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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type characterized
by a marked desmoplastic tumor stroma that is formed under the influence of transforming growth
factor (TGF)-β. Data from mouse models of pancreatic cancer have revealed that transcriptionally
active p73 (TAp73) impacts the TGF-β pathway through activation of Smad4 and secretion of biglycan
(Bgn). However, whether this pathway also functions in human PDAC cells has not yet been studied.
Here, we show that RNA interference-mediated silencing of TAp73 in PANC-1 cells strongly reduced
the stimulatory effect of TGF-β1 on BGN. TAp73-mediated regulation of BGN, and inhibition of
TGF-β signaling through a (Smad-independent) ERK pathway, are reminiscent of what we previously
observed for the small GTPase, RAC1b, prompting us to hypothesize that in human PDAC cells
TAp73 and RAC1b are part of the same tumor-suppressive pathway. Like TAp73, RAC1b induced
SMAD4 protein and mRNA expression. Moreover, siRNA-mediated knockdown of RAC1b reduced
TAp73 mRNA levels, while ectopic expression of RAC1b increased them. Inhibition of BGN synthesis
or depletion of secreted BGN from the culture medium reproduced the promigratory effect of RAC1b
or TAp73 silencing and was associated with increased basal and TGF-β1-dependent ERK activation.
BGN also phenocopied the effects of RAC1b or TAp73 on the expression of downstream effectors,
like the EMT markers E-cadherin, Vimentin and SNAIL, as well as on negative regulation of the
ALK2-SMAD1/5 arm of TGF-β signaling. Collectively, we showed that tumor-suppressive TAp73-
Smad4-Bgn signaling also operates in human cells and that RAC1b likely acts as an upstream activator
of this pathway.

Keywords: biglycan; cell migration; epithelial-mesenchymal transition; PDAC; RAC1b; SMAD3;
SMAD4; TAp73; transforming growth factor-β

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) represents the most abundant type of
pancreatic cancer and is characterized by early metastatic spread, late diagnosis and the
lack of efficient therapies [1–3]. PDAC is predicted to become the second leading cause
of cancer-related deaths worldwide by the year 2030. The extremely poor prognosis
emphasizes the urgent need for obtaining a better understanding of PDAC development
and progression. Recent studies have focused on the tumor stroma, which comprises
the majority of the tumor mass [4,5] and is extremely rich in various extracellular matrix
(ECM) components, a phenomenon termed desmoplasia [5]. Increasing efforts have been
made to therapeutically target this non-malignant but still transformed compartment in
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order to slow down tumor development and reduce its aggressive nature [4,6]. Tumor
stroma formation and composition are controlled to a large extent by transforming growth
factor (TGF)-β. A prototype example for a matrix protein, whose expression is induced
by this growth factor is the small leucine-rich proteoglycan, biglycan (BGN). Of note, the
secreted form of BGN is able to bind and sequester TGF-β in the pericellular space, thereby
preventing access to its cognate receptors and neutralizing its biological activity towards
tumor-promoting effects. BGN and TGF-β form an autoregulatory feedback loop since
BGN itself is subject to positive regulation by canonical TGF-β signaling involving the
common-mediator Smad, SMAD4 [7]. The canonical TGF-β/Smad pathway involves,
besides SMAD4, the receptor-regulated Smads, SMAD2 and SMAD 3 [8]. Alterations in
this pathway, particularly mutations in or genomic deletion of DPC4 (encoding SMAD4)
are crucial steps in PDAC progression [4]. However, TGF-β can also signal through Smad-
independent pathways, i.e., the extracellular signal-regulated kinases ERK1/2, JNK/p38
or PI3K/AKT [9–11]. The differential activation of canonical and non-canonical signaling
by TGF-β, which in turn depends on the cellular context and disease stage, determines to
a large extent whether this growth factor acts as a tumor suppressor or tumor promoter
in PDAC [12].

Recently, it was demonstrated in two genetically engineered mouse models (GEMMs)
of pancreatic cancer that the TGF-β pathway is controlled by full-length, transcriptionally
active p73 (TAp73), a p53 family member and close homologue [13], through regulation of
Bgn secretion via intermittent Smad3/4 expression/activity [14]. Removal of TAp73, and, as
a consequence, deficient Smad3 and Smad4 expression, led to activation of TGF-β signaling
through a Smad-independent pathway, favoring oncogenic TGF-β effects like epithelial-
mesenchymal transition (EMT), migratory and invasive abilities and reduced survival [14].
The pro-EMT effect could be attributed to the loss of Bgn secretion and its function as
an inhibitor of TGF-β, a master regulator of the EMT process. A simultaneous absence
of TAp73 and Bgn led to a reinforced TGF-β signaling switch from Smad-dependent to
Smad-independent pathways with activation of Erk and Pi3k signaling after treatment with
TGF-β1. Extending these investigations to human PDAC in vitro has revealed that the α

isoform of TAp73 has a similar role in human PDAC, blocking basal and TGF-β1-dependent
activation of ERK1/2 and cell motility [15]. Mechanistically, this is a consequence of TAp73-
induced induction of DPC4 and subsequent SMAD4-mediated inhibition of ERK activation
and cell migration [15]. However, it remained open if these SMAD4 effects are direct, or if
BGN as a SMAD4 response gene is mediating them.

