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Abstract: Low back pain is the leading cause of disability worldwide. Intervertebral disc degener-
ation (IDD) is the primary clinical risk factor for low back pain and the pathological cause of disc
herniation, spinal stenosis, and spinal deformity. A possible approach to improve the clinical practice
of IDD-related diseases is to incorporate biomarkers in diagnosis, therapeutic intervention, and
prognosis prediction. IDD pathology is still unclear. Regarding molecular mechanisms, cellular
signaling pathways constitute a complex network of signaling pathways that coordinate cell survival,
proliferation, differentiation, and metabolism. Recently, stem cells have shown great potential in
clinical applications for IDD. In this review, the roles of multiple signaling pathways and related stem
cell treatment in IDD are summarized and described. This review seeks to investigate the mechanisms
and potential therapeutic effects of stem cells in IDD and identify new therapeutic treatments for
IDD-related disorders.
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1. Background

Low back pain is the leading global disability [1]. To date, intervertebral disc de-
generation (IDD) has become the primary clinical risk factor for low back pain and the
pathological basis for developing disc herniation, spinal stenosis, and spinal deformities [2].
It is reported that ordinary populations have a 10% lifetime prevalence of sciatica-related
low back pain [3]. While a number of approaches are used to treat symptomatic IDD-
related diseases, there are marked heterogeneities in therapeutic efficacies. For instance,
surgery is indicated for disc herniation patients who failed conservative treatments, but
back pain and leg pain remained in approximately a third of surgical cases two years
later [4]. Such heterogeneities in clinical outcomes reflect the need for early diagnosis and
precise prognostic judgment.

Anatomically, the intervertebral disc (IVD) connects vertebral bodies in the spine with
three compartments: nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous
endplate (CEP). IDD causes decreased water content of the NP and AF, loss of elasticity of
the NP, centripetal fissures, structural changes of collagen fibers in the AF, extensive damage
in the CEP, subchondral osteosclerosis, angiogenesis, neoinnervation, significant reduction
or even loss of IVD height, and IVD-related biomechanical changes. Degenerated IVD cells
have fewer active cells, aberrant extracellular matrix metabolism, and pro-inflammatory
chemicals [5].

To date, IDD pathology is unclear. Mechanical stress, trauma, infection, genetic vul-
nerability, and inflammation can increase IDD pathology [6]. Recent developments in gene
microarray technology have yielded fresh insights into the molecular pathogenesis of IDD-
related diseases. Using single-Cell RNA Sequencing technology, several cell types including
chondrocyte 1–5, endothelial, macrophage, neutrophil, and T cells were delineated in IVD.
Specifically, chondrocytes 5 expressing FN1, SESN2, and GDF15, and chondrocytes 4 ex-
pressing PTGES, TREM1, and TIMP1 may exacerbate IDD, while chondrocytes 2 expressing
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MGP, MT1G, and GPX3 may mitigate this degenerative process [7]. Regarding molecular
mechanisms, cellular signaling pathways such as Wnt/β-catenin, NF-κB, mitogen-activated
protein kinase (MAPK), lipoyl inositol-3 kinase (PI3K)/serine-threonine protein kinase
(Akt), and transforming growth factor β (TGF-β)/Smads constituted a complex network
of signaling pathways that coordinate the cell survival, proliferation, differentiation, and
metabolism. Studying the molecular pathogenesis of IDD and delaying or correcting its
pathological alterations is a key problem and research hotspot in orthopedics.

Stem cells are multipotent, self-renewing cells, and are implicated in various basic
processes, such as cellular differentiation, proliferation, angiogenesis, oxidative stress
response, inflammation, and extracellular matrix synthesis [8]. The potential of stem cell
therapy has been investigated in the treatment of degenerative musculoskeletal diseases [9].
Recently, stem cells derived from NP, CEP, bone marrow, and adipose tissue have shown
great potential in clinical applications for IDD by regulating signaling pathways in the
IDD process. The present review was made to investigate the mechanisms and potential
therapeutic effects of stem cells in IDD and identify new therapeutic treatments for IDD-
related disorders. Recent advances in IDD-related signaling pathways and related stem cell
treatment in IDD are summarized and described below.

2. Wnt/β-Catenin Signaling Pathway

The classical Wnt signaling pathway includes secreted Wnt family proteins, trans-
membrane receptor proteins of the Frizzled family (Dishevelled, GSK3, Axin, APC, and
β-catenin), and downstream transcriptional regulators of the TCF/LEF family. This route
involves embryonic development, stem cell proliferation, and degenerative disorder devel-
opment [10]. For the skeletal system, the Wnt signaling pathway was crucial for developing
craniofacial, limb, and joint structures, and mutations in members of this pathway would
lead to skeletal malformations in mice and humans [11].

