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Abstract: MicroRNAs (miRNAs) are short, non-coding ribonucleic acids (RNAs) associated with
gene expression regulation. Since the discovery of the first miRNA in 1993, thousands of miRNAs
have been studied and they have been associated not only with physiological processes, but also
with various diseases such as cancer and inflammatory conditions. MiRNAs have proven to be not
only significant biomarkers but also an interesting therapeutic target in various diseases, including
cancer. In acute myeloid leukemia (AML), miRNAs have been regarded as a welcome addition
to the limited therapeutic armamentarium, and there is a vast amount of data on miRNAs and
their dysregulation. Macrophages are innate immune cells, present in various tissues involved in
both tissue repair and phagocytosis. Based on their polarization, macrophages can be classified
into two groups: M1 macrophages with pro-inflammatory functions and M2 macrophages with an
anti-inflammatory action. In cancer, M2 macrophages are associated with tumor evasion, metastasis,
and a poor outcome. Several miRNAs have been associated with a poor prognosis in AML and
with either the M1 or M2 macrophage phenotype. In the present paper, we review miRNAs with a
reported negative prognostic significance in cancer with a focus on AML and analyze their potential
impact on macrophage polarization.
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1. Introduction

The central dogma of molecular biology was first presented by Francis Crick in a
lecture in 1957, where he stated that deoxyribonucleic acid (DNA) is transcribed into
ribonucleic acid (RNA) and RNA is translated into proteins [1]. Of course, at that time,
the picture was far less sharp than it is today, but Crick was the first to understand the
DNA–RNA–protein sequence.

The current understanding of nucleic acids recognizes two main categories of RNAs:
coding RNAs, represented by messenger RNA (mRNA) and corresponding to the function
described above, namely an intermediate template for the translation of genetic information
into amino acid sequences, and non-coding RNAs (ncRNA), whose functions have only
more recently been partly understood. According to their functions, ncRNAs are further
divided into housekeeping ncRNAs and regulatory ncRNAs (Table 1).
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Table 1. Types of non-coding RNAs. Adapted from [2,3] and from [4] with permission.

Name Abbreviation

housekeeping ncRNAs ribosomal RNA rRNA
transfer RNA tRNA
small nuclear RNA snRNA
small nucleolar RNA snoRNA
telomerase RNA TERC
tRNA halves tiRNA
tRNA-derived fragments t-RF

regulatory ncRNAs microRNA miRNA
small interfering RNA siRNA
piwi-interfering RNA piRNA
enhancer RNA eRNA
long non-coding RNAs lncRNA
circular RNA circRNA
YRNA YRNA

MiRNAs are single-stranded short fragments (19–24 nucleotides) of RNA and their
main role is the posttranscriptional regulation of gene expression by mRNA silencing;
thus, they have many varied physiological roles [5]. Interestingly, one miRNA is able to
regulate more than one gene, sometimes even hundreds, due to the fact that they attach
with incomplete complementarity to the mRNA [6]. MiRNAs have not only been associated
with physiologic processes, but their dysregulation was also associated with cancer and
various nonmalignant diseases [7–10].

The biogenesis of miRNA can either be canonic or non-canonic [11]. The canonic
pathway starts in the nucleus with the primary transcript (pri-microRNA) that is transcribed
by either polymerase II or polymerase III [12]. These precursors are usually found in introns
or in intragenic regions. An endonuclease called Drosha, together with the double-stranded
RNA-binding protein DiGeorge syndrome critical region gene 8 (DGCR8), will cleave
this transcript, resulting in a pre-microRNA [6,12]. Via the exportin 5/RanGTP complex,
the pre-microRNA will exit the nucleus and travel to the cytoplasm, where a second
endonuclease called Dicer will cleave the loop of the hairpin of the pre-microRNA and
a mature microRNA duplex will be formed. Argonaute 2 (Ago 2) will cleave the double-
stranded RNA into single-stranded RNA. Later, one of the single strands of RNA will
be coupled with the RNA-induced silencing complex (RISC) protein complex (formed by
transactivating response RNA-binding protein, Ago2, and Dicer), while the other will be
degraded. If the single-stranded RNA is complementary to an mRNA, the mRNA will be
degraded via the RISC protein complex by cleavage [12]. There are several non-canonical
pathways, which are either Drosha- or Dicer-independent. These pathways also lead to
inhibition of translation [11].

