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Abstract: Obstructive sleep apnea (OSA) has been widely reported to cause abnormalities in brain
structure and function, but the genetic mechanisms behind these changes remain largely unexplored.
Our research aims to investigate the relationship between sleep characteristics, cognitive impairments,
genetic factors, and brain structure and function in OSA. Using structural and resting-state functional
magnetic resonance imaging data, we compared cortical morphology and spontaneous brain activity
between 28 patients with moderate-to-severe OSA and 34 healthy controls (HCs) utilizing voxel-based
morphology (VBM) and the amplitude of low-frequency fluctuations (ALFF) analyses. In conjunction
with the Allen Human Brain Atlas, we used transcriptome-neuroimaging spatial correlation analyses
to investigate gene expression patterns associated with changes in gray matter volume (GMV) and
ALFF in OSA. Compared to the HCs, the OSA group exhibited increased ALFF values in the left
hippocampus (t = 5.294), amygdala (t = 4.176), caudate (t = 4.659), cerebellum (t = 5.896), and
decreased ALFF values in the left precuneus (t = −4.776). VBM analysis revealed increased GMV
in the right inferior parietal lobe (t = 5.158) in OSA. Additionally, functional enrichment analysis
revealed that genes associated with both ALFF and GMV cross-sampling were enriched in gated
channel activity and synaptic transmission, glutamatergic synapse, and neuron.

Keywords: resting-state fMRI; amplitude of low-frequency fluctuation; gray matter volume; tran-
scriptomics; imaging biomarkers

1. Introduction

Obstructive sleep apnea (OSA) is a prevalent sleep disorder [1] characterized by
snoring, recurrent interruptions in sleep, fluctuations in oxygen levels, and excessive
daytime drowsiness. The prevalence of OSA has experienced a significant increase in
recent times [2], and it frequently coexists with numerous complications, giving rise to
cardiovascular and cerebrovascular disorders, hypertension, as well as psychiatric ailments
such as cognitive disorders associated with memory [3]. However, these aspects have not
yet received sufficient attention. The pathophysiological mechanisms of OSA have yet to be
fully elucidated, despite intermittent hypoxia being commonly regarded as an underlying
process leading to oxidative stress and free radical production [4].

Neuroimaging techniques are increasingly employed as a noninvasive modality to
elucidate the structural and functional disparities within the brain. In a previous study [5],
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resting-state functional magnetic resonance imaging (fMRI) was employed to quantify
alterations in the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity
(ReHo), aiming to investigate changes in brain function among pediatric individuals with
obstructive sleep apnea (OSA), while also exploring their correlation with neurocognitive
dysfunction. Another investigation [6] employed two distinct yet complementary method-
ologies, namely cortical thickness analysis (CTA) and voxel-based morphometry (VBM),
to evaluate disparities in gray matter thickness within the insula and cingulate regions
between individuals with OSA and healthy controls. However, the majority of previous
studies have predominantly focused on a singular mode of investigation. It is crucial to
acknowledge that there exists a substantial level of synergy between brain structure and
function, which collectively contribute to the development and progression of diseases and
neurocognitive function [7]. Therefore, it is imperative to investigate the aberrations in
brain structure and function among individuals with OSA and their correlation with neu-
rocognitive performance using multimodal imaging techniques that integrate resting-state
MRI, VBM, as well as specific alterations in ALFF and gray matter volume (GMV).

A recent study [8] conducted in China has identified novel and significant genetic
loci associated with OSA and objective sleep-related traits, while also investigating their
functional roles. Additionally, another Chinese study [9] aimed to develop a polygenic risk
score (PRS) for evaluating its association with the occurrence of OSA in the Chinese Han
population. Although a limited number of previous studies have explored co-inherited
risk loci for OSA, the precise identification of the risk genes associated with OSA remains
predominantly elusive. Recently, several successful research studies [10,11] have employed
transcriptome-neuroimaging spatial correlation analyses to investigate neuropsychiatric
disorders. These studies have yielded novel insights into the association between regional
variations in brain gene expression and neuroimaging characteristics. Consequently, it is
plausible to consider neuroimaging features of OSA as intermediate phenotypic modalities
with genetic underpinnings. However, no prior investigations utilizing transcriptomic
imaging techniques in OSA have been conducted to explore gene expression profiles and
brain function-associated structures.