The Wnt signaling pathway’s dynamic activity during IVD growth, maturation, and
degeneration has been studied (Table 1). Excessive activation of this pathway, for example,
may lead to severe structural malformations in IVD, as evidenced by disruption of the
growth plate, excessive cellular proliferation, disruption of the lamellar structure in the
AF, and reduction in proteoglycans in the NP. β-catenin deficiency also accelerates bone
formation between the CEP and growth plate [12]. Moreover, for the degenerative process,
the Wnt/β-catenin signaling pathway activation can accelerate this process by inducing
the inflammatory factors production [10], promoting cellular apoptosis and senescence [13],
and degradation of the extracellular matrix of IVD cells [14]. For example, conditional
activation of β-catenin in mice can lead to severe structural defects in IVD [15]. Furthermore,
the upregulation of β-catenin in the canine IVD can upregulate the Runx2 expression in
the IVD and promote degenerative calcification in the IVD [14]. Additionally, in IVD,
WNT/β-catenin pathway activation promotes cellular senescence, matrix disintegration,
and IDD [13].

Various active substances can promote IDD by upregulating the Wnt/β-catenin path-
way expression (Table 1). For example, lncRNA HOTAIR and circITCH can promote cellular
senescence, apoptosis, and matrix degradation in IVD by activating the Wnt/β-catenin
pathway [16]. In IVD cells, TNF-α and Wnt signaling can generate a positive feedback
loop [17]. IDD may be alleviated by inhibiting this mechanism. For example, RBMS3
RBMS3 (RNA binding motif, single-stranded interacting protein 3) is a member of the
c-myc single-strand binding protein family and encodes an RNA-binding protein [18]. In
addition, by inhibiting the Wnt/β-catenin signaling pathway, RBMS3 can enhance the
proliferative capacity of IVD cells and suppress apoptosis and inflammatory responses in
IVD [19].
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Table 1. Effects of signaling pathway activation for IDD and pathway activator.

Signaling Pathway Wnt/β-Catenin
Signaling Pathway

NF-κB
Signaling Pathway

MAPK
Signaling Pathway

PI3K/Akt
Signaling Pathway

TGF-β1
Signaling Pathway

Effects of pathway
activation for IDD ↑[10,13–15] ↑[20–29] See details in Table 2 ↓[30–38] ↑[39–41]

↓[42–51]

Activator
LncRNA HOTAIR

[16], circRNA ITCH
[52], TNF-α [17]

TREM2 [53], CGRP
[28], Ca2+ [24], IL-1β

[25], HMGB1 [20],
N-Ac-PGP [21], ROS

[22], S100A9 [26],
ARG2 [27]

CHI3L1 [54], ROS
[22,55], MALAT1
[56], Resistin [57],
Syndecan-4 [58],

IL-17A [59], IAPP
[60], Glucose [61],

Visfatin [62]

17Beta-estradiol [34],
BMP2 [33],

Apelin-13/APJ [35],
Resveratrol [63]

Smad3 [43], ASIC3
[42], caveolin-1 [46],

Parathyroid hormone
[50]

↑: Deteriorating effect. ↓: Mitigating effect.

As mentioned, the Wnt/β-catenin signaling pathway plays a crucial role in IDD
and may function as a potential therapeutic target for stem-cell-related treatment. For
example, the aberrant apoptosis of NP cells is one of the most remarkable pathological
changes in IDD development. The compression leads to an increase in apoptosis and
Wnt-related gene expression, which can both be suppressed by the in vitro co-cultured
mesenchymal stem cell (MSC) [64]. Moreover, the age-related variation of Wnt signaling in
IVD cells may limit regeneration by depleting the progenitors and attenuating the expansion
of chondrocyte-like cells [65]. During IDD, CEP gradually calcified and the osteogenic
differentiation was increased [66]. Cartilage endplate stem cells (CESCs) are essential for
IDD by regulating chondrogenesis and osteogenesis in the CEP [67]. Downregulation of
WNT5A was proved to inhibit IDD via downregulating the osteogenic differentiation of
CESCs [68]. Exosomes derived from CESCs, however, can activate HIF-1α/Wnt signaling
via autocrine mechanisms to increase the expression of GATA4 and TGF-β1, thereby
promoting the migration of CESCs into the IVD and the transformation of CESCs into NP
cells and inhibiting IDD [69]. Therefore, the activation of the Wnt signaling pathway in
IVD stem cells may also reveal its alleviating effects in IDD. For example, the Wnt/-catenin
pathway in IVD can be activated by bone marrow mesenchymal stem cells (BMSCs)-derived
extracellular vesicles, leading to the suppression of cellular apoptosis, ECM degradation,
and IDD progression [70]. Notably, the overexpression of Wnt11 in adipose-derived stem
cells (ADSCs) induces the ADSCs cells differentiating to the NP cells, which may have a
potential utility for the treatment of IDD [71] (Figure 1).
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Red module: positive relations between the activations of signaling pathway and corresponding
biological processes. Blue module: negative relations between the activations of signaling pathway
and corresponding biological processes. Yellow module: relations between the activations of signaling
pathways and corresponding biological processes varied in different studies. Grey module: lack of
relevant evidence. (The figure was created with Figdraw and the OmicStudio tools at https://www.
omicstudio.cn on 25 August 2023).

