. It is
my duty to tell you that death from this disease is often sudden. At the same time, no such
result can be predicted’ [9].

The concept of fatty heart (=adipositas cordis) was also known to Charles Dickens
(1812–1870), who described an obese, dyspnoeic and sleepy boy (‘the fatty Joe’) in his
famous book Pickwick Circle of 1836–1837 [10].

In the classical textbook of pathology, “Treatise of special pathological anatomy”, published
in 1896 by Eduard Kauffman (1860–1931), lipomatosis, adipositas or obesitas cordis (‘Fet-
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therz’) of the RV received peculiar attention, being observed in subjects dying suddenly [11].
Nowadays, adipositas cordis is classified separately from AC [12].

In 1905, William Osler (1849–1919) (Figure 4A) reported in the VI edition of his fa-
mous treatise The principles and practice of Medicine, an amazing heart specimen that is
now in the McGill College Museum, showing a “parchment-like” thinning of the ventric-
ular walls, uniform dilatation of right auricle and right ventricle, with only epicardium
remaining [13] (Figure 4B).
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The pathologist Maude Abbott (1869–1940), curator of the McGill College Museum,
found the aforementioned specimen among those donated by Osler during his profes-
sorship in Montreal (1874–1884). Unfortunately, the specimen was not accompanied by
clinical and autopsy records. She vaguely remembered that it belonged to a man who had
died suddenly while climbing a steep hill. Abbott, in the book of her memoirs written by
MacDermot in 1941, told that Osler, having returned to Montreal and visiting the McGill
College Museum, might have seen the specimen again and mentioned it in the new edition
of his treatise [14].

Harold Segall (1897–1990) had the opportunity to examine the original specimen,
preserved in a formalin-filled jar, which appeared as a large cyst (Figure 4B). The coronary
arteries were patent so that an ischaemic substrate could be ruled out. Both ventricular walls
appeared “parchment-like”. The ventricular septum was spared, and the heart weight was
only 168 g. Histology disclosed very rare cardiomyocytes in paper-thin ventricular walls.
Segall advanced the hypothesis of myocardial dystrophy in a person with generalized
muscular dystrophy, such as Duchenne and Becker diseases. However, it is difficult to
believe that a patient, able to climb a hill, could be affected by a generalized skeletal muscle
dystrophy. He coined the term ‘Osler parchment heart’ [15].

A controversial case, which has been the source of subsequent misconceptions, was the
one observed in 1952 by Henry Uhl (1921–2009) at the Johns Hopkins Hospital in Baltimore
in an 8-month-old female infant who died of congestive heart failure in the absence of
arrhythmias. The case was published with the title A previously undescribed congenital
malformation of the heart: almost total absence of the myocardium of the right ventricle [16]. The
description deserves to be mentioned: ‘Externally the heart appears greatly enlarged, almost
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the entire dilated chamber (RV) was occupied by a large laminated mural thrombosis which
adhered firmly to the endocardium along the anterior wall of the ventricle. Examination of
the cut edge of the ventricle wall revealed it to be paper-thin with no myocardium visible.
In the RV wall, epicardium and endocardium lay adjacent to each other with no intervening
cardiac muscle. No fibro-fatty tissue in the RV free wall was observed’ (Figure 5). The
early age of the infant and the peculiar pathological description point to a structural heart
disease present at birth (congenital anomaly), as emphasized in the title itself. Whether the
disease was a genetically determined AC developed during the fetal period or not remains
intriguing. The clinical phenotype was characterized neither by cardiac arrhythmias nor by
a family history of heart disease.
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2. Contemporary History of Arrhythmogenic Cardiomyopathy

Adult cases with paper-thin ventricular walls (including Osler’s case) unfortunately
have been reported with the eponym of Uhl’s anomaly, clearly a misnomer because the
parchment heart in adults is the end stage of a late progressive loss of the myocardium
followed by fibro-fatty replacement [8,12].

French investigators (Robert Froment (cardiologist) and Robert Loire (pathologist)),
reported in 1968 cases of ‘ventricule droit papyrace’ ecg [17]. They were the first to
demonstrate that fibro-fatty infiltration of the RV was associated with inverted T waves in
the right precordial leads of the ECG.

On the contrary, the cases reported in the literature of infants under the age of
15 months with the eponym of Uhl’s anomaly all featured congestive heart failure and
isolated RV involvement (whether segmental or diffuse) without arrhythmias, in keeping
with the original description by Uhl [12,18].