The history of miRNAs started in the 1980s but peaked in 1993 with the discovery
made in Ambros and Ruvnkun’s labs, who described the first microRNAs encoded by
lin-4 [13,14]. Their discovery was made by working with Caenorhabditis (C.) elegans, a type of
nematode. In order for C. Elegans to progress from stage L1 to L2, the lin-14 protein (p) has to
decrease. The regulation of the lin-14 gene is performed in a posttranscriptional manner via
lin-4, which encodes for two small RNA molecules which will bind, via complementarity,
to the lin-14 gene and will downregulate the production of lin-14, thus allowing the larvae
to pass from L1 to L2, a more mature state [13,14]. Later, other miRNAs were described,
mounting to presently over a thousand, some present only in one species while others,
such as lin-17 [15], are ubiquitous and present in flies to humans [16]. Posttranscriptional
gene silencing was also described in plants [17] in 1990, and in 1992, in fungi [18].

The main focus of the present paper is to investigate the association of miRNA expres-
sion and macrophage polarization in the setting of cancer with focus on AML. In particular,
we will focus on miRNAs reported as being associated with a bad prognosis in this group of
diseases and how they correlate with macrophage polarization. The goal of this approach
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is to assess a potential mechanism of miRNA expression affecting the outcome of AML,
by either promoting an M2- or an M1-type microenvironment. In a previous paper, we
described the miRNAs associated with a good prognosis in AML and their known effects
on macrophages [19].

2. MiRNAs and Cancer

After scientists caught a glimpse of miRNAs in physiologic processes, they started to
notice an association between them and different diseases. The first report suggesting the
association between miRNAs and cancer, specifically chronic lymphatic leukemia (CLL),
was published in 2002 by Croce and colleagues [8]. In their paper, they demonstrated
that microRNA (miR)-15 and miR-16 are downregulated in CLL. Both miRNAs were
found on chromosome 13q14, a region frequently deleted in several other cancers [20–23].
Apparently, more than 50% of the miRNAs are situated in ‘fragile sites’ of the genome that
are associated with malignancies. The miRNAs that were associated with the development
and progression of cancer were named ‘oncomiRs’ [24]. Of course, miRNAs are not only
associated with cancer but also with protecting the host against cancer, and thus acting as
tumor-suppressors [24]. After Croce’s discovery, a substantial amount of information on
miRNAs and cancer emerged.

Based on the information that miRNAs have the ability to act both as an oncomiR and
as a tumor suppressor, clinical trials targeting them have been developed [25]. A quick
search on www.clinicaltrials.gov (accessed on 2 January 2024) using ‘cancer’ and ‘miR’
showed more than 400 results, mostly focused on miRNAs as biomarkers.

AML is a hematological malignancy with a dismal prognosis. Many reports presented
the association between miRNA expression and specific chromosomal abnormalities [26,27]
or mutations in AML [28–30]. On the other hand, miRNAs were also associated with
prognosis, disease progression, or proliferation [31–34]. Based on these findings, miRNAs
are now regarded as important biomarkers that might predict the response to treatment,
the risk of progression, or the rate of complete remission (CR) and overall survival (OS)
in both solid cancers of hematological malignancies [35–38]. Only a few studies have
focused on the role and association between miRNAs and macrophage polarization in
cancer [19,39–41].