Our investigation utilizes resting-state MRI and 3D T1-weighted magnetization-
prepared rapid gradient-echo (MPRAGE) sequence MRI data to examine the structural and
functional alterations in the brains of individuals with OSA. The present study employs
the resting-state functional metric ALFF and the structural metric gray matter volume
(GMV) to investigate these alterations, which may be key nodes in the brain’s cognitive
function and emotional regulation networks. In addition, we explored correlations between
neuroimaging metrics and neurocognitive assessment tools as well as sleep parameters.
Furthermore, we ascertain the correlated gene expression profiles with alterations in brain
structure and function in patients with OSA through spatial correlation analysis. The gene
expression data were obtained from six normal adult brain tissue samples provided by
the Allen Human Brain Atlas (AHBA). Therefore, our study further links the changes in
brain function and structure of OSA patients with gene expression profiles and neurocog-
nitive function. As such, it may offer novel insights into the intrinsic molecular genetic
mechanisms underlying alterations in brain structure and function among individuals
with OSA, as well as shed light on the mechanism behind the heightened risk of cognitive
impairments and psychiatric disorders observed in this population.

2. Materials and Methods
2.1. Participants

Between June 2022 and July 2023, a total of 40 newly diagnosed patients with OSA
were initially recruited from the Sleep Disorders Center at the Second Xiangya Hospital,
Central South University of China. Additionally, 45 age-, gender-, and education-matched
healthy controls were enrolled from the Health Management Center at the same hospital.
Eventually, following essential adjustments, 12 subjects were excluded from the OSA group,
including one patient with vascular malformations, one with metal dentures, three with
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poor image quality, and seven with severe head movements. Eleven subjects were excluded
from the HC control group, excluding one patient with residual metal fragments in the
brain, two patients with poor image quality, and eight patients with head movements.
Finally, a total of 28 patients with OSA and 34 healthy controls were successfully enrolled
who were matched in terms of age, gender, and education (Figure 1).
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The inclusion criteria for patients with OSA necessitated an apnea-hypopnea index
(AHI) exceeding 15 events per hour. The exclusion criteria for all participants were as fol-
lows: (1) presence of structural brain abnormalities, such as brain tumors, cerebrovascular
disease, or brain infections, except for cerebral white matter high signal on conventional
neuroimaging; (2) severe physical ailments including poorly managed diabetes mellitus,
high blood pressure, elevated cholesterol levels, and excessive uric acid levels along with
their associated severe complications; (3) significant psychiatric or neurological conditions
like major depressive disorder; (4) history of traumatic brain injury and cranial surgery
or substance abuse; (5) previous evaluation using comparable or indistinguishable cogni-
tive measures; (6) failure to complete MRI scans and questionnaires; (7) head movement
exceeding 2 mm in translation or 2◦ in rotation, or poor image quality.

All individuals in the control group, with the exception of potential obesity, exhibited
normal results on physical examinations and laboratory tests within the typical range.
Healthy controls were excluded if they received a polysomnography diagnosis indicating
any form of sleep-disordered breathing. Additionally, all participants were right-handed
native Chinese speakers aged 18 years or above. The study was conducted with the ap-
proval of the Ethics Committee of the Second Xiangya Hospital, Central South University.
All procedures were performed in accordance with the guidelines outlined in the Declara-
tion of Helsinki. Prior informed consent was obtained from all individuals involved, who
also provided written consent forms.

2.2. Polysomnography (PSG) and Questionnaires

Diagnostic polysomnography (PSG) was conducted on all participants (Embla S4000;
Medcare Technologies, Fuquay Varina, NC, USA). The comprehensive array of tools em-
ployed in this study included a tracheal microphone for snoring recording, a pulse oximeter
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for monitoring oxygen saturation levels, devices for electroencephalography (EEG), elec-
trooculography (EOG), electromyography (EMG), and electrocardiography (ECG) record-
ings. Additionally, a nasal pressure transducer was utilized to measure nasal airflow,
while thoracic and abdominal impedance belts were used to assess respiratory effort.
Furthermore, sensors were employed to evaluate leg movements and sleep positions.
The evaluations are conducted exclusively by highly experienced physicians specializing
in sleep disorders at dedicated sleep research facilities. According to the 2017 Clinical
Practice Guidelines for adult obstructive sleep apnea [12] issued by the American Society
of Sleep Medicine, the diagnosis of OSA is collaboratively made by proficient respiratory
physicians.

The participants’ neurocognitive functioning was evaluated upon admission using
three standardized assessments: the Stroop Color Word Test (SCWT), Matrix Consensus
Cognitive Battery (MCCB), and Montreal Cognitive Assessment (MoCA). Daily drowsiness
was measured using the Epworth Drowsiness Scale (ESS). If the MoCA score dropped below
26, it was inferred that there had been a deterioration in cognitive function. The MCCB and
SCWT scores were categorized into seven domains, encompassing the following cognitive
abilities: information processing speed, logical reasoning, cognitive flexibility, memory
retention and manipulation, problem-solving, focus/alertness, and analytical short-term
verbal learning.