3. NF-κB Signaling Pathway

NF-κB protein, initially found in B lymphocyte extracts, binds to enhancer regions
of immunoglobulin light chain genes [72]. In the classical NF-κB signaling pathway, IκB
kinase (IKK) regulated the IκB proteins’ phosphorylation [73]. For IVD, NF-κB nuclear
translocation upregulation accelerates IDD [29]. For example, HMGB1, a pro-inflammatory
factor, upregulates the NF-κB signaling pathway in IVD cells to induce inflammatory
cytokines and matrix metalloproteinases [20]. Additionally, in degenerative IVD, the neu-
ropeptide CGRP and its receptors are overexpressed, which inhibits cellular growth and
promotes apoptosis and inflammation by upregulating the NF-κB signaling pathway [28].
Notably, inflammatory mediators and chemokines produced by the NF-κB signaling path-
way activation formed a vicious cycle in the IDD process [23]. For example, the NF-κB
pathway activation by IL-1β would also promote the IL-1β precursors expression, accel-
erating IVD degeneration [24]. Another study showed that IL-1β could also regulate the
miR-133a-5p/FBXO6 axis expression through the NF-κB pathway, which would regulate
the proliferation of IVD cells and apoptosis [25].

Besides regulating the inflammatory responses [25], the NF-κB signaling pathway
upregulation can also deteriorate IDD by promoting matrix metalloproteinases and destruc-
ting the cellular matrix of IVD [20]. For instance, the inflammatory chemokine N-Ac-PGP
promotes NF-κB and MAPK signaling pathways in NP cells to generate pro-inflammatory
cytokines and matrix catabolic enzymes [21]. Moreover, the increase in neovascularization
in aging IVD would exacerbate the oxidative stress for this tissue. Upregulation of reactive
oxygen species (ROS) would induce catabolic and inflammatory expression in IVD cells
by stimulating the NF-κB pathway [22]. Moreover, the oxygen-sensing proteins would
induce apoptosis, matrix degradation, and the inflammatory response for NP cells by
NF-κB signaling pathway activation [26]. NF-κB can enhance oxidative stress, generating
another vicious cycle between IDD and the oxidative stress [27]. Thus, NF-κB signaling
pathway activation promotes IVD apoptosis, inflammatory response, matrix breakdown,
and oxidative stress, which worsens IDD.

Studies have revealed the use of BMSCs in tissue-engineering treatments to slow
or reverse IDD. The coculturing of BMSCs with disc-native NP cells promotes the ma-
trix production of NP cells and the differentiation of BMSCs into NP-like cells through
downregulating NF-κB pathway [74]. Moreover, TNF-α-stimulated gene 6 secreted by
BMSCs can attenuate inflammation factors production, matrix degeneration, and IDD
by inhibiting the NF-κB signaling pathway [75]. Interestingly, inflammation factors also
revealed positive roles for stem cells in recent degenerative disease studies. Tumor necrosis
factor-α (TNF-α) is critical for accelerating IDD. While with a relatively low concentration
(0.1–10 ng/mL), TNF-α promotes the proliferation and migration of NP mesenchymal stem
cells (NPMSCs) but inhibits their differentiation toward NP cells. Moreover, the NF-κB
signaling pathway is activated during the TNF-α-inhibited differentiation of NPMSCs,
and the NF-κB signal inhibitor can partially counteract the adverse effect of TNF-α on
the differentiation of NPMSCs [76]. Moreover, TGF-β1 is a strong immune suppressor,
whose increase would inhibit IκB phosphorylation and NF-κB activation. Co-culturing of
NP cells with BMSCs significantly increases TGF-β1 in NP, leading to anti-inflammatory
effects via the inhibition of NF-κB, and ameliorating IDD due to increased collagen II and
aggrecan in the degenerative disc [77]. Cellular senescence is another promotive factor
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for IDD. Upon TNF-α stimulation, NF-κB activation reveals pro-senescence effects in NP
cells, while co-culturing with BMSCs reduces senescence-associated β-galactosidase, ma-
trix metalloproteinase 9, and NF-κB signaling in senescent NP cells. Accordingly, Zinc
metallopeptidase STE24, whose dysfunction is related to premature cell senescence and
aging, is restored upon BMSC co-culture and inhibits the effects of NF-κB activation [78].
Moreover, ataxia-telangiectasia mutated kinase is a vital component for NF-κB-mediated
cellular senescence, stem cell dysfunction, and aging. Inhibition of this kinase also reduces
activation of NF-κB, improves the functions of muscle-derived stem/progenitor cells, and
thus alleviates IDD [79].