In AML, several miRNA targets have already been addressed. One of them, miR-126,
is highly expressed in patients with inv(16)(p13q22). In a mouse model of inv(16)(p13q22)
AML, Kuo et al. showed that adding an miR-126 inhibitor improved survival compared to
the control group. Another study showed that adding an miR-10a inhibitor to cytarabine
+ nutlin-3a, a murine double minute 2 homolog (MDM2) inhibitor, improved OS [42].
MiR-193b is a tumor suppressor in AML, inhibiting excessive proliferation. In AML, miR-
193b is downregulated. An miR-193b mimic showed promising results in AML xenografts
compared to controls, improving survival [43]. Also downregulated in AML is miR-146 [44].
A study published in 2020 reported that an miR-146 mimic successfully targeted the NF-κB
pathway in mice by inhibiting it and also inhibiting TRAF6 and IRAK1, thus inhibiting
progression. The same study showed that the miR-146 mimic inhibited proliferation in
different cell lines [45]. Another targeted miRNA was miR-9, which is overexpressed in
mixed lineage leukemia (MLL). Adding an miR-9 inhibitor in the Mono-Mac-6 cell line has
been proven efficacious, decreasing proliferation [46].

3. Macrophages and Their Polarization

Macrophages are part of the innate immunity, playing an important role in phagocyto-
sis, thus eradicating infections and tumor cells, and also in tissue repair [47]. A simplistic
yet commonly used classification divides macrophages into two categories based on their
polarization: M1 macrophages, classically activated with a pro-inflammatory activity, and
M2 macrophages, alternatively activated and anti-inflammatory [48]. Polarization refers to
the ability of macrophages to exhibit different functions and phenotypes based on stimuli
from the microenvironment. Cytokines such as lipopolysaccharide, interferon (IFN)-γ,
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and tumor necrosis factor (TNF)-α will tilt the neutral, non-polarized M0 phenotype to-
wards M1 polarization, while apoptotic cells, IL-4, IL-13, IL-10, IL-33, fungi, parasites, and
transforming growth factor (TGF)-β will promote M2 macrophages [49,50]. Based on their
phenotypes, M1 macrophages express on surface markers such as CD64 and CD86, while
M2 macrophages express CD206 and CD163 [51]. The imbalance between M1 and M2
macrophages can either lead to inflammatory states or to cancer due to a very ‘tolerant’
state [51,52]. In cancer, macrophages are very abundant in the tumor environment (TME)
and they are frequently called tumor-associated macrophages (TAMs) [53]. In early stages,
M1/M2 ratios favor the M1 subtype, but in later stages, the M2 subtype is more common
and is associated with a poorer prognosis [54]. A high M2/M1 ratio is associated with pro-
liferation, tumor evasion, angioneogenesis, metastasis, immune suppression, and, overall,
a poor prognosis [51].

4. MicroRNAs Associated with a Bad Prognosis of AML and M1 Polarization

The miR-17-92 cluster (miR-17-5p, miR-17-3p, miR-18a, miR-19a, miR-19b, miR-20a,
and miR-92-1), or oncomiR-1, is highly dysregulated in several solid and hematologi-
cal cancers [33]. This cluster regulates a plethora of transcription factors such as TP53,
c-MYC, n-MYC, STAT3, MXI1, E2F1, E2F2, E2F3, and NKX3.1. Furthermore, the miR-
17-92 cluster regulates TGF-β receptor II, Smad2 and Smad4, BCL2L11, anti-angiogenic
factors thrombospondin-1 (TSP-1), connective tissue growth factor (CTGF), insulin gene
enhancer protein (Isl-1), and the T-box 1 protein (Tbx1) [55]. In AML, the miR-17-92 cluster
is overexpressed and is associated with a poor prognosis. MiR-92a-1-5p was increased
in mouse bone-marrow-derived M1 macrophages [56]. On the other hand, downregula-
tion of miR-17-92 is essential for myeloid differentiation [57]. Thus, in MLL, where the
abovementioned miRNAs are overexpressed, targeting both miR-17-5p and miR-19a-3p
by antagomiRs reduces the ability of MLL cells to form colonies compared to non-MLL
AML controls [58]. Several other studies suggested that the miR-17 cluster is associated
with a poor prognosis [33,59] through several mechanisms, including the promotion of
leukemic blast proliferation [60]. With regard to macrophage polarization, miR-17 and
miR-20a promote an M1 phenotype by inhibiting signal-regulatory protein a (SIRPa) [60].