2.3. Image Data Acquisition

A 32-channel head coil was utilized in conjunction with a Siemens Skyra 3T MRI scanner
(Siemens Healthcare, Erlangen, Germany) to collect all MRI data. During the scanning process,
subjects were asked to try not to think about anything else while closing their eyes and not
going to sleep. Furthermore, individuals assumed a supine position on their backs and wore
headphones, while sponge pads were strategically positioned at the center of the head and
within the coils to minimize motion artifacts resulting from head movements. The resting-state
fMRI parameters were as follows: repetition time (TR)/echo time = 2000 ms/30 ms; matrix,
64 × 64; flip angle = 90◦, voxel size = 3.5 mm × 3.5 mm × 3.5 mm, with a total of 37 axial
slices and slice thickness set at 3.4 mm, field of view = 192 mm. Acquisition parameters
for the three-dimensional T1-weighted sequence were as follows: 192 slices per slab with a
256 × 256 in-plane resolution; repetition time was set at 2.3 s, echo time at 2.32 milliseconds,
slice thickness = 0.9 mm, and flip angle at 8◦. The voxel size was 0.9 mm × 0.9 mm × 0.9 mm
and inversion time at 900 milliseconds.

2.4. Resting-State fMRI Preprocessing and ALFF Analysis

The SPM software(version SPM12) and DPARSF (Resting-State fMRI processing and
Analysis, (www.restfmri.net/ (accessed on 15 July 2023)) toolbox were used to preprocess
resting-state MRI data. To ensure the stability of the imaging data during acquisition,
we excluded the initial 10 time points and performed slice timing. We adjusted the slice
times to minimize any impact from variations in acquisition times and head movement
caused by whole head image data. Additionally, we normalized the data to conform to
the standard MNI space using voxels measuring 3 × 3 × 3 mm3 in size. For smoothing
purposes, a Gaussian kernel with a full width at half maximum (FWHM) of 6 mm was
applied. To account for confounding factors, we conducted regression analysis on white
matter signals, Friston’s 24-parameter head motion global mean signals, and cerebrospinal
fluid. Furthermore, linear temporal detrending and temporal bandpass filtering within the
frequency of 0.01–0.08 Hz were employed. We excluded data with head motion resulting
in a displacement of more than 2 mm or a rotation of more than 2◦. The ALFF values were
obtained using the DPARSF toolkit. We applied a rapid Fourier transform to convert the
filtered time series of each voxel into the frequency domain. The ALFF average square
root was within the frequency range of 0.01–0.08 Hz for each voxel. First, we conducted a
voxel-wise, one-sample t-test on standardized ALFF separately for individuals with OSA
and HC in order to identify brain regions that exhibit significant standardized ALFF in these

www.restfmri.net/
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two groups. Next, within these identified regions, we conducted a voxel-wise two-sample
t-test on standardized ALFF between individuals with OSA and HC while controlling for
age, gender, education, and body mass index (BMI) as covariates of no interest. The sign
of the t-value indicates the direction of the difference in the means, with a positive value
indicating that the mean ALFF value of the difference brain region in the OSA group was
greater than that of the healthy control group and a negative value indicating that the
mean ALFF value of the difference brain region in the OSA group was less than that of the
healthy control group. Following correction based on Gaussian random field (GRF) theory,
all ALFF results adhered to a two-tailed voxel-wise p value < 0.001 and a cluster-level
p value < 0.05.

2.5. VBM Analysis

The structural magnetic resonance imaging (sMRI) data was processed using the
CAT12 software package(version CAT12.8.2), which built-in package based on spm12.
The processing steps included the following: (1) correcting signal variance across voxels
caused by B1 field inhomogeneity through bias correction; (2) classifying various brain
tissues such as cerebrospinal fluid, white matter, and gray matter (GM) through tissue
segmentation; (3) warping each individual GM tissue into Montreal Neurological Institute
(MNI) space using the DARTEL algorithm for spatial normalization. This adjustment
maintained the absolute GM tissue’s absolute volume (GMV), and resampling was per-
formed to achieve a voxel size of 1.5 × 1.5 × 1.5 mm3; (4) smoothing the generated gray
matter with an 8 mm full width at half maximum Gaussian kernel for spatial smoothing
purposes. The smoothed cortical thickness images were incorporated into a general linear
model at the group level, with covariates controlling for age, gender, education, and BMI.
To identify specific regions of the brain with significant case–control differences in GMV,
an independent 2-sample t-test was conducted. Significance levels were determined using
1000 Monte-Carlo simulations at voxel level p value < 0.001 and corrected cluster-wise
p value < 0.05.