4. MAPK Signaling Pathway

The mitogen-activated protein kinase (MAPK) cascade signaling pathway has three
main sub-pathways: the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, the
p38 kinase pathway, and the c-Jun amino-terminal kinase (JNK1–3) pathway. All three
sub-pathways involved physiological and pathological processes such as cell proliferation,
differentiation, apoptosis, stress, and inflammatory responses (Table 2). As mentioned
in Figure 1, the promotion of inflammation, oxidative stress, senescence, and death pro-
cesses deteriorate IDD, while the activations of stem cell differentiation, proliferation of
physiological cells, phenotype maintenance, and matrix maintenance mitigate this patho-
logical process.

Table 2. Effects of the MAPK signaling pathway activation for cells in IVD.

Sub-Pathways in
MAPK Pathway Inflammation Oxidative

Stress
Senescence and

Death Proliferation Phenotype
Maintenance

Matrix
Maintenance

ERK1/2
signaling pathway ↑[80] ↑[22] ↓[81]↑[22] ↑[82–84] ↑[85–87]↓[88] ↑[84]↓[54,80]

p38-MAPK
signaling pathway ↑[57,89–94] ↑[94,95] ↑[56,93,96,97] ↓[92] ↓[92,98] ↓[57]

JNK signaling pathway ↑[59,62,99] ↑[100] ↑[55,60,61,101] ↑[102] ↓[58] ↓[60,62,99]

↑: Promoting effect. ↓: Inhibitory effect.

4.1. ERK1/2 Signaling Pathway

The MAPK/ERK pathway activation in AF and NP may have different or opposite
roles [103]. MAPK/ERK pathway activation in AF helps IVD maintain its physiological
phenotype, repair damage, and prevent tissue degeneration. For example, low-intensity
pulsed ultrasound would enhance cell proliferation and collagen synthesis processes by
activating the ERK pathway in AF, promoting the AF’s repair and alleviating IDD [84].
Additionally, the ERK pathway activation can significantly enhance the proliferation and
migration of AF cells, promoting IVD repair [82,83,104]. Moreover, ERK maintains IVD
function in acidic and hyperosmotic microenvironments [87] and the activation of this
pathway would also activate AF cell regeneration in 3D culture [81]. For phenotypic
maintenance in AF cells, however, the activated MAPK-ERK pathway revealed opposite
roles in studies [86,88]. In NP tissue, MAPK/ERK pathway activation was linked to
extracellular matrix breakdown, cellular senescence, apoptosis, inflammation, autophagy,
and oxidative stress, worsening IDD pathology [105]. For example, the M1-type [80]
and M2a-type [54] macrophages would promote the imbalance of extracellular matrix
metabolism in NP cells by activating the ERK signaling pathway. Additionally, elevated
oxygen tension-induced ROS in NP causes cell cycle arrest and senescence through ERK
signaling pathway activation [22].

Both NPMSC and ADSC are used as candidate cells for IDD treatment. The ERK
pathway is activated by the hyperosmolarity in the disc, which inhibits proliferation and
chondrogenic differentiation of NPMSCs [106]. In another study, however, the activation
of the MAPK/ERK signaling pathway leads to the enhancement of NPMSC viability,
differentiation towards NP cells, and extracellular matrix biosynthesis in the disc [107].
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Similarly, lithium, a common anti-depression drug, was found to promote ROS and ERK1/2
pathway, which enhances ADSC’s survival and ECM deposits in the degenerative disc [108].
Recently, scaffolds for IDD tissue engineering were designed for the maintenance of stem
cells in the acidic environment of the disc. For example, Sa12b-modified hydrogel enhances
the biological activity of NPMSCs by inhibiting acid-sensing ion channels by inhibiting the
ERK signaling pathway [109]. In addition, collagen type II hydrogel significantly promotes
extracellular matrix synthesis by activating the ERK pathway [110].

4.2. p38-MAPK Signaling Pathway

The p38-MAPK signaling pathway also regulated inflammation, cellular stress, growth
and development, and apoptosis in IVD. Growth factors, inflammatory cytokines, and
environmental stresses trigger IVD’s p38-MAPK signaling pathway, releasing inflammatory
substances, and degrading the cellular matrix, thus accelerating IDD [111]. For example,
non-physiological loading can stimulate apoptotic body production in AF cells by activating
the p38-MAPK pathway, ultimately leading to the apoptosis and degeneration of IVD [96].
For chondrocytes in CEP, the p38-MAPK signaling pathway would also induce cellular
apoptosis [56]. In recent years, the roles of resistin and endoplasmic reticulum stress have
been revealed in multiple degenerative diseases. In IVD, these two variables activated the
p38-MAPK pathway to produce pro-inflammatory effects [57,89].