These newly discovered functions of TAp73 revealed in murine and human PDAC
cells, namely induction of expression of Smads, Bgn/BGN and concurrent inhibition of
Erk/ERK activation and cell motility are reminiscent of what we observed earlier for the
small GTPase, RAC1b, a splice isoform of the RAC1 gene, in PDAC cells of human ori-
gin [16–19]. Indeed, RAC1b promoted SMAD3 and BGN expression [16], and inhibited
TGF-β1-induced ERK1/2 activation [17] and cell migration [17,18]. Moreover, our previous
immunohistochemical and immunoblot data from human PDAC tissues and cell lines have
shown that RAC1b is preferentially expressed in G1 and G2 but less in G3 tumors [18].
RAC1b is also more abundant in well-differentiated PDAC cells with an epithelial phe-
notype [16]. RAC1b shares many cellular responses associated with inhibition of EMT in
common with TAp73 although in different cellular systems: promotion of the expression of
epithelial markers such as E-cadherin and BGN, as well as inhibition of the mesenchymal
markers SNAIL, vimentin and N-cadherin [16,17]. In addition, both RAC1b [16–18] and
TAp73 [14,15] inhibited the tumor cells’ basal and TGF-β1-dependent migratory activity.
In regard to RAC1b, we earlier identified SMAD3 as a mediator of this inhibitory effect [16]
(Figure 1).
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Figure 1. Scheme illustrating the current knowledge on tumor-suppressive signaling of (A) TAp73
in murine PDAC cells and (B) TAp73α in human PDAC cells and (C) RAC1b in human PDAC
cells. The regulatory interactions shown in (A) were established in mouse models of pancreatic
cancer [14]. In the presence of TAp73 (left-hand cartoon) and following activation of TGF-β re-
ceptors (blue rectangles) by TGF-β (blue ovals), the Smad-dependent pathway is activated. This
promotes tumor-suppressive functions including Bgn secretion (black ovals), which traps TGF-β
within the ECM of the pericellular space, to largely prevent receptor binding, activation of non-Smad,
i.e., Erk1/2 signaling and the induction of EMT. In the absence of TAp73 (right-hand cartoon), the
expression/activity of Smad proteins is reduced and as a consequence, Bgn is no longer secreted,
limiting its TGF-β trapping within the ECM. This creates a positive loop that reinforces the oncogenic
impact of Smad-independent pathways and stimulation of EMT. (B) Some of the proteins shown in (A)
have been analyzed and confirmed recently in human PDAC cells with knocked down or ectopically
expressed TAp73α ([15], marked in green lettering). Yet the roles of others (denoted in red lettering)
such as SMAD3 (not subject of the present study) and expression and secretion of BGN remain to
be demonstrated. (C) In contrast, most of the interactions shown in (A) have been established in
human PDAC cells with either genomic deletion of the RAC1b-encoding exon 3b of RAC1 (−/−) or
knockdown (low) of RAC1b ([16–18], denoted in green lettering), except for SMAD4 and the secreted
form of BGN (marked in red lettering). Based on the congruence/similarity of the regulatory interac-
tions between (A), (B) and (C) in both the wildtype/physiological and mutated/inhibited states, we
postulate that TAp73 and RAC1b are components of the same tumor suppressor pathway. The arrows
indicate induction of expression or activation, while the lines indicate suppression. Black-lettered
protein names or black arrows/lines indicate the active state, while the grey-shaded counterparts
mark the inactive state. For details see text. CM, cell migration; E, epithelial; M, mesenchymal.
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Thakur and colleagues [14] have almost exclusively focused on the murine system
and hence it is not clear whether the above-mentioned effects of TAp73 in murine cells also
operate in their human counterparts and whether they are duplicated by RAC1b, i.e., pro-
motion of SMAD4 expression. When comparing these types of regulatory interactions,
which we have illustrated in Figure 1, a conceivable scenario arose from it, namely that
TAp73 and RAC1b may be part of the same tumor-suppressive pathway in human PDAC
cells to sustain SMAD4 and BGN expression, while suppressing ERK1/2 activation and cell
migration/invasion. Here, we studied if TAp73 regulation of BGN previously described in
GEMMs also operates in human PDAC cells, and if RAC1b collaborates with TAp73 in this
activity. However, in order to demonstrate that TAp73 and RAC1b synergize in inducing
BGN and in inhibiting cell motility through BGN in human PDAC cells, several open
questions need to be resolved in the human system: (i) does TAp73 induce BGN, (ii) does
RAC1b induce SMAD4, (iii) does RAC1b activate TAp73 or vice versa and (iv) can BGN
mimic the inhibitory effect of TAp73 or RAC1b on ERK activation and cell motility. Using
various human pancreatic cancer cell lines we demonstrate here that tumor-suppressive
TAp73-Smad4-Bgn signaling also operates in human PDAC and that RAC1b likely acts as
an upstream activator of this pathway.

2. Materials and Methods
2.1. Reagents

In this study, we employed the following antibodies: anti-phospho-ERK1/2, #4370,
Cell Signaling Technology (CST, Frankfurt am Main, Germany); anti-Smad4 (B8), #sc-
7966; anti-HSP90 (F-8), #sc-13119, Santa Cruz Biotechnology (Heidelberg, Germany); anti-
RAC1b, #09-271 (Merck Millipore, Darmstadt, Germany); anti-RAC1, #610650 (BD Bio-
sciences, Heidelberg, Germany); anti-E-cadherin, #3195 (CST); anti-Snail, #3895 (CST); anti-
Vimentin, #ab3974 (Abcam, Cambridge, UK,); anti-phospho-Smad1 (Ser463/465)/Smad5
(Ser463/465)/Smad8 (Ser426/428), #9511 and anti-phospho-Smad3 (Ser423/425), #9514
(both from CST). The secondary antibodies, HRP-linked anti-rabbit, #7074, and anti-mouse,
#7076, were purchased from CST and recombinant human TGF-β1, #300-023, from ReliaT-
ech (Wolfenbüttel, Germany). An antibody raised against a peptide within the mature form
of human BGN (LF-51) was a kind gift from Dr. L. W. Fisher (NIDCR, National Institutes of
Health). Prevalidated siRNA to p73 was purchased from Santa Cruz Biotechnology and
others to RAC1b, SMAD3 or SMAD4 from Invitrogen/Thermo Fisher Scientific (Darmstadt,
Germany). The HA-TAp73α and HA-TAp73β vectors were donated by Drs. B. Joseph and
P. Engskog Vlachos (Stockholm, Sweden) and an expression vector for human BGN by
L. Schäfer (Frankfurt am Main, Germany). The expression vector for human TGFB1 was
provided by OriGene Technologies Inc. (Rockville, MD, USA, #SC119746).