2.6. Meta-Analytical Decoding

To investigate the cognitive associations of brain regions that exhibited significant
differences in ALFF and GMV between individuals with OSA and healthy controls, we
performed a meta-analysis utilizing the Neurosynth database (https://neurosynth.org/
decode/ (accessed on 6 August 2023)). By inputting the original spmT map, the website
automatically generates terms linked to modified brain regions along with correlation
coefficients, based on their values. After excluding anatomical terms, we selected the top
30 terms for presentation in a word cloud (with word size indicating correlation strength)
(Figure 2B,C).

2.7. Brain Gene Expression Data Processing

The gene expression data were derived from the Allen Human Brain Atlas [13], which
was derived from six postmortem donated adult brains. Since only two donors had
whole brain tissue samples available, our analysis focused specifically on the left hemi-
sphere. Concisely, the preprocessing of gene expression data based on the abagen [14]
toolkit (https://www.github.com/netneurolab/abagen (accessed on 7 August 2023)) can
be summarized [15] as follows: (1) revising probe-to-gene annotations; (2) applying an
intensity-based filter; (3) selecting specific probes; (4) matching samples to brain regions;
(5) managing missing data; (6) normalizing sample values; (7) normalizing gene values;
(8) combining sample values for each region; and finally, (9) identifying stable genes. As a
result of these preprocessing steps, we retained a total of 15,897 genes for further analysis.
To segment the brain into distinct regions, we utilized a gray matter mask and generated a
resulting gene expression matrix consisting of 1520 regions × 15,897 genes.

https://neurosynth.org/decode/
https://neurosynth.org/decode/
https://www.github.com/netneurolab/abagen
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to healthy controls. After Gaussian random field (GRF) theory correction, all statistical significance
of ALFF complied with a 2-tailed voxel-wise p value < 0.001 and a cluster-level p value < 0.05.
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2.8. Gene Expression–Neuroimaging Spatial Correlation Analyses

To obtain the genes most associated with ALFF and GMV changes in OSA, we utilized
statistical maps of brain imaging metrics of ALFF values and GMV values between the OSA
patients and healthy subjects, and extracted t-values of 1520 samples (gray masking features)
in the statistical maps based on the corresponding gray matter masks. Consequently, a T-value
matrix with dimensions of 1520 samples × 1 was generated. Next, we performed Pearson cor-
relation analysis between the gene expression matrix (1520 samples × 15,897 genes, obtained
in brain gene expression data processing analysis) and T-value matrix (1520 samples × 1) us-
ing MATLAB’s core function, ultimately identifying genes that exhibited similar distributions
in both gene expression values and T-values. To identify significantly associated genes, we
used Bonferroni-corrected Pearson correlation analysis of p < 0.01 and |Pearson r| > 0.2 as
significant gene inclusion criteria.

2.9. Pathway Analysis

Gene enrichment analysis was performed on genetic crossover samples in which both
ALLL and GMV changes were significantly correlated. We performed a Gene Ontology
(GO) analysis for molecular function, cellular components, and biological processes via
clusterProfiler (version 4.6.2), org.Hs.eg.db (version 3.16.0), enrichplot (version 1.18.4), circlize
(version 0.4.15), complexHeatmap (version 2.14.0), and ggplot2 (version 3.4.4) [16] packages.

2.10. Statistical Analysis

The statistical analysis was conducted using SPSS software (version 26.0, IBM Corp,
Armonk, NY, USA). Categorical variables were presented in terms of absolute and relative
frequency. The median and interquartile range (IQR) were utilized for continuous variables.
The dissimilarities among groups were assessed using appropriate statistical techniques
for continuous variables (Mann–Whitney U test) and categorical data (Fisher’s exact test).
Spearman correlation was applied to evaluate the correlation between imaging indices
(ALFF and GMV) and clinical parameters (including demographics, sleep parameters, and
neurocognitive parameters). The results of the correlation analysis were corrected using
the False Discovery Rate (FDR) method, setting the significance level at p < 0.05.
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3. Results
3.1. Demographic and Clinical Characteristics

Significant differences were observed in body mass index (BMI), ESS scores, AHI,
mean percutaneous oxygen saturation (MSpO2), N3 period, lowest percutaneous oxy-
gen saturation (LSpO2), apnea-hypopnea index during non-rapid eye movement stage
(NREM-AHI), oxygen desaturation index (ODI), apnea-hypopnea index during rapid eye
movement stage (REM-AHI), sleep efficiency, and arousal index between the OSA group
and HCs group. These differences were statistically significant with p < 0.05. Conversely,
there were no statistically significant differences observed in age, REM period, gender
distribution, educational background, smoking status, Trial Making Test-A, and Symbol
Coding between the groups (all p > 0.05). As presented in Table 1, the neurocognitive
evaluations conducted on individuals with OSA indicated poorer performance (p < 0.05)
across various measures such as MoCA scale score, Stroop word test, Stroop color test,
Hopkins Verbal Learning Test—Revised (HVLT-R), Stroop color-word test (SCWT), mazes,
category fluency, Continuous Performance Test-identical Pairs (CPT-IP), Brief Visuospatial
Memory Test-Revised (BVMT-R), and spatial span (WMS-IIISS).