MiR-20a is part of the miR-17-92 cluster and is associated with several cancers. It
has been reported that miR-20a interferes with signaling pathways such as ENH1/Id1,
MAPK1/c-Myc, PTEN/PI3K/AKT, FBXL5/BTG3, or the Sonic hedgehog pathways [61].
In cancers, the overexpression of miR-20a has been associated both with a poor [62,63] or a
good prognosis [64]. Also, its downregulation was associated with a poor prognosis [65].
In a cohort of 61 patients with AML, downregulated miR-20a was associated with a poorer
prognosis, compared to those with a high expression [66]. In cell lines, overexpression of
miR-20a stimulated apoptosis and inhibited proliferation of AML cells [66], thus suggesting
its potential as a therapeutic target. MiR-20a promotes M1 macrophage polarization by
inhibiting SIRPa [60,67].

MiR-125b is associated with apoptosis, differentiation, and proliferation by regulating
important pathways such as NF-κB, p53, PI3K/Akt/mTOR, ErbB2, and Wnt [68]. Interest-
ingly, miR-125b also targets DICER1, suggesting that its alteration could affect the entire
biogenesis of miRNAs. Similar to other miRNAs, miR-125b behaves either as an oncogene
or as a tumor suppressor, being either upregulated in certain cancers or downregulated in
others. In both AML and acute lymphoblastic leukemia (ALL), miR-125b is generally upreg-
ulated [68]. In AML and myelodysplastic syndrome (MDS) patients with t(2;11)(p21;q23)
translocation, miR-125b was 90 times more upregulated compared to normal controls. Sev-
eral subtypes of AML, like fms-related receptor tyrosine kinase 3 (FLT3)-mutated AML, AML
harboring the translocation AML-ETO, acute promyelocytic leukemia, and trisomy 21-acute
megakaryocytic leukemia, are associated with high levels of miR-125b [69]. Another study
showed that miR-125b is highly implicated in myeloid differentiation and erythroid and
megakaryocytic progenitor proliferation. In acute megakaryocytic leukemia associated
with Down’s syndrome, myeloid differentiation was severely impaired [70]. Interestingly,
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miR-125b is highly expressed on macrophages, and the studies performed by Chaudhuri
et al. showed that overexpression of miR-125b in mice injected with EL4-Fluc thymoma
cells increased the macrophages’ capacity for killing and led to tumor shrinkage. MiR-125b
regulates macrophage activation via IRF4 [71]. There are conflicting results about miR-125b.
Another study showed that mice which overexpressed miR-125b in transplanted liver cells
developed various hematological malignancies such as B-ALL, T-ALL, and myeloid neo-
plasms [72]. In mice, overexpression of miR-125b was associated with the development of
myeloproliferative neoplasms and with transformation to AML [73]. In AML, miR-125b is
associated with refractoriness to daunorubicin and, thus, with a poorer prognosis, altering
apoptosis via decreasing PUMA and GRK2 [74]. Concerning macrophage polarization,
miR-125b is associated with the M1 phenotype [75].

MiR-146a and b are situated on chromosomes 5 and 10, respectively, and they are dys-
regulated in several cancers [76], promoting proliferation and metastasis [77]. A study in
miR-146b-knockout mice showed that they developed AML or B-cell lymphoma, probably
due to the alteration of the NF-kB pathway by inhibiting TNF receptor-associated factor 6
(TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1) [78]. In AML, downregu-
lation of miR-146a was associated with progression by targeting the NF-κB pathway [79].
On the other hand, a study of 53 AML patients showed that miR-146a is overexpressed
and is associated with a poorer prognosis [80]. In pediatric AML with a normal karyotype,
hsa-miR-146b was associated with a poor prognosis [81]. Lower levels of miR-146b were
detected in low- and intermediate-I-risk MDS compared to intermediate-II- and high-risk
MDS [82]. MiR-146b targets IRF5, a transcription factor, promoting the M1 macrophage
phenotype [83].