2.2. Cells and Transfection with SiRNA or Plasmid DNA

PANC-1 human PDAC cells were purchased from the ATCC (Manassas, VA, USA),
while HPAFII and L3.6pl cells were supplied by Dr. U.F. Wellner. Cells were maintained in
RPMI 1640 containing 10% fetal bovine serum (FBS), 1% Penicillin-Streptomycin-Glutamine
(Thermo Fisher Scientific) and 1% sodium pyruvate (Merck Millipore). The generation
and characterization of PANC-1 cells stably expressing either HA-RAC1b, or empty pCGN
vector, have been described in detail earlier [18].

For transfection of siRNA or plasmid DNA, PANC-1, HPAFII or L3.6pl cells were
seeded on day 1 and transfected the next day serum-free with 50 nM of prevalidated
siRNAs specific for p73 [15], RAC1b [17], BGN [16] or scrambled siRNAs as control, with
either Lipofectamine 2000 (PANC-1) or Lipofectamine RNAiMAX (HPAFII and L3.6pl)
(both from Thermo Fisher Scientific) according to the manufacturer’s instructions. The
pcDNA3.1-based expression vector for human BGN was introduced into PANC-1 cells
using Lipofectamine 2000 according to the manufacturer’s protocol. Transfected cells were
subjected to either qPCR analysis, immunoblotting or cell migration assays.



Biomedicines 2024, 12, 199 5 of 17

2.3. RT-PCR Analysis

Total RNA was extracted by affinity chromatography on columns (innuPREP RNA
Mini Kit 2.0, IST Innuscreen GmbH, Berlin, Germany). The general RT-PCR protocol was
described in detail earlier [17]. Briefly, 2.5µg RNA was reverse transcribed for 1 h at 37
◦C in a total volume of 20µL with M-MLV Reverse Transcriptase (200 U) and random
hexamers (2.5µM) (both from Life Technologies/Thermo Fisher Scientific). Relative quan-
tification of target genes by quantitative RT-PCR (qPCR) was done with Maxima SYBR
Green Mastermix (Thermo Fisher Scientific) on an I-Cycler with Quant Studio Design
& Analysis software, version 1.3.1 (BioRad, Munich, Germany). For data normaliza-
tion, we also determined the expression of glycerinaldehyde-3-phosphate-dehydrogenase
(GAPDH) and/or TATA box-binding protein (TBP). The sequences of PCR primers were
given in previous publications [15–18], except for Laminin γ2 (LAM2C, forward: 5′-
GGAAAGGAAGGAGCTGGAGT-3′, reverse: 5′-TGTTGATCTGGGTCTTGGCT-3′).

2.4. Immunoblotting

The immunoblotting procedure was described in detail in earlier publications [15–18].
An amount of 20–40 µg of total cellular protein quantified with the DC Protein-Assay Kit
(BioRad) was fractionated by SDS-PAGE on mini-PROTEAN TGX any-kD precast gels
(BioRad) and transferred to polyvinylidene difluoride (PVDF) membranes (Immobilon-P,
Millipore, Eschborn, Germany) equilibrated with methanol and transferred to blotting
buffer. After blotting, membranes were blocked with Tris-buffered saline containing 0.1%
Tween 20 (TBST) and 5% bovine serum albumin. Following overnight incubation with the
primary antibody at 4 ◦C in TBST, the primary antibody was removed by washing the blots
with TBST. Subsequently, blots were incubated with the appropriate peroxidase-conjugated
secondary antibodies and developed with the chemiluminescent detection kit (Amersham
ECL Prime Detection Reagent, Cytiva, Marlborough, MA, USA) following the manufac-
turer’s protocol on a ChemiDoc XRS imaging system (BioRad). Signal quantifications for
the proteins of interest and HSP90 were done by densitometry using either the built-in
function of the ChemiDoc XRS system or the program Image Lab 5.2.1. The antibodies
used are listed in Section 2.1.

2.5. Real-Time Cell Migration Assays

For the measurement of random/spontaneous cell migration in a chemokinesis setup,
we used the xCELLigence® DP system from ACEA Biosciences (San Diego, CA, USA)
as outlined in detail earlier [16–18]. Following equilibration of the wells of the CIM
plate-16 (OLS, Bremen, Germany) with standard growth medium at 37 ◦C for 1 h, a
total of 60,000–80,000 cells (transfected before with various siRNAs or expression vectors
as indicated in the figure legends) were loaded in the upper chamber of each well. To
minimize proliferation, a standard growth medium supplemented with only 1% rather than
10% FBS was added along with the cells. Cells were then allowed to settle for 30 min prior
to the start of the assay in an xCELLigence Real-Time Cell Analyzer DP device (Agilent
Technologies, Santa Clara, CA, USA). Migration data were recorded every 15 min for
different times and analyzed with RTCA software, version 1.2 (ACEA Biosciences). In some
assays, anti-BGN antibody or isotype control antibody was added to the medium of the
upper chamber prior to the start of the assay and remained there until assay termination.