Since the early 1960s, the University of Padua set milestones in the history of AC. Ser-
gio Dalla Volta, Professor of Cardiology, described ‘auricularization of the right ventricular
pressure’ in six cases using right cardiac catheterization in the absence of an effective RV
contraction. The blood was directly pushed into the pulmonary artery by atrial systole [19].
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The autopsy finding in two cases with ‘sclerosis of the right ventricle’ was interpreted
as a consequence of myocardial infarction without coronary obstruction, clearly a mis-
diagnosis [20]. The concept of non-ischaemic cardiomyopathy was still to be conceived.
Interestingly enough, out of the six documented cases, ranging from 21 to 40 years old,
two had clinically ventricular arrhythmias, five inverted T waves in the precordial leads
and four congestive heart failures [20]. One of the latter, a 21-year-old woman in 1996,
developed ventricular tachycardia with left bundle branch block (LBBB) morphology and
right ventricular failure. She underwent cardiac transplantation, and the removed heart
showed an extremely dilated RV with a parchment-like wall (Figure 6).
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Figure 6. The case published by Sergio Dalla Volta in 1961, with huge dilatation of the right ventricular
cavity and paper-thin free wall. In 1996 the patient underwent cardiac transplantation to treat
congestive heart failure. From [1], in part.

In 1970 Vito Terribile Wiel Marin (1939–2015), a cardiac pathologist at the Institute of
Pathological Anatomy, University of Padua, performed a post-mortem of a 43-year-old lady
with a clinical history of palpitations and congestive heart failure, who died of pulmonary
thromboembolism. In the autopsy report, he described extreme dilatation, fibro-fatty
replacement and mural thrombosis of the RV in association with left ventricular ‘myocardial
sclerosis’ (Figure 7), all features in keeping with what today we call biventricular AC.
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3. AC Is a Heart Muscle Disease with Peculiar Electrical Instability

Guy Fontaine, in the late-1970s, realized that the right ventricle (RV) might be the
source of ventricular arrhythmias, with LBBB morphology on the ECG [21,22].

In 1982, Frank Marcus et al. reported a series of adult patients [7] affected by a
new syndrome characterized by a remodeling of the RV, with aneurysms located in the
inflow, apex and outflow, due to a fibro-fatty replacement, which they called right ventricle
dysplasia, believing it to be due to a cell dysplastic congenital phenomena (Figure 8). The
ECG became fundamental for diagnosis, with inverted T waves in the right precordial leads,
wide QRS, post-excitation epsilon wave due to delayed electrical impulse transmission
in the RV outflow tract (“late potentials”) (Figure 9), premature ventricular beats and
ventricular tachycardia with LBBB morphology.
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4. Pathological Substrates

Pathological studies demonstrated fibro-fatty replacement of the RV-free wall, starting
in the subepicardium and extending along the wavefront to the subendocardium (Figure 10).
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Figure 10. Sudden death in a 17-year-old boy: fibro-fatty replacement of the infundibular right
ventricular free wall, extending along the wave-front from the epicardium to the endocardium (A,B).
Azan Mallory, original magnification ×3.

Microscopic investigation showed a loss of the myocardium, with a fibro-fatty re-
placement that was frequently biventricular (Figure 11), as a consequence of an ongoing,
non-ischemic myocardial cell death and repair [8] (Figure 12).
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ment. Note that the interventricular septum is spared. Azan Mallory, original magnification ×4.0.
From [6].

Electron microscopy demonstrated disruption of the intercalated disc as a final com-
mon pathway of cell death [24] (Figure 13). Cardiomyocyte death occurs in the form of apop-
tosis [25] (Figure 14), associated with myocardial inflammation (Figure 15). Whether the
latter is a reaction to cell death [26] or an immune phenomenon [27] remains controversial.
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Figure 12. AC: close up of fibro-fatty tissue replacing dead myocardium. Hematoxylin–eosin, original
magnification ×60. From [23], modified.
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Figure 13. Transmission electron microscopy of disrupted intercalated disc in AC (B) compared
to desmosome in a cavital (A). Original magnification, (A) ×30.000; (B) ×5. The rectangular block
includes a normal desmosome, whereas arrows indicate disrupted desmosomes in AC.
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Figure 14. Transmission electron microscopy of myocardial apoptosis in AC. Original magnification,
×14.500. From [25].
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Figure 15. Myocarditis and cell death associated with fibro-fatty replacement in AC patient.
Hematoxylin-eosin, original magnification ×40.

The origin of the adipocytes is neither a fatty-tissue infiltration from the subepicardium
(adipositas cordis) [12] nor a fatty metaplasia of cardiomyocyte [28].
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Mesenchymal cells are the source of adipocytes and fibroblasts, accounting for fibro-
fatty tissue repair of cardiomyocyte death [29]. The phenomenon resembles dystrophy
more than myocarditis or congenital dysplasia [8].