Various research has proven the therapeutic effects of inhibiting the p38-MAPK path-
way on IDD in recent years. All of the pulsed electromagnetic fields [90], tyrosine kinase
inhibitors [91], and tanshinone IIA sulfonate [94] exert their anti-inflammatory activities for
IVD cells by downregulating the p38-MAPK signaling pathway. Moreover, blocking the p38-
MAPK pathway can greatly reduce the inflammatory consequences of non-physiological
stress on IVD cells [97]. Moreover, the p38-MAPK pathway inhibition would protect
NP cells against oxidative stress and mitochondrial dysfunction [95], prevent NP cells
apoptosis by inhibiting M1-type macrophage polarization and promoting the release of
anti-inflammatory factors from M2-type macrophages [93], and also increase the expression
of IVD protective factors [98]. Additionally, ERK5 is another member of the MAPK family
and regulates the maintenance of the extracellular matrix in IVD, and the suppression
of ERK5 resulted in decreased type II collagen and aggrecan in NP cells, indicating the
potential protective roles of MAPK family members in IDD [112].

In the disc, BMSC-derived extracellular vesicles have the potential to alleviate extra-
cellular matrix degradation, apoptosis, and cell cycle arrest in IDD via downregulating
phosphorylated p38 MAPK levels [93,113]. In addition, the suppression of p38 MAPK
signaling with specific inhibitors also promotes the anti-inflammatory impact of MSCs
and the alleviation of IDD [114]. The activation of the p38 signaling pathway, however,
has also revealed its therapeutic potential for IDD by stimulating the differentiation of
MSC in the disc. For example, TGF-β1 promotes the differentiation of MSC to NP-like
cells in the disc’s physiological hypoxia environment by activating ERK and p38 signaling
pathways [115]. Notably, the therapeutic effect of intervertebral fusion for IDD is still
unsatisfactory and the conditioned medium of BMSCs treated with electromagnetic fields
can promote osteogenic differentiation of BMSCs by activating the p38 signaling pathway,
which accelerates intervertebral fusion for IDD treatment [116,117].

4.3. JNK Signaling Pathway

In IVD, JNK activation causes inflammation and matrix breakdown [58]. For example,
aberrant expression of pancreatic amyloid polypeptide would increase the secretion of IL-1,
TNF-α, and matrix-degrading enzymes in IVD by activating this pathway [60]. Similarly,
IL-17A can exert a pro-inflammatory effect by stimulating the p38 and JNK pathways,
causing NP cells to produce more COX2/PGE2 [59]. Recently, the endocrine function of
adipose tissue was revealed. Visfatin, a protein secreted by adipose tissue, can induce IL-6
expression in NP cells by activating the JNK/ERK/p38-MAPK signaling pathway, thus
promoting the inflammatory response and extracellular matrix degradation in IVD [62].
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Increased JNK signaling pathway also upregulates IVD cell autophagy and apoptosis.
Under mechanical stress stimulation, elevated ROS in rat NP cells activates the JNK sig-
naling pathway and induces autophagy, thus accelerating IDD [55]. Moreover, IDD was
also more common among people with diabetes than non-diabetics [118]. High glucose
can lead to premature senescence of AF cells in young rats [101] and promote apoptosis
of AF cells in a glucose concentration-dependent manner through activation of the JNK
pathway [61]. Notably, JNK pathway suppression may also alleviate IDD. Crocin, the
bioactive component of saffron, can alleviate the inflammatory and catabolic processes
in IVD by JNK phosphorylation inhibition in NP cells [99]. Moreover, hinokitiol can also
maintain the function of iron transport proteins and alleviate oxidative stress in NP cells by
regulating the JNK pathway [100].

Inhibition of the JNK signaling pathway alleviates degeneration of stem cells derived
from CEP, NP, and bone marrow [119]. For example, oxidative stress during the trans-
plant of BMSC to degenerative discs may cause cell toxicity and poor survival of BMSCs.
Mitophagy can maintain cellular homeostasis and defend against oxidative stress by elimi-
nating dysfunctional or damaged mitochondria. Mechanically, oxidative stress facilitates
mitophagy through the JNK signaling pathway at an early stage of IDD but decreases mi-
tophagy and increases apoptosis at a late stage [120]. Moreover, excessive oxidative stress
also induces apoptosis and senescence of NP stem cells. Heat shock protein 70 (HSP70), a
cytoprotective and antioxidative protein, reveals its protective roles against apoptosis and
senescence of NP stem cells by downregulating the JNK signaling pathway [121].