MiR-155 is encoded by a sequence located on the 21st chromosome in the non-coding
B cell integration cluster (BIC) gene [84], which is heavily dysregulated in different types
of cancers. MiR-155 is also involved in regulating both innate and adaptive immune
responses, having an important role in myeloid progenitor differentiation by targeting the
transcription factor PU.1. Apart from PU.1, miR-155 also regulates SHIP1, which acts as
a negative regulator of the PI3K/Akt pathway involved in several biological processes
such as differentiation, apoptosis, transcription, and translation [85]. In lung cancer, a
meta-analysis showed that miR-155 could be useful in diagnosis, but could not predict the
response to treatment [86]. On the other hand, high levels of miR-155 in breast cancer were
associated with a good prognosis and with a good response to immunotherapy [87]. In
patients with diffuse large B-cell lymphoma, cobomarsen, an miR-155 inhibitor, showed
promising results in preclinical studies by reducing the tumor burden and stimulating
apoptosis [88]. Also, in B-cell lymphoma, melanoma, and breast, gastric, ovarian, colon,
nasopharyngeal, and pancreatic cancer, overexpression of miR-155 was associated with a
better prognosis, acting as a tumor suppressor by unleashing the immune system against
the tumor [89]. At the other end of the spectrum, in AML, several studies have proven
that upregulated miR-155 is associated with a poor prognosis [90,91]. A study which
included 363 patients with AML showed that patients with low levels of miR-155 had a
better OS than normal karyotype patients [92]. Similar results have been seen in an AML
pediatric cohort of 196 patients with a normal karyotype [93]. From a subtype point of view,
high levels of miR-155 were associated with FLT3-internal tandem duplication (ITD) positive
AML [94], and MLL [95]. Another inhibitor of miR-155, MLN4924, has been used in the
AML setting, improving survival in mice. Its mechanism is based on the upregulation
of SHIP1, a phosphatase highly expressed on hematopoietic cells which inhibits survival
and proliferation [96]. Furthermore, miR-155 upregulates PU.1, a transcription factor
which promotes differentiation [97]. Another study showed that silvestrol, a compound
extracted from a plant called Aglaia foveolata, improved survival in mice with FLT3-ITD-
mutated AML, decreasing both miR-155 and the expression of FLT3-ITD [98]. In addition,
silvestrol showed promising results in combination with cytarabine, daunorubicine, and
etoposide [99]. MiR-155 also regulates aerobic glycolysis. In cell lines with knockout miR-
155, it has been observed that the treatment sensitivity increased for both FLT3 inhibitors
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and adriamycin by inhibiting aerobic glycolysis via PIK3R1, a gene also associated with
insulin resistance [100]. In cancer, overexpression of miR-155 was associated with the M1
macrophage subtype [84].

Another miRNA associated with a dismal prognosis is miR-210. Higher levels of miR-
210 were associated with a low OS [101]. As with other miRNAs, miR-210 is associated with
cell proliferation, angioneogenesis, and DNA repair, and its overexpression is associated
with a poor prognosis not only in AML, but also in different solid cancers. Interestingly, in
ALL, patients with low levels of miR-210 were associated with relapse and with a lower
response to treatment [102]. Also, in MDS, miR-210 and miR-155 downregulate SHIP1,
and thus tyrosine-protein kinase Tec is upregulated, promoting MDS cell survival [103].
MiR-210 switches macrophages to M1 polarization [104].

5. MicroRNAs Associated with a Bad Prognosis in AML and M2 Polarization

MiR-19a dysregulation has been reported in several cancers [105] and is associated
with the upregulation of the NF-κB signaling pathway [106]. MiR-19a was found to be
expressed in many human cancers with contradictory consequences, being reported to
both promote or inhibit cancer progression in different type of neoplasms [107]. A study
by Zhang et al. showed that miR-19a/b was upregulated in AML patients compared to
controls. Moreover, overexpression of miR-19a/b was associated with the female gender,
elderly patients, several mutations such as U2AF1, C-KIT, CEBPA, and IDH1/2, and a poor
prognosis (lower CR rates and OS) [107]. MiR-19a inhibits the M1 subtype by targeting
STAT1 and interferon regulatory factor 1 (IRF1) [108] and promotes the M2 macrophage
phenotype by activating STAT3 [109].