Table 1. Comparison of characteristics in demography, sleep parameters, and neurocognitive tests
between OSA patients and HCs.

Demographic OSA (n = 28) HCs (n = 34) p Value

Age (year) 48 (36–53) 41 (33–51) 0.731
Gender (male) (%) 25 (89.3) 26 (76.5) 0.317
BMI (kg/m2) 27.9 (26.7–30.5) 24.2 (22.3–26.4) <0.001
Education (year) 15 (12–16) 15 (12–16) 0.344
Smoker (%) 19 (67.9) 17 (50.0) 0.200
ESS scores 10.0 (7.0–16.0) 3.0 (2.0–4.5) <0.001
Sleep efficiency (%) 84.6 (75.5–89.8) 89.5 (86.2–91.3) 0.004
N3 period (%) 6.7 (1.2–13.3) 18.6 (12.4–20.4) <0.001
REM period (%) 18.4 (14.8–21.8) 20.3 (17.0–24.9) 0.157
AHI (events/hour) 57.0 (31.8–76.4) 3.9 (3.3–4.6) <0.001
REM-AHI (events/hour) 47.2 (28.4–59.1) 2.7 (2.0–3.5) <0.001
NREM-AHI (events/hour) 53.6 (29.9–71.8) 3.8 (3.1–4.7) <0.001
LSpO2 (%) 75.5 (58.8–85) 92.0 (91.5–95.2) <0.001
MSpO2 (%) 94.0 (92.0–96.0) 96.0 (95.5–97.0) <0.001
ODI (events/hour) 45.4 (24.1–70.6) 3.1 (1.8–4.5) <0.001
Arousal Index (events/hour) 45.3 (27.7–71.3) 10.8 (6.7–15.5) <0.001
MoCA 22.5 (20.0–26.0) 25.0 (24.0–27.0) 0.003
Trial Making Test-A 37.0 (29.3–47.8) 34.0 (29.0–41.5) 0.442
Symbol Coding 39.0 (27.0–47.8) 38.0 (36.0–43.5) 0.723
HVLT-R 16.0 (14.3–22.0) 21.0 (18.5–24.5) 0.004
Spatial Span 16.0 (15.0–19.0) 19.0 (17.5–22.0) 0.002
Mazes 12.5 (10.0–18.0) 19.0 (17.5–22.0) <0.001
BVMT-R 16.0 (12.0–22.0) 24.0 (21.0–28.0) 0.002
Category Fluency 17.0 (15.0–21.5) 22.0 (20.0–26.0) 0.001
CPT-IP 2.2 (1.4–2.6) 2.7 (2.3–3.1) 0.031
Stroop word test 81.0 (69.5–88.5) 92.0 (86.0–100.0) 0.001
Stroop color test 53.0 (45.0–68.8) 75.0 (69.0–80.0) <0.001
SCWT 32.5 (25.5–37.8) 39.0 (32.5–44.0) 0.005

For comparison, Fisher’s exact test was used for categorical variables, and the Mann–Whitney U test was employed
for continuous variables; the italic p-values indicate statistical significance. OSA, obstructive sleep apnea; HCs,
healthy controls; BMI, body mass index; ESS, Epworth sleepiness score; AHI, apnea-hypopnea index; REM-
AHI, apnea-hypopnea index during rapid eye movement stage; NREM-AHI, apnea-hypopnea index during
non-rapid eye movement stage; LSpO2, lowest oxygen saturation; MSpO2, mean oxygen saturation; ODI, oxygen
desaturation index; MoCA, Montreal Cognitive Assessment; HVLT-R, Hopkins Verbal Learning Test-Revised;
BVMT-R, Brief Visuospatial Memory Test-Revised; CPT-IP, Continuous Performance Test-identical Pairs; SCWT,
Stroop color-word test.
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3.2. Altered ALFF

Compared with the HCs, the OSA group showed increased ALFF values in the left
hippocampus (t = 5.294, p < 0.05), left amygdala (t = 4.176, p < 0.05), left caudate (t = 4.659,
p < 0.05), left Cerebullm (t = 5.896, p < 0.05), and decreased ALFF Values at left pre-
cuneus (t = −4.776, p < 0.05) (Table 2 and Figure 2A). In addition, regions exhibiting an
increased ALFF in the OSA group were associated with muti-task learning, memory, en-
coding, reward, and emotional, while those exhibiting a decreased ALFF were involved in
sensorimotor, execution, tasks, coordination, spatial, and working memory (Figure 2B).