5. PI3K/Akt Signaling Pathway

PI3K/Akt also regulates cell survival, metabolism, and proliferation in numerous
tissues [122]. IVD cells need PI3K/Akt pathway activation to survive hypoxic condi-
tions [123]. A possible explanation for this role was proposed as the PI3K/Akt path-
way activation would promote autophagy and inhibit apoptosis of NP-derived [38] and
endplate-derived [36] stem cells, which protected IVD from oxidative damage and facili-
tated the repair of degenerative injury.

Moreover, PI3K/AKT signaling protected matrix production in NP cells, while inhibit-
ing PI3K activity would decrease proteoglycans in the IVD matrix [30]. Specifically, the
PI3K/Akt/FOXO3 signaling pathway activation would downregulate the MMP-3 expres-
sion and upregulate type II collagen and ACAN in NP cells [34]. Activating PI3K/AKT sig-
naling reduces matrix breakdown and inflammation [32]. For example, PI3K/Akt signaling
pathway activation by BMP2 [33] and the Apelin-13/APJ system [35] can not only promote
the production of type II collagen, ACAN, SOX9, and downregulate matrix-degrading
enzymes in IVD, but also significantly inhibit the inflammatory response and apoptosis of
NP cells. As the key driver of the inflammatory cascade in IVD, IL-1β promotes NP cell
death, inflammatory responses, extracellular matrix remodeling, endoplasmic reticulum
stress responses, and mitochondrial dysfunction. The PI3K/Akt pathway inhibits these
IDD-related activities [31,37].

Recently, drugs and physiotherapeutic means to alleviate the IDD process by modulat-
ing PI3K/Akt pathway activity have also emerged. As mentioned, high oxidative stress in
NP cells would promote degenerative changes by increasing intracellular ROS production.
While resveratrol can inhibit oxidative stress-related effects by PI3K/Akt pathway activa-
tion in NP cells [63]. For physiotherapeutic aspects, circulating mechanical traction [124]
and low-intensity pulsed ultrasound [125] can also alleviate degenerative changes in the
NP extracellular matrix by activating the PI3K/Akt pathway. For AF cells, PI3K/AKT
signaling pathway activation would also alleviate the degenerative processes. For example,
the activation of this pathway inhibits AF cell cadmium-induced apoptosis [126]. However,
a recent study also revealed the promotive effects of the PI3K/AKT signaling pathway
for angiogenesis in IVD [127]. Thus, the data suggest that PI3K/AKT signaling pathway
activation may treat IDD.
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Based on stem cell studies, promising tools and insights for PI3K/AKT pathway-
related IDD therapeutics were offered in recent studies. Mechanically, disc-derived stem
cells regulate the function of the disc by delivering exosomes. The CESC-derived exosomes
inhibit apoptosis of NP cells and attenuated IDD in rats via activation of the PI3K/AKT
pathway. Additionally, exosomes from normal CESC inhibit NP apoptosis and alleviate
IDD more effectively than exosomes from degenerative CESC [38]. Moreover, CESCs
overexpressing Sphk2-engineered exosomes activates the PI3K/p-AKT pathway as well as
the intracellular autophagy of NP cells, which ultimately ameliorates IDD by balancing
autophagy/senescence [128]. In addition, for NP progenitor cells (NPPCs), exosomes se-
creted by NPPCs derived from degenerative discs would even exacerbate AF degeneration
by blocking the activation of the PI3K-Akt pathway [129]. Notably, NPPCs remain difficult
to maintain in culture. Fibroblast growth factor (FGF) 2 and chimeric FGF, however, were
reported to enhance the phenotype maintenance of NPPCs via PI3K/Akt and MEK/ERK
signals [130]. In addition, 1,25(OH)2D3 can also attenuate oxidative stress-induced apopto-
sis and mitochondrial dysfunction to NPPCs through PI3K/Akt pathway [131].

MSCs can also attenuate IDD by regulating cellular mechanical properties and apop-
tosis in the disc. For example, co-culture of degenerative NP cells with MSCs resulted in
significantly decreased mechanical moduli and increased biological activity in degenerative
NP by activating AKT signaling [132]. In addition, MSC-derived exosomes can prevent NP
cells from TNF-α induced apoptosis and alleviate IDD by targeting phosphatase and tensin
homolog by activating the PI3K-Akt pathway [133]. Through the AKT and ERK signaling
pathways, exosomes from urine-derived stem cells can significantly inhibit endoplasmic
reticulum (ER) stress-induced apoptosis and IDD under pressure conditions [134]. Similarly,
exosomes from BMSCs can attenuate ER stress-induced apoptosis in degenerative discs by
activating AKT and ERK signaling [135].

6. Hedgehog Signaling Pathway

Hedgehog signaling regulates skeletal development and repair [136]. Hedgehog
proteins regulate IVD maturation, degradation, and calcification [137]. Hedgehog is highly
expressed in young and healthy IVD cells, diminishes with notochord cell phenotypic loss,
and increases again in late IDD [138]. Hedgehog contains three homologous proteins: Sonic
hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). Among them, Shh
and Ihh are closely related to the IDD process as described as follows.