MiR-21 has regulatory roles in several biological processes and is expressed in all
types of cells. MiR-21 is situated on chromosome 17 [110]. This miRNA is dysregulated
not only in cancer, but also in several nonmalignant conditions including cardiovascular
and pulmonary diseases [111] and autoimmune conditions [112,113]. Its expression is ubiq-
uitous but with varying levels, being highly expressed in immune cells such as dendritic
cell, monocytes, and macrophages [110]. Due to its abundant expression in different cells,
miR-21 is not really suitable as a biomarker in any disease.

In AML, miR-21 downregulates several genes involved in apoptosis, such as pro-
grammed cell death 4 (PDCD4), BTG2, SPRY1, and PTEN [114,115]. Another study showed
that miR-21 was overexpressed in AML, while Krüppel-like factor 5 (KLF5) was down-
regulated. KLF5 is a transcription factor which acts as a tumor suppressor in AML. In
nucleophosmin-1 (NPM-1)-mutated AML, miR-21 levels were higher compared to wild-type
NPM1, suggesting its role in the diseases pathogenesis [114]. Overexpression of miR-21
was associated with a poorer prognosis [116] and chemo-resistance [115]. Another study
showed that in homeobox (HOX)-associated AML, targeting miR-21 and miR-196b im-
proved the prognosis and response to treatment [117]. MiR-21 was shown to promote an
M2 macrophage phenotype in different settings either in cancer or in sepsis [118,119].

MiR-23a is part of the miR-23a–27a–24-2 cluster and it is encoded on chromosome 19.
MiR-23a is not only associated with cancer but also with other conditions such as car-
diac [120] or autoimmune diseases, playing an important role in apoptosis, proliferation,
and differentiation [121]. With the exception of erythroid leukemia, where miR-23a is
upregulated, in other hematological malignancies such as chronic myeloid leukemia or CLL
and in other subtypes of AML, miR-23a is downregulated. The same is true in solid cancers,
where in most subtypes, miR-23a is downregulated, while in some cancers like head and
neck cancer, it is upregulated [120]. Moreover, miR-23a was associated in several studies
with advanced stages, metastasis, and a dismal prognosis or resistance to treatment [120].
Interestingly, the miR-23a-27a-24-2 cluster also regulates macrophage polarization. MiR-23a
stimulates M1 macrophage polarization in different settings [122,123], while miR-27a and
miR-24-2 promote M2 polarization [122]. MiR-27a is also encoded on chromosome 19 and
it is associated with apoptosis, proliferation, differentiation, metastasis, angioneogenesis,
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and treatment response, playing the role of both a tumor suppressor and an oncogene in
different types of cancer [124]. In most cancer patients, miR-27a is overexpressed.

In AML, overexpression of miR-23a is associated with chemo-resistance to cytarabine,
lowering the expression of TOP2B, a gene that encodes a DNA topoisomerase involved in
different genetic processes [125]. A high miR-24 expression was reported in AML patients
with t(8;21), but with no impact on OS and relapse-free survival (RFS) compared to those
with a low miR-24 expression [126]. A study which included 147 patients with acute
leukemia demonstrated that miR-24 was overexpressed in both AML and ALL compared
to healthy controls and was associated with a dismal prognosis [127]. On the other hand,
another study showed that miR-24 has a higher expression on AML cells compared to ALL
cells [128].