2.6. Statistical Analysis

The statistical significance was assessed with the Wilcoxon rank-sum test using SPSS,
version 26.0. p-values of <0.05 (*) were deemed significant.
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3. Results
3.1. TAp73 Upregulates the Small Proteoglycan BGN and Is Required for Its Induction by TGF-β1
in Human PDAC Cells

Employing primarily PANC-1 and HPAFII cells we demonstrated previously that
both RAC1b and TAp73 inhibited EMT through induction of CDH1 (and other epithelial
genes) and by suppression of mesenchymal genes and cell migration [15,17]. Moreover,
production of the secreted proteoglycan Bgn, an inhibitor of TGF-β biological activity and
thus an “anti-mesenchymal” gene, was shown in murine PDAC cells to be promoted by
TAp73 and in the human orthologues by RAC1b, but whether this also applies to TAp73
in human PDAC cells is not known. To this end, siRNA-mediated knockdown of p73 in
PANC-1 or HPAFII cells resulted in a dramatic decline in BGN mRNA (Figure 2A).
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Figure 2. TAp73 is crucial for basal and TGF-β-dependent expression of BGN. (A) PANC-1 or HPAFII
cells were transfected with 50 nM each of p73 siRNA or an irrelevant control (Co) siRNA on two
consecutive days and 48 h after the second round of transfection processed for qPCR analysis of
BGN expression, and GAPDH to account for small differences in cDNA input. Data represent the
normalized mean ± SD of three assays. (B) PANC-1 or HPAFII cells were transfected with either
empty vector (V), or expression vectors encoding either TAp73α or TAp73β and subjected to BGN
PCR, including GAPDH as an internal control. Data represent the normalized mean ± SD of three
assays. (C) Knockdown of TAp73 interfered with TGF-β1-induced regulation of BGN. PANC-1 cells
were exposed for 24 h to rec. human TGF-β1 and subsequently assayed by qPCR for BGN, and TP73
to verify successful knockdown. Data are the mean ± SD of three experiments. The asterisks (*)
denote a significant difference compared to the Co siRNA (A,B, right-hand graph in C) or between the
two TGF-β1 treated samples in the left-hand graph of the panel (C) (p < 0.05, Wilcoxon rank-sum test).
ns, non-significant. Successful knockdown of p73 and ectopic expression of TAp73α and TAp73β had
been verified previously by qPCR analyses and immunoblotting [15].

The p73 siRNA is likely to inhibit not only TAp73α but also TAp73β which in im-
munoblots possesses a higher mobility due to lack of the SAM domain [15,19]. To explore
whether both TAp73 isoforms differ in their ability to induce BGN, we ectopically expressed
both isoforms in PANC-1 or HPAFII cells using appropriate vectors. As shown previously,
both isoforms are expressed and show the expected size difference [15]. When we mon-
itored transfectants of both cell lines by qPCR analysis for BGN, we observed elevated
mRNA levels only in TAp73α but not TAp73β transfected cells (Figure 2B). As a control,
we have used primers for DPC4/SMAD4 [15], confirming positive regulation of both genes
by TAp73α but not TAp73β.

We [15] and others [14] observed that the ability of TGF-β1 to induce luciferase activity
through SMAD binding in PDAC cells was lost in TAp73-deficient PDAC cells, suggesting
that TAp73 promoted TGF-β signaling by activating Smad proteins. If so, this should
also impact the response of BGN to TGF-β1 stimulation in human cells, since we have
previously shown that this gene is dramatically induced by this growth factor in a SMAD4-
dependent manner [7]. To this end, in p73-silenced PANC-1 cells basal expression as well
as the inductive effect of TGF-β1 on BGN after a 24 h stimulation period was reduced from
48.3 ± 6.7-fold to 8.8 ± 3.2-fold (Figure 2C). We conclude from these data that in human
PDAC cells TAp73α is necessary for both basal expression of BGN and its full-blown
response to TGF-β1.
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3.2. RAC1b Induces Expression of SMAD4 at the mRNA and Protein Level

As part of a previous study, we showed that RAC1b—via SMAD3—promoted the
expression of BGN [16], a gene previously shown by us to be regulated also by SMAD4 [7].
More recently, Thakur and coworkers have shown in GEMM-derived PDAC tissues and
cell lines that Bgn expression is also upregulated by TAp73 through intermittent induction
of Smad4 [14]. Given the SMAD4-dependency of the TGF-β effect on BGN [7], we therefore
analyzed whether RAC1b, too, in addition to SMAD3, utilizes SMAD4 to induce BGN. For
this purpose, we knocked down RAC1b in PANC-1 cells by transfection with a RAC1b-
specific siRNA (previously validated in [18]), or a scrambled siRNA as control. In cells
that received the RAC1b siRNA (termed PANC-1-RAC1b-KD), we observed a decrease in
the abundance of SMAD4 protein (Figures 3A and S1). We further reasoned that if RAC1b
were to stimulate SMAD4 protein synthesis through TAp73 via binding to the p53 binding
sites present in the DPC4 promoter and a subsequent increase in DPC4 transcriptional
activity [14], an increase in SMAD4 mRNA levels would be expected. To test this, we
quantified SMAD4 mRNA in PANC-1-RAC1b-KD (Figure 3B) and in L3.6pl-RAC1b-KD
cells (Figure 3C), and in both lines observed a decrease in their abundance relative to
controls. This suggests that RAC1b induces SMAD4 protein and mRNA expression, likely
via TAp73 and TAp73 binding to the DPC4 promoter.
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Figure 3. RAC1b promotes the expression of SMAD4. (A) PANC-1 cells were transfected with either
RAC1b (R1B) siRNA or an irrelevant control (Co) siRNA (50 nM each) and 48 h later processed for
sequential immunoblotting of SMAD4, RAC1b and HSP90 as a loading control. The graph below the
blot depicts results from densitometry-based quantification of the SMAD4 protein (mean ± SD, n = 3).
(B) As in (A), except that cells were processed for qPCR analysis of SMAD4 (left-hand graph), and
RAC1b as a control for successful knockdown (right-hand graph). (C) As in (B), except that L3.6pl
cells were used. Data represent the mean from three assays (mean ± SD) after normalization with
GAPDH. Asterisks (*) indicate significant differences relative to the Co siRNA (p < 0.05, Wilcoxon
rank-sum test).