Table 2. Brain regions with abnormal ALFF and GMV between the groups.

Indices Brain Regions L/R
Peak MNI Coordinates

Cluster Size t-Value
X Y Z

ALFF Hippocampus L −15 −33 −3 41 5.294
Amygdala L −21 −3 −18 25 4.176
Caudate L −12 6 12 67 4.659
Precuneus L −6 −72 57 50 −4.776
Cerebellum_9 L −3 −48 −33 25 5.896

GMV Parietal_Inf R 44 −59 60 106 5.158

The sign of the t-value indicates the direction of the difference in means, with a positive value indicating that the
mean ALFF or GMV value of the brain region in the OSA group was greater than that of the healthy control group
and a negative value indicating that it was less. Abbreviations: GMV, gray matter volume; ALFF, amplitude of
low-frequency fluctuation; L, left; R, right; Parietal_Inf = Inferior parietal (but supramarginal and angular gyri).

3.3. Changed GMV

Compared with the HCs, the OSA group showed increased GMV values in the right
Inferior parietal (but supramarginal and angular gyri) (t = 5.158, p < 0.05) (Table 2). The re-
gions of increased GMV in the OSA group were mainly associated with sensorimotor,
coordination, execution, tasks, mind, and working memory (Figure 2C).

3.4. Transcription–Neuroimaging Associations

Transcriptome–neuroimaging spatial correlation analyses demonstrated that the 479 gene
levels of expression (top five positively correlated genes: MTMR2, EPN3, EIF5A2, RCAN2,
RAMP3; top five negatively correlated genes: RIIAD1, PLPPR4, LYRM9, PGM2L1, GABRA5)
were significantly associated with GMV changes, and 1547 gene expression measures were
significantly related to ALFF alterations in OSA (top five positively correlated genes: PLPPR4,
FAM171B, UCHL3, TMEM158, APOC1; top five negatively correlated genes: LOC100506388,
NFIC, DOK3, SYT2, ADAM23).

3.5. Pathway Analysis

To characterize the functional properties of genes associated with ALFF and GMV
changes in the OSA group, we enriched their gene expression profile. The 427 genes in
genetic crossover samples associated with both ALFF and GMV changes in OSA showed
significant functional enrichment in molecular functions as follows: gated channel activity,
metal ion transmembrane transporter activity, GABA-gated chloride ion channel activity,
and calcium-dependent phospholipid binding. In the biological process, it was as follows:
modulation of chemical synaptic transmission, regulation of trans-synaptic signaling,
synapse organization, regulation of membrane potential and postsynaptic membrane
potential. In cellular components, it was as follows: glutamatergic synapse, synaptic
membrane, neuronal cell body, neuron spine, and exocytic vesicle (Figure 3A,B).

3.6. Correlation Analyses

Correlation analyses revealed that ALFF values in the left caudate (Caudate_L) were
significantly negatively correlated with the Stroop word test (r = −0.559, p = 0.002) and
Stroop color test (r = −0.575, p = 0.001) in OSA (Figure 4A,B). The ALFF values in the left
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cerebellum (Cerebellum_9_L) were positively correlated with the apnea-hypopnea index
during the rapid eye movement stage (REM-AHI) (r = 0.593, p = 0.001) in OSA (Figure 4C).
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apnea-hypopnea index during rapid eye movement stage; L, left; OSA, obstructive sleep apnoea.
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4. Discussion

Obstructive sleep apnea (OSA) has been extensively documented to elicit alterations
in both the structure and function of the brain [7]. By utilizing multimodal integrated
structural and functional brain imaging analysis in conjunction with Allen transcriptional
data from the Human Brain Atlas, we conducted an investigation into alterations in ALFF
and GMV as well as their corresponding gene transcriptional profiles among moderate-to-
severe OSA patients. The analysis of ALFF and VBM demonstrated changes in brain regions
related to cognitive function, emotional state, and sleep regulation, which is consistent with
previous research indicating that sleep disorders have a detrimental impact on cognitive
function and mood regulation [17].

The common causes of sleep disorders include traumatic brain injury (TBI), psychoso-
matic factors, as well as medications and environmental factors. Moreover, sleep disorders
increase the prevalence of hypertension, obesity, cardiovascular disease, and stroke [18].
These findings prompt our focus on elucidating the underlying mechanisms connecting
OSA with these conditions. In our study, genes associated with changes in ALFF and GMV
in OSA were identified by the spatial correlation between transcription and neuroimaging.
Further functional enrichment analyses revealed that genes co-associated with ALFF and
GMV cross-sampling exhibited enrichment in gated channel activity and synaptic trans-
mission, as well as glutamatergic synapses and neurons. The aforementioned findings
offer a fresh perspective for investigating the association between sleep characteristics
and neuropsychiatric disorders, as well as unraveling the biological foundations of brain
morphology and functional phenotypes in individuals with OSA.