MiR-221/miR-222 are encoded on the Xp11.3 chromosome and they are highly overex-
pressed in certain types of cancers, such as glioma, bladder, pancreatic, gastric, or colorectal
cancer, and in some hematological malignancies, such as CLL, ALL, multiple myeloma
(MM), or AML [129,130]. They are associated with tumorigenesis, angiogenesis, metastasis,
and a worse prognosis or chemo-resistance in certain types of cancers [129]. In AML, miR-
221 and miR-222 are overexpressed and downregulate TP53 via YOD1, a deubiquitinase. A
lower level of YOD1 is associated with downregulation of TP53. MiR-221 and miR-222 are
inversely correlated with YOD1 [131]. Targeting miR-221 has been shown to be beneficial
in a study where an anti-miR-221 and gold nanoparticles co-carrying AS1411, an actamer,
inhibited leukemic growth by targeting the NCL/miR-221/NFκB/DNMT1 pathway [132].
In another study, miR-222 and miR-181 were studied in the AML setting. MiR-222 was
highly downregulated but was not associated with the response to treatment or FAB classi-
fication [133]. On the contrary, other studies suggest that miR-222 is overexpressed in AML
and upregulates the Wnt/β-catenin pathway by inhibiting Axin2, a tumor suppressor [134].
Also, miR-222 and miR-181 had a higher expression in AML than in MDS both in peripheral
blood and bone marrow [135].

In ovarian cancer, miR-222 induces M2 macrophage proliferation [136]. The same
relationship was reported in a study in mice with burn injuries [137].

MiR-126 has been associated with a poor prognosis, treatment refractoriness, and
chemo-resistance, targeting the PI3K/AKT/MTOR pathway and thus stimulating prolif-
eration of leukemic cells. In humans, under normal conditions, miR-126 is involved in
maintaining the hematopoietic stem cells in quiescence, while in leukemia, the malignant
cells are similarly kept in a dormant state. In AML, this miRNA is overexpressed [138].
As expected, inhibiting miR-126 in acute leukemia improved survival by eliminating the
malignant cells, while in normal bone marrow, its inhibition stimulated the proliferation
of hematopoietic stem cells [139]. Similar results were published by using an antagomiR-
126 in AML [140]. High levels of miR-126 were also encountered in the FAB M4Eo AML
subtype, and promising results have been shown when using an miR-126 inhibitor [141].
Interestingly, a study from 2015 showed that both overexpression and knockout of miR-126
leads to leukemia by affecting different signaling pathways [142]. Based on these data,
miR-126 could be a valuable target in the treatment of AML. In different settings, miR-126
has been associated with the M2 phenotype [143–145], but information in cancer settings is
lacking.

Figure 1 summarizes the association of all the aforementioned miRNAs with
macrophage polarization.
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Figure 1. MiRNAs associated with M1 or M2 polarization. MiR-17, 20a, 23a, 125b, 146b, 155, 210 are 
associated with M1 macrophage polarization, while miR-19a, 21, 27a, 24-2, 222, 126 are associated 
with the M2 phenotype. 
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Smad2, Smad4, BCL2L11, TSP-1, CTGF, Isl-1 
and Tbx1 

miR-20a 
ENH1/Id1, MAPK/c-Myc, PTEN/PI3K/AKT, 
FBXL5/BTG3, the Sonic hedgehog pathways, 
and SIRPa 
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NF-κB, p53, PI3K/Akt/mTOR, ErbB2, Wnt, 
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miR-146 NF-kB pathway, TRAF6, IRAK1, IRF5 
miR-155 PI3K/Akt, PU.1, SHIP1 
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miR-19a NF-κB, STAT1, IRF1, STAT3 
miR-21 PDCD4, BTG2, KLF5 
miR-23a TOP2B 
miR-221 TP53 
miR-222 Wnt/β-catenin pathway, Axin2, 
miR-126 PI3K/AKT/MTOR 
miR-4262 KLF6 

6. MicroRNAs Associated with a Bad Prognosis in AML and Unknown Macrophage 
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MiR-3151 is encoded in the BAALC gene in intron 1. A study which included 179 pa-
tients with de novo, cytogenetically normal AML of ≥60 years old showed that miR-3151 
is overexpressed and is associated with mutations such as RUNX1 and MN1, with wild-
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Figure 1. MiRNAs associated with M1 or M2 polarization. MiR-17, 20a, 23a, 125b, 146b, 155, 210 are
associated with M1 macrophage polarization, while miR-19a, 21, 27a, 24-2, 222, 126 are associated
with the M2 phenotype.