3.3. Knockdown of RAC1b Downregulated TAp73 Expression but Not Vice Versa

In the previous section, we have shown that RAC1b shares in common with TAp73 the
ability to induce the expression of DPC4. Moreover, RAC1b and TAp73 have an overlapping
target gene spectrum in PDAC cells characterized by upregulation of epithelial genes and
BGN, and downregulation of mesenchymal genes and pathways, i.e., MEK-ERK [15,17]. We,
therefore, addressed the question of whether both proteins are part of the same pathway,
and more specifically whether RAC1b is located up or downstream of TAp73. To look at this
more closely, we carried out reciprocal inhibition and overexpression experiments. First,
to reveal if TAp73 regulates RAC1b, we knocked down TAp73 in PANC-1 cells by RNAi
followed by qPCR for exon 3b of RAC1, or by immunoblotting using a RAC1b-specific
antibody. Knockdown of TAp73 was able to silence TAp73 but was unable to reduce RAC1b
(or RAC1) protein levels (Figures 4A and S2), or RAC1b mRNA abundance (Figure 4B). In
contrast, the knockdown of RAC1b using an siRNA directed against exon 3b of RAC1 [18]
was able to reduce TAp73 mRNA levels by 58% relative to controls (Figure 4B).
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Figure 4. Knockdown of RAC1b decreases TAp73 expression but not vice versa. (A) PANC-1
cells were subjected to two rounds of transfection (on two consecutive days) with 50 nM each of
TAp73 siRNA or control siRNA and processed for immunoblotting of RAC1b (upper band) and
RAC1 (lower band). The blot was also probed with an antibody to HSP90 to test for equal protein
loading. Successful knockdown of p73 was verified by qPCR analysis as shown in (B) and earlier by
immunoblotting [15]. (B) PANC-1 cells were transiently transfected with 50 nM of siRNA to either
RAC1b, TAp73, or a scrambled Co siRNA, and subsequently subjected to qPCR analyses of RAC1b
(left two graphs) or TAp73 (right two graphs). (C,D) RAC1b increases TAp73 mRNA abundance but
not vice versa. (C) PANC-1 cells transiently transfected with either empty vector (V) or HA-tagged
versions of either TAp73α or TAp73β were analyzed by qPCR for expression of RAC1b. (D) As in (C),
except that PANC-1 cells stably expressing either empty pCGN vector (V) or HA-RAC1b in pCGN
(HA-R1b) were analyzed by qPCR for expression of TAp73. In (C,D), data represent the mean ± SD
(n = 3). Asterisks (*) indicate significance relative to the Co siRNA (B) or the empty vector (C,D)
(p < 0.05, Wilcoxon rank-sum test); ns, non-significant.

To confirm these regulatory interactions, we employed PANC-1 cells with transient
ectopic expression of TAp73α (see Figure 2B). Although in these cells as well as in cells
transfected with TAp73β, RAC1b mRNA levels were marginally elevated over controls,
this small increase was unlikely to be of physiological significance (Figure 4C). Conversely,
ectopic expression of a HA-tagged version of RAC1b (HA-R1b) increased the mRNA levels
of TAp73 by 1.55-fold over those in empty vector-transfected control cells (Figure 4D).
When all findings were taken together, we concluded that RAC1b is located upstream of
TAp73 in the TAp73-SMAD4-BGN pathway.

3.4. The Increase in Cell Migration upon RAC1b Knockdown Is Partially Rescued by Ectopic
Expression of TAp73, While the Decrease in Cell Migration upon Ectopic Expression of RAC1b Is
Partially Rescued by p73 Knockdown

In previous studies, we have already demonstrated that RAC1b [16–18], like TAp73α [15],
strongly suppressed migratory activities in PANC-1 and other PDAC cells, lending further
support to the notion that both proteins also collaborate in the negative control of cell
motility. To reveal whether the upstream location of RAC1b relative to TAp73, postulated
on the basis of the expression data in Section 3.3, also extended to a functional level,
we performed mutual rescue experiments. To this end, PANC-1 cells were transfected
with either a RAC1b siRNA in combination with HA-TAp73α expression vector or empty
pcDNA3.1 vector, or, alternatively, HA-R1b-pCGN vector in combination with p73 siRNA.
When we subjected these transfectants to real-time cell migration assays, we observed
that ectopic HA-TAp73 but not empty vector partially prevented the RAC1b knockdown-
induced rise in migratory activity (Figure 5A), while, conversely, the HA-R1b-pCGN-
induced inhibition of migratory activity was partially prevented by RNAi-mediated p73
knockdown under both basal conditions and in the presence of added TGF-β1 (Figure 5B).
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Figure 5. Mutual rescue experiments with various combinations of RAC1b and TAp73 knockdown
and ectopic overexpression approaches. (A) PANC-1 cells were transfected with either RAC1b siRNA
(siRAC1b) in combination with TAp73α (HA-TAp73) or empty pcDNA3.1 vector (vector). (B) As in
(A), except that PANC-1 cells received empty pCGN vector or HA-RAC1b-pCGN in combination
with siRNA to p73 (sip73) or scrambled control siRNA (siCo). (C) PANC-1 cells were transfected
with 50 nM of siCo, or 25 nM each of siRAC1b and siCo, sip73 and siCo, or a combination of 25 nM
each of siRAC1b and sip73. Representative assays out of three assays performed in total for each
condition are shown. Data are the mean ± SD from 3–4 parallel wells. Successful ectopic expression
of TAp73α and siRNA-mediated knockdown of TAp73 protein was shown previously [15], while
RNAi-mediated inhibition of RAC1b protein is presented in Figure 3A. (D) The same cells from
(A), and, additionally, PANC-1 cells transfected with TAp73β, were monitored by qPCR analysis
for expression of ECAD (upper graph) and SLUG (lower graph). Data are displayed relative to
cells transfected with RAC1b siRNA + vector set arbitrarily at 1.0. (E) The same cells from (C) were
screened by qPCR analysis for expression of ECAD (upper graph) and SLUG (lower graph). Data in
(D,E) represent the mean ± SD of three assays (n = 3). The asterisks (*) indicate significance relative
to vector or siRNA controls (p < 0.05, Wilcoxon rank-sum test); ns, non-significant.