6.1. Shh Signaling Pathway

IVD development and function require an appropriate Shh signaling pathway expres-
sion [139] and the deficiency of this pathway has been proven to be related to the aging
phenotype of NP cells [140,141]. During the embryonic stage, the notochord eventually
undergoes segmentation and forms IVD, and a notochord sheath must wrap it to retain its
usual rod-shaped structure. The Shh signal loss in early embryonic stages would lead to
structural abnormalities in the notochord sheath, leading to aberrant development of IVD
and vertebrae [142,143].

Shh signaling influenced IVD growth and differentiation after birth. Without this
signaling pathway, NP cells would lose their reticular network and collapse into IVD’s core
region, while AF cells would lose their polar layered structure. Mechanistically, blocking
the Shh signal would lead to the downregulation of TGF-β signaling and the upregulation
of BMP and Wnt signaling expression [140]. The IVD between the sacral vertebrae collapses
and merges during childhood, forming a typical sacral structure. In addition, the collapse
of the sacral IVD has been associated with the downregulation of Shh signaling in the NP
cells. Conversely, Shh signaling activation in NP cells would reactivate dormant NP cells
and initiate IVD regeneration [144].

The activation of the Shh signaling pathway was proved to facilitate the differentiation
of pluripotent stem cells to notochordal cells [145]. As mentioned, ADSC-based therapy is a
promising treatment for IDD, while the difficulty in inducing NP-like differentiation limits
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its applications. Collagen type II promotes ADSC proliferation and differentiation toward
an NP-like phenotype through the activation of the Shh signaling pathway [146] while
the Shh signaling pathway inhibitor reduces the NP-like differentiation from ADSCs [147].
Similarly, the histone demethylase KDM4B also promotes the osmolarity-induced NP-like
differentiation of ADSC by activating Shh signaling [148].

6.2. Ihh Signaling Pathway

The Ihh gene was first expressed in mesenchymal cells and chondrocytes of limbs.
Ihh expression is confined to hypertrophic chondrocytes during skeletal growth plate
development. Ihh inhibits chondrocyte maturation during long bone growth, and its
dysregulation prevents proliferating chondrocytes from hypertrophic differentiation [149].
For example, mice carrying null mutations of the Ihh gene exhibit severe destruction
of the growth plate at the embryonic stage with abnormalities in the proliferation and
maturation of chondrocytes [150]. Additionally, conditional knockout of Ihh leads to
reduced proliferation of chondroprogenitor cells and chondrocytes and the pathological
processes in chondrocytes, including apoptosis, ectopic hypertrophy, and subchondral
bone degeneration [151].

Moreover, blood vessels’ premature infiltration, loss of normal columnar structure
in growth plates, and ectopic hypertrophic chondrocyte formation were also revealed in
neonatal Ihh-knockout mice. Then, after birth, Ihh knockout mice would exhibit disruption
of the articular surface of long bones and premature fusion of growth plates, leading to
dwarfism in the mice [152]. However, Ihh signaling also promotes chondrocyte devel-
opment, according to research. For instance, Ihh-regulated parathyroid hormone-related
protein (PTHrP) prevents premature growth plate cartilage hypertrophic differentiation.
Meanwhile, Ihh can also stimulate the differentiation of periarticular chondrocytes to
columnar chondrocytes through a PTHrP-independent pathway [153].

IVD research discovered that Ihh is significantly expressed in embryonic vertebrae
endplate cartilage and chondrocytes [154]. Ihh pathway overexpression decreased chon-
drocytes and alterations in IVD extracellular matrix proteins. For example, upregulation of
this pathway would promote the calcification in endplate cartilage and the degradation
in the extracellular matrix, and inhibiting this pathway would reverse these degenerative
processes [155]. In the NP, ROS would enhance Ihh expression and induce cellular apop-
tosis, and inhibiting the p-eIF2α/ATF4/Ihh signaling cascade axis reduces antioxidant
enzyme degradation, ROS, and NP cell death [156]. Furthermore, microtubule-based cilia
were found to be involved in regulating the developmental and degenerative processes of
IVD. During IDD, the downregulation of intraflagellar transport protein 80 disrupts the
transduction of the Ihh signaling pathway, resulting in apoptosis and disordered cellular
proliferation and differentiation in IVD cells [157].