5. Nomenclature and Classification

Different terms have been employed in the past to give a name to this heart mus-
cle disease: right ventricular dysplasia [7], right ventricular cardiomyopathy [30] and
arrhythmogenic right ventricular cardiomyopathy/dysplasia [31].

In 1996, heart disease was definitively introduced in the classification of cardiomy-
opathies by the World Health Organization with the name arrhythmogenic right ventricular
cardiomyopathy [32]. With the discovery of the left ventricular variant, the term arrhyth-
mogenic cardiomyopathy (AC or ACM) has been introduced [33].

6. Arrhythmogenic Cardiomyopathy as a Cause of Sudden Cardiac Death

On 14 May 1979, a young cycling champion died suddenly during a tennis match in
Mirano, Venice (Figure 16). He stopped playing, took his pulse, moved towards the back of
the tennis court, collapsed and died suddenly. Transmural fibro-fatty replacement of the
RV-free wall was found at autopsy. He was a physician, and a detailed note was found in his
diary, dated 4 October 1978: ventricular tachycardia with LBBB (Figure 16). It was an ECG
taken during an episode of palpitation. He represents ‘patient zero’ of a series of sudden
deaths by AC in young adults published in the New England Journal of Medicine [30]
(Figure 17A). The paper was the first description of a novel disease responsible for causing
sudden death in the young (Figure 17B).
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Figure 16. Case “0” of the Veneto Region experience of sudden death by arrhythmogenic cardiomy-
opathy, with the note in his diary. He was a young physician who died suddenly during a tennis
match. From [23], modified.
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Figure 17. Publication in the New England Journal of Medicine 1988 (A) of AC, as a new disease
causing sudden death in the young (B).

Sports activity was proven to increase the risk of SCD [34]. Much lower prevalence was
reported from other countries [35–37], probably because of misdiagnosis at post-mortem.
The AC rate in Italy for sudden deaths in athletes was 27% (Figure 18), which showed a
sharp decline with the use of ECG screening for sports eligibility [38] (Figure 19).
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Figure 19. Sharp decline of sudden death in the young after introduction of ECG for screening for
sports eligibility. From [38], modified.

7. Arrhythmogenic Cardiomyopathy: A Genetically Determined Heart Muscle Disease

A dominant form of AC was reported in the area of Piazzola, in the Veneto Region, by
Andrea Nava, the leader of our team [39]. For years AC was known by the nickname “Vene-
tian disease” as a local genetically determined cardiomyopathy. The clinical phenotype
was proven to be absent at birth and becoming overt at 10–14 years of age [40].

A recessive form of AC, with keratoderma and woolly hair (cardiocutaneus syndrome),
had been reported in 1986 from the Naxos island in Greece [41] (Figure 20), the island
where the Greek mythology tells that Arianna was left by Teseo.

A race started to discover the gene of AC. In 1996, Ruiz et al., studying junctional
protein (JUP) in knock-out mice, discovered that JUP absence influences the development
of desmosome in the heart and that the human gene is located in chromosome 17q21 [42].

In 1998, Coonar et al., by linkage analysis, mapped the locus of the Naxos disease gene
in humans to chromosome 17q21 [43]. Finally, in 2000, McKoy et al. identified a deletion of
the JUP gene in patients with Naxos AC [44].

In Ecuador, the group of dermatologists Carvajal–Huerta found a recessive muta-
tion of desmoplakin (DSP) in a family with dilated cardiomyopathy and cardiocutaneous
syndrome [45,46].

The pathological study of the heart of a child of an affected family, who died of
congestive heart failure, revealed a biventricular AC with a triangle of dysplasia of the
RV [47] (Figure 21).



Biomedicines 2023, 11, 2018 15 of 27

Biomedicines 2023, 11, x FOR PEER REVIEW 14 of 27 
 

 

Figure 19. Sharp decline of sudden death in the young after introduction of ECG for screening for 

sports eligibility. From [38], modified 

7. Arrhythmogenic Cardiomyopathy: A Genetically Determined Heart Muscle Disease 

A dominant form of AC was reported in the area of Piazzola, in the Veneto Region, 

by Andrea Nava, the leader of our team [39]. For years AC was known by the nickname 

“Venetian disease” as a local genetically determined cardiomyopathy. The clinical pheno-

type was proven to be absent at birth and becoming overt at 10–14 years of age [40]. 