We then addressed the question of whether the combined knockdown of p73 and
RAC1b would further enhance migratory activity in an additive or synergistic manner.
However, as shown in Figure 5C, silencing TAp73 and RAC1b simultaneously did not
provide an extra increase in migratory activity beyond that achieved with the RAC1b
knockdown alone. However, sip73 alone was unable to provide the same rescue effect in
the absence of siRAC1b (Figure 5C).

The increase in cell migration upon RAC1b knockdown was partially rescued by
ectopic expression of TAp73. Since migration is related to EMT, we evaluated the levels
of EMT markers (ECAD and SNAIL2/SLUG) on PANC-1 cells transfected with siRNA
to RAC1b along with expression vectors for either TAp73α or TAp73β (corresponding
to panel A). It turned out that TAp73α, but not TAp73β, was able to reverse the changes
in basal expression brought about by RAC1b knockdown, i.e., it upregulated ECAD and
downregulated SLUG mRNA levels (Figure 5D). Moreover, combined silencing of TAp73
and RAC1b (corresponding to panel C) failed to provide an extra decrease in ECAD
expression or an extra increase in SLUG expression over that achieved with the RAC1b
knockdown alone (Figure 5E).

Together, this suggests that (i) TAp73α and RAC1b act as part of the same signaling
pathway and that (ii) TAp73α operates downstream of RAC1b to mediate its negative
effects on cell motility and corresponding effects on EMT marker expression, thereby
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confirming the expression data from Figure 4, and (iii) RAC1b may utilize an additional
mechanism(s) to inhibit migration that is not shared by TAp73.

3.5. Inhibition of BGN Synthesis or Its Depletion from the Medium Reproduced the Promigratory
Effect of RAC1b or TAp73 Silencing and Is Associated with Increased ERK Activation

Above, we have shown that both RAC1b and TAp73 collaborate in inhibiting migration
and that RAC1b—like TAp73—induces SMAD4 [15] and BGN [16]. This is consistent with
earlier data from Thakur and colleagues from a GEMM showing that the loss of TP73 and,
as a consequence, defective production and secretion of Bgn caused EMT and enhanced
migration in the murine PDAC cells. To reveal whether in human cells the antimigratory
effects of RAC1b and TAp73 converge on BGN, we silenced BGN expression by RNAi and
subjected cells to cell migration assays in the absence or presence of recombinant human
TGF-β1. As predicted, we observed increased basal migratory activity in PANC-1 cells as
a result of knocking down BGN (Figure 6A, green curve/tracing C vs. red curve/tracing
A). Moreover, the stimulatory effect of TGF-β1 was enhanced in BGN-knockdown cells to
a much greater extent than in control cells (Figure 6A, magenta curve/tracing D vs. blue
curve/tracing B). Conversely, ectopic expression of BGN was able to suppress not only
basal but also TGF-β1-induced cell migration (Figure 6B, magenta curve/tracing D vs. blue
curve/tracing B).
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Recently, Cave and colleagues demonstrated that the overexpression of LAMC2 in-
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Figure 6. Real-time cell migration assay of PANC-1 cells after RNAi-mediated knockdown of BGN.
(A) PANC-1 cells were transfected with 50 nM of BGN siRNA or an irrelevant siRNA (Co siRNA) and
subjected to real-time cell migration assay on an xCELLigence platform in the absence or presence of
TGF-β1 (T, 5 ng/mL). Data are the mean ± SD of quadruplicate wells. The assay is representative of three
independent assays. Successful knockdown of BGN in PANC-1 cells has been validated by qPCR [16].
(B) PANC-1 cells were transfected with an empty vector (pcDNA3.1) or the same vector encoding human
BGN (pBGN) as outlined in the Methods section. Forty-eight h after the start of transfection, cells were
detached, counted and equal numbers of cells were analyzed for migratory activity as described under
(A). Successful overexpression of BGN has been verified by qPCR (Figure S4). (C) Migration assay
of PANC-1 cells treated with an anti-BGN antibody (LF-51), or isotype control antibody, during the
course of the assay. Data are the mean ± SD of quadruplicate wells from a representative experiment.
(D) Immunoblot analysis of PANC-1 cells transfected as described in (A) and treated, or not, for 1 h with
TGF-β1 (5 ng/mL). The blot was probed with antibodies to phospho-ERK1/2 (pERK1/2), and to HSP90
as a loading control. The graph below the blot depicts results from densitometric readings of signal



Biomedicines 2024, 12, 199 11 of 17

intensities from underexposed autoradiograms (mean ± SD, n = 3). The asterisks (*) in (D) indicate
significance relative to the non-TGF-β-treated Co (p < 0.05, Wilcoxon rank-sum test). The vertical
lines between bands denote the removal of irrelevant lanes.