Table 2 presents the miRNAs and their targets (pathways or transcription factors).

Table 2. miRNAs and their targets.

miRNA Pathway/Transcription Factor Targeted

miR-17-92 cluster
TP53, c-MYC, n-MYC, STAT3, MXI1, E2F1, E2F2, E2F3, NKX3.1,
TGF-β receptor II, Smad2, Smad4, BCL2L11, TSP-1, CTGF, Isl-1
and Tbx1

miR-20a ENH1/Id1, MAPK/c-Myc, PTEN/PI3K/AKT, FBXL5/BTG3, the
Sonic hedgehog pathways, and SIRPa

miR-125b NF-κB, p53, PI3K/Akt/mTOR, ErbB2, Wnt, DICER1, IRF4,
PUMA and GRK2

miR-146 NF-kB pathway, TRAF6, IRAK1, IRF5
miR-155 PI3K/Akt, PU.1, SHIP1
miR-210 SHIP1
miR-19a NF-κB, STAT1, IRF1, STAT3
miR-21 PDCD4, BTG2, KLF5
miR-23a TOP2B
miR-221 TP53
miR-222 Wnt/β-catenin pathway, Axin2,
miR-126 PI3K/AKT/MTOR
miR-4262 KLF6

6. MicroRNAs Associated with a Bad Prognosis in AML and Unknown
Macrophage Polarization

MiR-3151 is encoded in the BAALC gene in intron 1. A study which included 179 pa-
tients with de novo, cytogenetically normal AML of ≥60 years old showed that miR-3151 is
overexpressed and is associated with mutations such as RUNX1 and MN1, with wild-type
NPM1, and with a high expression of the BAALC gene. Even if it was associated with a
lower percentage of peripheral blast cells, the prognosis was poorer in this category of
patients [146]. In younger AML patients, with intermediate-risk AML, similar results have
been reported, suggesting that miR-3151 is a potential biomarker and target in AML [147].
Even after allogeneic hematopoietic stem cell transplantation, overexpression of miR-3151
or the BAALC gene was associated with a poorer prognosis [148]. No convincing evidence
of its association with macrophage polarization exists.

MiR-4262 is also associated with a poor prognosis. Patients with a high expression of
miR-4262 had a lower OS and lower relapse-free survival compared to low expressors [149].
MiR-4262 targets KLF6, which in the AML setting is downregulated and thus stimulates
proliferation and invasion [150]. We have not found any association between macrophage
polarization and the abovementioned miRNA.
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7. Discussion

AML is a hematological malignancy with a poor prognosis, despite major improve-
ments having been made not only in the management but also in the understanding of
the genetic landscape of this disease. Starting in the 1990s, an explosion of data regarding
miRNAs emerged, mostly in research proposing their use as biomarkers, both in diagnosis
and in the assessment of treatment efficacy. In acute leukemias, as with several other
hematologic malignancies, the obtention of diagnostic material is relatively straightforward
because the tumor is present in a circulating form and thus can be obtained by drawing
blood or by bone marrow aspiration. In contrast, in solid tumors, where the tumor material
is sometimes far less easily accessible, circulating plasma miRNAs and liquid biopsies are
regarded as promising tools for diagnosis and prognosis. From a therapeutic viewpoint,
in preclinical studies, either miRNA inhibitors or miRNA mimics have shown promising
results. However, very few have been translated into the clinic. In AML, there are several
miRNAs associated with a bad prognosis, most of them upregulated, and thus their inhibi-
tion holds promise to improve disease outcomes. On the other hand, macrophages and
their M1 or M2 polarization have been associated with the prognosis of both solid cancers
and hematological malignancies. In most cases, M2 macrophages are associated with a
dismal prognosis, with advanced disease and metastasis. Their involvement in the TME is
highly important and thus targeting them could further improve survival. We found that
miRNAs associated with a dismal prognosis in AML are not mainly associated with an
M2 phenotype, which, in AML too, is linked to progression and a low OS. Thus, miRNAs
are likely to influence the prognosis through a number of mechanisms, and not mainly via
macrophage polarization.
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