A recessive form of AC, with keratoderma and woolly hair (cardiocutaneus syn-

drome), had been reported in 1986 from the Naxos island in Greece [41] (Figure 20), the 

island where the Greek mythology tells that Arianna was left by Teseo. 

 

Figure 20. Recessive form of arrhythmogenic cardiomyopathy and woolly hair (cardiocutaneus syn-

drome) in the island of Naxos. Recessive transmission (A). Wolly hair (B). Palmo-plantar keratosis 

(C). From [23], modified. 

Figure 20. Recessive form of arrhythmogenic cardiomyopathy and woolly hair (cardiocutaneus syn-
drome) in the island of Naxos. Recessive transmission (A). Wolly hair (B). Palmo-plantar keratosis (C).
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Figure 21. Carvajal syndrome, with recessive biventricular AC, due to a desmoplakin mutation [47].
Note a right ventricular aneurysm in the heart specimen.

DSP became a candidate also for the dominant AC. The molecular genetic investiga-
tion carried out in Venetian families revealed mutations of human DSP [48]. Genotype–
phenotype correlations showed biventricular involvement [49] (Figure 22).

A cascade of mutations in genes encoding desmosomal proteins was then discovered
in dominant AC families: plakophilin-2 [50], desmoglein-2 [51], desmocollin-2 [52,53] and also
plakoglobin [54] (Figure 23), confirming that AC is a desmosomal disease. Genetic screening
of the proband to unmask asymmetric carriers turned out to be life-saving.
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Mallory stain, original magnification ×5. * Mutation carrier. From [49].
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Figure 23. Mutations of proteins of the intercalated disk account for arrhythmogenic cardiomyopa-
thy, giving rise to the name “desmosomal disease”. Transmission electron microscopy ×30,000.
The rectangular includes the normal desmosomes, surrounded by disrupted ones. DESMO-
PLAKIN [48], PLAKOGLOBIN [44], PLAKOPHILIN 2 [50], DESMOCOLLON-2 [52], DESMOGLEIN-
2 [51]. From [6].

Multiple compound or heterozygous mutations were proven to entail a more severe
prognosis [55]. The disease was reproduced in transgenic mice [56,57] (Figure 24) and in
zebrafish [58–60]. However, electrical instability was found in the absence of a pathological
substrate [61].
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8. Non-Desmosomal Arrhythmogenic Cardiomyopathy

Over the years, genetic variants other than desmosomal genes have been reported to
be associated with the AC phenotype. In this setting, Transmembrane protein 43 (TMEM43)
was linked to the disease in 2008 with the founder mutation p.(Ser385Leu) in Canada [62],
with a fully penetrant pattern. More recently, other rare genetic variants in TMEM43 have
been published [63,64]. The cardiac sodium channel gene SCN5A was reported in a case of
an AC patient in 2008 [65] and, subsequently, in other studies [66,67]. Desmin (DES) was
also associated with AC in patients with the founder mutation p.(Ser13Phe) [68,69]. Over
the years, other genetic variants in DES have been reported [70–75] that are associated with
the left ventricular phenotype. Phospholamban (PLN) has been linked with the pathogenesis
of both AC and dilated cardiomyopathy (DCM) in p.(Arg14del) carriers [76]. Multiple
studies demonstrated that this variant is a founder mutation widespread in the Dutch
population [77–80]. In 2012, Lamin A/C (LMNA), usually associated with DCM, was also
linked to AC phenotype [81], followed by other studies [82–84]. Truncating variants in
Filamin C (FLNC) were associated with AC for the first time in 2016 [85], and since then,
rare genetic variants have been found in several cases [86–88], specifically associated with
left-ventricular phenotype and characterized by late-onset presentation with typical ECG
and CMR features [89].

Several genes have been associated with AC over the years due to the evolution of
genetic analysis with next-generation sequencing technology. However, genetic screening
in large populations of recently associated genetic variants to AC is still missing.

In 2017, two independent studies reported for the first time rare genetic variants in
Cadherin 2 gene (CDH2) in AC patients [90,91]. Further, a recent multicentric study reported
CDH2 genetic variants in a large AC cohort [92]. In 2018, the Tight Junction Protein 1 gene
(TJP1) was linked once to the disease phenotype in a mixed cohort of 40 Italian– Dutch–
German AC patients [93]. Similarly, Integrin-linked kinase (ILK) was first associated with
AC in knockout mice, and two missense variants were subsequently found in two families
with incomplete penetrance [94,95]. Instead, a homozygous missense variant in the LEM
domain-containing protein 2 (LEMD2), associated with juvenile cataracts, was also linked to a
unique form of arrhythmic cardiomyopathy [96]. As described in the review of Stevens
et al., [97] more than ten non-desmosomal genes have been linked to AC, including Catenin
alpha 3 (CTNNA3), Titin (TTN) and Ankyrin 2 (ANK2). However, pathogenic variants in
these genes have been reported in a minority of AC patients (1–3%) [98].
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The overwhelming quantity of data derived from large-scale genetic screening is
leading to a huge number of variants of unknown significance resulting in “genetic noise”
without clear evidence. To this regard, a recent international reappraisal of genes associated
with AC has been addressed by the National Institutes of Health (NIH)-funded resource
ClinGen, showing that only eight genes show definite to moderate evidence for AC, and
among them, five genes encoding for the desmosomal proteins and TMEM43, DES and
PLN [99].