4.1. Brain Regions with Altered ALFF Values

Compared to healthy controls, patients with OSA exhibited significant alterations in
ALFF across various brain regions. Specifically, these changes manifested as increased
ALFF values in the left hippocampus, left amygdala, left caudate nucleus, and left cere-
bellum, along with decreased ALFF values in the left precuneus. Patients with OSA often
experience recurrent apnea and oxygen deprivation [19], which may lead to abnormal
changes in ALFF values in the brain regions as an adaptive response to inadequate oxygen
supply [20]. Such changes may result in decreased cognitive regulation and an increased
risk of emotional problems. The precuneus [21] plays a crucial role in the integration and
processing of information, encompassing visuospatial imagery, extraction of contextual
memories, self-referential thinking, and awareness. A study has revealed the presence of
amyloid beta accumulation in both the precuneus and posterior cingulate regions among
individuals diagnosed with OSA, potentially exerting a significant influence [22] on subse-
quent cognitive decline. The hippocampus is susceptible to damage induced by intermittent
hypoxia [23] and plays a pivotal role in the acquisition, consolidation, and retrieval of novel
memories [24]. Previous studies have extensively investigated the impact of OSA on the
hippocampus. For instance, one study [25] examined hippocampal volume in overweight
and obese adolescents with OSA and found it to be larger compared to a control group.
Furthermore, another study [26] observed disrupted functional connectivity between the
hippocampus, caudate nucleus, and OSA along with elevated levels of anxiety and de-
pressive symptoms when compared to healthy individuals. The left amygdala plays a
crucial role [27] in regulating emotions. Thus, the decreased ALFF in OSA patients may
potentially induce symptoms of anxiety and depression. A study has indicated that male
individuals with severe OSA exhibit an atypical functional connectivity pattern within a
specific subregion of the amygdala [28]. Moreover, this aberrant pattern may contribute
to the presence of emotional and cognitive impairments observed in males with severe
OSA, thereby further supporting our findings. The hippocampus and amygdala are both
components of the limbic system, which comprises interconnected cortical and subcortical
structures. This intricate system serves to integrate emotions, cognition, and behavior while
also playing a crucial role in memory consolidation during sleep [29,30]. Impairment to
the limbic system [31] often leads to mental disorders such as hallucinations as well as
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disturbances in mood and memory. Thus, sleep disorders can increase the risk of psychi-
atric disorders [32], due to the fact that sleep is crucial for brain stabilization and emotional
regulation. The effects of sleep disorders are not limited to their direct impact on brain
region activity but extend to broader areas related to mental health.

The results of correlation analysis showed that there was a significant negative corre-
lation between ALFF values in the caudate nucleus and the Stroop Color and Word Test
(SCWT) scores in patients with OSA. Meanwhile, there was a significant positive correlation
between ALFF values in the cerebellum and REM-AHI. These results provide important
insights into the effects of OSA on brain function and the associations with cognitive and
sleep parameters.

The caudate region plays an important role in many cognitive functions [33]. The color-
word test [34] is commonly used to assess the ability to inhibit cognitive interference.
Damage to the caudate nucleus may affect the cognitive control and inhibition associated
with the SCWT scores, leading to prolonged reaction times and increased error rates in
OSA patients. The positive correlation between cerebellar ALFF values and REM-AHI may
reflect a strong link between sleep parameters and brain function. The cerebellum, which
plays an increasingly crucial role in regulating sleep-wake cycles, has been discovered to be
the network responsible for controlling sleep and wakefulness. Additionally, it is actively
involved in activities that vary depending on the stage of sleep [35]. The cerebellum is
susceptible to hypoxia or ischemia, and sleep deprivation may interfere with cerebellar
function [36]. The phase of sleep known as rapid eye movement (REM) [37] is a slumber
typically linked to the occurrence of dreams and emotional processing. Thus, a higher
REM-AHI may involve a decrease in the availability of oxygen to the patient during the
REM sleep period, which may result in the functional abnormality of the cerebellum.

4.2. Brain Regions with Altered GMV Values

The increased gray matter volume in the inferior parietal lobule (IPL) observed in
patients with OSA may exhibit a multifaceted relationship with neurophysiological mecha-
nisms, cognitive functioning, and other cerebral alterations. The incongruity between this
condition and the altered ALFF values in specific brain regions could potentially reflect the
intricate nature of brain dynamics.