Next, we used an anti-BGN antibody raised against a peptide within the mature
form of human BGN (LF-51) to deplete secreted BGN from the conditioned medium of
PANC-1 cells. In the presence of this antibody, but not an isotype control antibody, PANC-1
cells migrated more vigorously (Figure 6B, red curve/tracing B vs. green curve/tracing
A). Together, the data so far confirm the inhibitory role of secreted BGN on basal and
TGF-β-driven cell motility.

Previously, we had shown that both RAC1b and TAp73 are potent inhibitors of basal
and TGF-β1-induced ERK activation [15,17], a major pathway driving EMT and cell motil-
ity in PDAC [11]. To find out whether this effect is mediated by BGN, we analyzed the
same cells from Figure 6A by immunoblotting for ERK1/2 phosphorylation. Intrigu-
ingly and in agreement with our assumption, the activated forms of ERK1 and ERK2
were much more abundant in BGN-knockdown cells when compared with control cells
(Figures 6D and S3). Collectively, these data establish a clear connection between BGN and
the observed phenotypes and strongly suggest that the RAC1b-TAp73-SMAD4 pathway
exerts its anti-migratory effect in human PDAC cells through (secreted) BGN-mediated
inhibition of ERK activation.

3.6. Identification of Downstream Targets and Signaling Pathways That Are Affected by RAC1b,
TAp73 and BGN in the Same Direction

In previous studies, we demonstrated that both RAC1b [17], human TAp73 [15] and
murine TAp73 [14] control various EMT markers, such as ECAD, VIM and SNAIL. Given
the importance of the EMT process for tumor progression, it was of interest if BGN, too,
as a common downstream effector impacts these targets in the same way as RAC1b and
TAp73. We have thus analyzed PANC-1 cells with RNAi-mediated knockdown, or ectopic
overexpression, of BGN, and RNAi-mediated knockdown of p73 as a control, for expression
of ECAD, VIM and SNAIL by immunoblotting. We observed a decreased abundance of
ECAD but an increased one for VIM and SNAIL (Figures 7A and S5). Conversely, after
ectopic expression of BGN, we noted upregulation of ECAD and downregulation of VIM
and SNAIL (Figures 7B and S5).

Recently, Cave and colleagues demonstrated that the overexpression of LAMC2 in-
duced by TGF-β1 improves the tumorigenic potential of the PDAC cells both in vitro and
in vivo [20]. We, therefore, evaluated the expression of LAMC2 in PANC-1 cells trans-
fected with either empty vectors, or expression vectors encoding either TAp73α or TAp73β
(Figure 7C). We found that transfection of both the α and the β isoform of TAp73 provided
an increase in basal expression of LAMC2 as did a plasmid encoding TGF-β1 (Figure 7C,
white bars). Upon stimulation of the cells with exogenous TGF-β1, LAMC2 was induced in
empty vector control cells and in TAp73α transfectants but not in the TAp73β transfected
counterparts (Figure 7C, black-filled vs. white bars). These data suggest that LAMC2 is
induced by TGF-β1 via TA-p73-SMAD4 rather than Smad-independent signaling.

With respect to signal transduction, we have shown that RAC1b [17], TAp73 [15] and
BGN (this study, Figure 6D) negatively regulate the activation of the MEK-ERK pathway.
In light of the Thakur study highlighting stromal BGN as a TGF-β inhibitor and tumor
suppressor in a murine model of human PDAC, we were especially interested in revealing
if all three proteins do affect TGF-β signaling. Previous data from our group revealed
that RAC1b negatively controls TGF-β signaling via the ALK2-SMAD1/5 arm [21] with
inhibition of RAC1b in PANC-1 cells via RNAi-mediated knockdown or genomic knockout
causing elevated levels of C-terminally phosphorylated SMAD1/5 (pSMAD1/5) after
TGF-β1 treatment. In order to reveal whether TAp73 or BGN can mimic this effect, we
transfected PANC-1 cells with siRNA to p73 or BGN and after a 1 h stimulation with
TGF-β1 measured the abundance of pSMAD1/5 by phospho-immunoblotting. Of note,
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the knockdown of either TAp73 or BGN resulted in elevated levels of pSMAD1/5 but not
pSMAD3 (Figures 7D and S6). Together, this shows that BGN phenocopied the effects of
RAC1b or TAp73 on the above downstream targets and, in addition, that all three proteins
selectively interfere with the ALK2-SMAD1/5 arm of TGF-β signaling. In essence, this
confirms our contention that they are part of the same tumor suppressor pathway.
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Figure 7. Identification of downstream targets and signaling pathways that are shared by BGN and
TAp73. (A) PANC-1 cells were transfected with 50 nM of siRNA specific for p73 or BGN, or with an
irrelevant control (Co) siRNA. Forty-eight h later, cells were processed for sequential immunoblotting
of ECAD, SNAIL and VIM, and HSP90 as a loading control. The graphs underneath the blots show
the results from relative protein quantification based on densitometric readings of band intensities
(mean ± SD, n = 3). (B) As in (A), except that cells were transfected with either a BGN expression
vector (pBGN) or empty vector (V) as control. The graphs depict results from densitometry-based
protein quantification (mean ± SD of three independent experiments). (C) PANC-1 cells were
transfected with empty vector (V), or expression vectors for TAp73α, TAp73β or TGF-β1 (pTGFB1).
Twenty-four h later, cells were processed for qPCR analysis of LAMC2 (mean ± SD, n = 3). (D)
PANC-1 cells were transfected with the same siRNAs as in (A) and 48 h after transfection were
either left untreated or were treated with 5 ng/mL TGF-β1 for 1 h. Following lysis, cells were
subjected to sequential phospho-immunoblotting of pSMAD1/5 and pSMAD3, and HSP90 to control
for equal loading. The graphical data shown represent the mean and SD from three experiments after
normalization with HSP90. The asterisks (*) in (A,D) indicate significant differences relative to the
Co siRNA, and those in (B) significant differences relative to the V control. In (C), the asterisks over
black-filled bars denote a significant difference relative to the respective non-TGF-β1 treated vector
control (p < 0.05, Wilcoxon rank-sum test); ns, non-significant.