9. Advances in Clinical Diagnosis

Diagnostic criteria for in vivo diagnosis were first put forward in 1994 [100] and up-
dated in 2010 [101]. ECG and echocardiography were crucial to unmask electrical instability
and mechanical dysfunction. Angiocardiography was originally employed as a gold stan-
dard to detect wall dyskinesia and aneurysms in the triangle of dysplasia [102] (Figure 25).
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Figure 25. Triangle of dysplasia seen at angiocardiography (A) and compared with pathology (B).
Azan Mallory stain, original magnification ×4. From [102], modified.

Endomyocardial biopsy (EMB) was implemented to detect in vivo the pathognomic
substrate, thanks to the transmural fibro-fatty replacement [103] (Figure 26). EMB plays a
crucial role in the differential diagnosis of overlapping diseases, like dilated cardiomyopa-
thy, myocarditis, sarcoidosis and idiopathic tachycardia of the RV outflow.

The advent of cardiac magnetic resonance (CMR) with late enhancement gadolinium
facilitated the detection of not only morpho-functional abnormalities but also tissue alter-
ations. The use of CMR unveiled isolated LV involvement in the form of subepicardial
fibro-fatty ‘scars’ [104] (Figure 27). A novel mutation of desmoplakin was found in patients
with LV variants of AC [105].

As far as electrophysiology, electroanatomic mapping was invented tand used to
discover fibro-fatty scars in vivo with electrical silence [106] (Figure 28).
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Figure 28. Electroanatomic mapping in AC (electrical scar) compared with endomyocardial biopsy (A)
and autopsy finding (B). Azan Mallory stain, (A) ×15, (B) ×3 and ×10. (B) Right down is the
amplification of the white rectangle box of the right up. (A) from [6]; (B) From [23].

The inverted T wave in the precordial leads has been confirmed to be a pathognomic
marker of the disease [107].

10. Prevention of SCD

Implantable cardioverter defibrillators (ICD) have proved to be effective lifesaving
devices in subjects with AC to prevent SD [108] (Figure 29). Indication for implantation
depends upon risk stratification [109]. It is mandatory in patients with AC and a history of
cardiac arrest, unexplained syncope and sustained ventricular tachycardia (Figure 30).
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The availability of automatic external defibrillators should be increased in public
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use is mandatory.

11. Research Globalization

The key to success in AC knowledge development was the result of an interdisciplinary
approach and international collaboration. Many foreign scholars visited the University of
Padua, which was considered the “mecca” of AC. Grants from the European Commission
and NIH were fundamental for research and the discovery of AC genes and for setting
up registries.

European meetings were held in Naxos, Baltimore, Denver and Padua, and a fruit-
ful intercontinental collaboration was established that resulted in the publication of a
monograph in 2007 [110].

Meanwhile, a great many of the main protagonists regrettably have passed away:
Camerini, Dalla Volta, Fontaine, Marcus, Moss, Nava, Protonotarios and Rossi. They will
remain unforgettable.
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Abbreviations

2D = two-dimensional; AC = arrhythmogenic cardiomyopathy; CDH2 = cadherin 2; CMR = cardiac
magnetic resonance; DES = desmin; DSP = desmoplakin; ECG = electrocardiogram; EMB = endomy-
ocardial biopsy; FLNC = filamin C; ICD = Implantable cardioverter defibrillator; JUP = cell junctional
protein; LBBB = left bundle branch block; LMNA = lamin A/C; PLN = phospholamban; RV = right
ventricle; SCD = sudden cardiac death; SCN5A = sodium voltage-gated channel alpha subunit
5; TJP1 = Tight Junction Protein 1; TMEM43 = transmembrane protein 43, ILK = Integrin-linked
kinase; LEMD2 = LEM domain-containing protein 2; CTNNA3 = Catenin alpha 3; TTN = Titin,
ANK2 = Ankyrin 2.
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