7. TGF-β Signaling Pathway

TGF-β1 is a ubiquitous growth factor that regulates various cells’ proliferation, mi-
gration, differentiation, and survival. In skeletal tissues, TGF-β1 was proven to regulate
osteochondral development and maintenance by affecting metabolism in cartilage and
bone [158]. Notably, the TGF-β signaling pathway is critical for IVD growth and preserves
IVD tissues by increasing matrix formation, limiting matrix disintegration, and reducing
inflammatory responses [51]. For example, morphological deformities, including spinal
kyphosis, the decreased height of endplate chondrocytes, and disordered arrangement,
were revealed in Smad3 knockout mice. At the molecular expression level, the IVD in these
mice exhibited a decrease in type II collagen, TGF-β1, and proteoglycan. These results also
suggested a positive role of TGF-β1 in alleviating IDD [43]. Furthermore, TGF-β signaling
also helps spine development during embryogenesis and IVD growth and maintenance
after birth [159].

By generating glycosaminoglycan, NP cells preserve the matrix’s water-binding capa-
bilities, and activating the TGF-β-Smad3 axis would increase the synthesis of glycosamino-
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glycan in NP cells, thus maintaining the water content and organizational structure of
IVD [45]. In inflammatory response regulation, TGF-β1 can act synergistically with the
inflammatory factor inhibitor ML264 to alleviate the IL-1β-induced inflammatory response
and matrix degradation in the NP tissue [49]. CCN2 is another matrix protein that has
anti-inflammatory and homeostatic properties. In addition, TGF-β1 can induce CCN2
expression by activating Smad3 and AP-1 signaling pathways in NP cells, thus alleviating
the IDD process [44]. TGF-β1 can also inhibit the pro-inflammatory factors expression, thus
providing matrix protection and altering the NP cells’ overall secretory phenotype [47].

For functional maintenance and damage repair, the TGF-β/SMAD signaling pathway
can regulate the miR-455-5p/RUNX2 axis to prevent mechanically induced endplate chon-
drocyte degeneration [48]. Moreover, inflammation or degenerative stimulation would
cause the increase in TGF-β1, which can down-regulate the expression of sodium channel
proteins and thus stabilize the Na+ flux and the proteoglycan metabolism of NP cells [42].
Similarly, scaffold protein caveolin-1 can promote IVD repair by enhancing TGF-β signal
transduction [46]. Moreover, the parathyroid hormone can also activate the TGF-β/CCN2
signaling pathway expression in NP cells and maintain the height and homeostasis of IVD
by enhancing the TGF-β1 activity and upregulating the ACAN level [50]. Contrarily, TGF-
β1 upregulation would deteriorate the process of IDD, and inhibition of overexpressed
TGF-β1 in degenerative IVD would promote the proliferation of NP cells and inhibit
cellular senescence and apoptosis [41]. Regarding the cellular matrix, TGF-β1 can exacer-
bate the inflammatory and fibrotic manifestations of degenerating IVD [40]. Furthermore,
the increased TGF-β1 activity can also increase the osmotic pressure of the extracellular
environment and lead to IDD advancement [39].

The activation of the TGF-β signaling pathway can also alleviate IDD by increasing the
differentiation of stem cells to NP-like cells [160]. For example, TGF-β pathway stimulation
is a vital step in a protocol for directed in vitro differentiation of human pluripotent stem
cells into notochord-like and NP-like cells of the disc [161]. TGF-β1 can also differentiate
human ADSCs into NP cells, providing a new mechanism for its IDD-relieving effects [162].
Moreover, TGF-β signaling is also related to the homeostasis of cellularity and cellular
matrix for the disc. For example, exosomal matrilin-3 from urine-derived stem cell ex-
osomes promotes NP cell proliferation and extracellular matrix synthesis by activating
TGF-β signaling [163]. Controlled release of TGF-β1 by pullulan microbeads can also lead
to an increase in NP cellularity, collagen type II and aggrecan staining intensities, and the
Tie2+ progenitor cell density in the disc [164]. Notably, the activation of the TGF-β signaling
pathway can promote the pro-fibrotic effect of bleomycin on AF cells and BMSCs, which
induces rapid fibrosis and height maintenance for IVD. Moreover, bleomycin-induced
fibrosis also improves the stress tolerance of the degenerative disc [165].

8. Conclusions and Outlook

As mentioned above, there is a complex network among cellular signaling pathways
for the IDD process. Stem cells, with regulatory roles in the signaling network, revealed
great potential for biological cell-based treatment of IDD. As mentioned above, activation
of PI3K/AKT, Shh, and TGF-β signaling pathways, and inhibition of NF-κB and JNK
signaling pathways induce IDD remission with stem cell treatment, and the roles of Wnt/β-
catenin, ERK1/2, and p38-MAPK pathways in stem-cell-treated IDD remain two-sided.
Notably, IVD signaling pathway markers generally precede morphological alterations. A
possible approach to improve the clinical practice of IDD-related diseases is to incorporate
biomarkers in diagnosis, therapeutic intervention, and prognosis prediction. However,
early IDD clinical markers were still lacking in practice. Thus, exploring biomarkers in
specific signaling pathways for IDD, as well as stem cells with regulatory effects for these
biomarkers, has a high potential value in clinical applications.
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