The inferior parietal lobule (IPL) [38] plays a crucial role in various cognitive functions
such as spatial perception, sensory perception, integration of multiple senses, and mathe-
matical processing. In turn, cognitive control [39] (or executive control) is believed to be
particularly susceptible to sleep. Patients with OSA typically experience multiple episodes
of apnea and inadequate oxygen supply, which negatively affects the brain. Increased
gray matter volume may be a compensatory mechanism [40] in an attempt to cope with
multiple hypoxic events. The brain is a highly complex organ, and different regions may
respond to physiological and environmental changes in different ways [41]. Therefore,
the increase in gray matter volume and the change in ALFF values may not be consistent,
as they may reflect different strategies and adaptive responses of the brain in the face of
factors such as OSA. In addition, brain plasticity and compensatory mechanisms may differ
between regions.

4.3. Gene Enrichment Analysis

The spatial expression profiles of 427 ALFF and GMV co-associated cross-sample genes
were closely correlated with changes in ALFF values as well as GMV values, suggesting
that ALFF and GMV are involved in complex multigene interactions in OSA. These cross-
sample gene enrichment results were highly enriched in gated channel activity and synaptic
transmission as well as glutamatergic synapse and neuron. This implies that changes in
the expression profiles of these genes may be one of the potential causes of structural
and functional abnormalities in the brain. Furthermore, emerging evidence implicates
sleep in the most basic of neurological functions, namely the exchange of metabolic wastes
associated with neurological homeostasis [17].
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According to the previous study [42], ion channels have been found to be crucial in
regulating motor activity and sleep-wake cycles on a circadian basis. The modulation of
ion channel characteristics by circadian rhythms influences the activation of neurons and
the transmission synapses, thereby collectively governing alterations in circadian rhythm.
OSA-gated channel activity may be disturbed, which may affect neuronal excitability and
inhibition [43]. This may lead to a decline in cognitive function, such as difficulties with
learning and memory. GABA-gated chloride channel activity in GABA [44] is an inhibitory
neurotransmitter that inhibits neuronal excitability by regulating the activity of chloride
channels. In OSA, abnormal activity of these channels may lead to difficulties in emotion reg-
ulation [45]. Glutamate is involved in initiating and maintaining the sleep/wake cycle while
also playing a significant role in regulating rapid eye movement sleep [46]. Glutamate [47] is
an excitatory neurotransmitter that may play a role in cognitive and emotional regulation.
In OSA, glutamatergic synapses may be abnormally regulated. According to one study, the
association between poor sleep quality and increased severity of positive symptoms, as
well as decreased levels of anterio cingulate glutamate, has been reported in patients with
schizophrenia [48]. In addition, synapses and neurons are critical for signaling between
neurons and maintaining cognitive function [49,50]. Insufficient sleep causes modifications
in molecular signaling and gene expression and potentially results in alterations to the
synaptic structure of neurons [51]. Patients with OSA may have abnormal regulation of
synaptic transmission, which may lead to signaling problems between neurons, affecting
cognitive and emotional regulation [52].

Our study suggests that complex polygenic genetic mechanisms contribute to brain
morphologic and functional abnormalities in OSA. The present study integrates changes in
brain imaging and gene expression profiling to provide a comprehensive understanding
of the underlying mechanisms behind brain abnormalities in OSA patients. These find-
ings establish a crucial foundation for future research and clinical practice (particularly
neuroprotective agent therapy [18]), with the potential to enhance diagnostic and thera-
peutic approaches for individuals with OSA, offering novel insights into the relationship
between genes and brain function in this population.

4.4. Limitations

There are several limitations worth noting in this study. Firstly, this study is a cross-
sectional observational study with a small sample size; the conclusions we reached can
only be interpreted with a degree of caution, so future studies with larger sample sizes as
well as longitudinal studies are needed to further validate our results. Secondly, a higher
BMI was observed in patients with OSA compared to healthy controls, suggesting that
obesity may influence resting-state brain activity. Although we controlled for obesity as a
covariate in our brain imaging analysis, the role of obesity in MRI imaging changes in OSA
needs to be further investigated. Thirdly, in transcriptome neuroimaging spatial correlation
analysis, gene expression data and neuroimaging data come from different subjects, and
some genes are sure to be missed due to individual differences. Finally, because the anxiety
and depression scales were not used in this experiment, it was not possible to further
explore the relationship between depression and anxiety conditions and cognitive and
neuropsychiatric disorders in OSA subjects.

5. Conclusions

The present study revealed morphological and functional changes in brain regions as-
sociated with cognitive function, mood regulation, and sleep control in moderate-to-severe
OSA patients. Additionally, we identified spatial correlations between gene expression
profiles and these changes. These findings offer novel insights into the intrinsic molecular
genetic mechanisms underlying alterations in brain structure and function among indi-
viduals with OSA, as well as shed light on the mechanism behind the heightened risk of
cognitive impairments and psychiatric disorders observed in this population.
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