4. Discussion

Although some progress has recently been achieved in the treatment of PDAC, the
prognosis for patients suffering from this cancer type is still dismal. A better understanding
of the molecular events driving tumor development and progression is thus of utmost im-
portance. The p53 homolog, TAp73, has been reported to be involved in cancer development
through regulating cell proliferation and apoptosis. Several studies have confirmed the
crosstalk of the p53 and the TGF-β networks [22], two major regulators of cancer-associated
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pathways. In PDAC, their interplay seems to be associated with SMAD proteins, in particu-
lar SMAD4 [23]. The deletion or mutation of the SMAD4-encoding DPC4 correlates with
shorter survival and widespread metastasis. However, a similar interplay between TAp73
and TGF-β signaling has only later been revealed in a pioneering study by Thakur and
coworkers. Using GEMMs, these authors have shown that TAp73-deficient PDAC exhibited
enhanced desmoplasia and characteristics of EMT, including increased migratory/invasive
capacity and drug resistance, suggesting enhanced activity of TGF-β [14]. The absence of
TAp73 also led to a decrease in SMAD protein levels resulting in a failure to activate the
SMAD-dependent pathway and to induce expression of the TGF-β/Smad target, Bgn. As a
result of the absence of TGF-β binding and neutralization by Bgn, elevated levels of free
TGF-β accumulate in the tumor cells. Of note, high serum TGF-β1 has been proposed to be
linked to an increased risk of pancreatic cancer [24]. Moreover, in a GEMM of metastatic
breast cancer TGF-β induced by anticancer treatment has been identified as a pro-metastatic
signal in tumor cells [25]. In the absence of Smad4 and Bgn, TGF-β signaling switches
to Smad-independent pathway activation. The derepression of non-Smad, i.e., ERK and
PI3K/AKT signaling in TAp73 deficient cells [14], favors the expression of EMT-associated
transcription factors and thus promotes EMT and invasion. The data presented in the
Thakur study with the TAp73-deficient GEMM suggest that TAp73 efficiently prevents a
switch in TGF-β function from tumor-suppressive to tumor-promoting and that this switch
also involves secreted factors acting in an autocrine/paracrine fashion. However, whether
this TAp73-driven pathway also operates in human PDAC has remained unresolved so far.
In recent work, we were able to show in the human PDAC cell lines PANC-1 and HPAFII
that TAp73α [15] antagonized EMT by upregulating basal and TGF-β1-induced expression
of epithelial markers, like ECAD, and downregulating that of mesenchymal markers, like
SNAIL, and non-Smad, i.e., ERK1/2 signaling [15]. Moreover, TAp73 exhibited a strong
antimigratory effect on these cells consistent with its anti-EMT function. This induction
of epithelial or anti-mesenchymal genes with simultaneous suppression of mesenchymal
genes and pathways was reminiscent of what we observed earlier for RAC1b [17]. As
shown here for TAp73, RAC1b, too, induces the expression of the TGF-β inhibitor, BGN [16].
In concordance with the crucial of Bgn in mediating the tumor-suppressive effect of TAp73
in Tp73-deficient mice, we provide evidence in the present study that in human PDAC,
RAC1b and TAp73α collaborate in promoting the expression of BGN and, as a consequence,
inhibit basal and TGF-β-driven ERK activation and cell migration. Specifically, we have
identified BGN as a paracrine effector of RAC1b and TAp73 in human pancreatic cancer
cells by showing that the basal and TGF-β1-driven ERK activating and promigratory effects
of RAC1b/RAC1 exon 3b silencing [17,18], TAp73 silencing [15] or SMAD4 silencing [15]
are duplicated by gene silencing of BGN or by antibody-mediated neutralization of its
biological activity in culture supernatants.

A major goal of this study was to evaluate if TAp73 and RAC1b are members of the
same tumor-suppressive pathway. Of note, we have previously established a RAC1b-
SMAD3-BGN axis in PANC-1 cells to be critical in maintaining the epithelial phenotype,
already suggesting the possibility that RAC1b may be able to induce other Smad proteins
besides SMAD3 as shown previously for TAp73 in mice [14]. In the present study, we found
that in human PDAC cells RAC1b, indeed, positively controls SMAD4 expression at both
the mRNA and protein levels. Given the preferred association of RAC1b expression in
PDAC with cells of an epithelial subtype [16], this suggested the possibility that SMAD4
(and SMAD3) contribute to both maintenance of the epithelial phenotype and tumor
suppression and that TAp73 and RAC1b act upstream of these SMADs as part of the same
pathway to control their expression (Figure 8). Having shown that RAC1b and TAp73
collaborate in pro-differentiation, anti-EMT and anti-migration effects in PDAC-derived
cells by promoting SMAD3/4 and BGN expression and inhibiting ERK activation, we
wished to gain insight into the downstream targets and signaling pathways that TAp73,
RAC1b or BGN affect. Following RNAi-mediated knockdown or ectopic overexpression of
BGN in PANC-1 cells, we found that BGN phenocopied the effects of RAC1b and TAp73
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on the EMT markers ECAD, VIM and SNAIL (Figure 7A,B), and on the ALK2-SMAD1/5
arm of TGF-β signaling (Figure 7C). This means that RAC1b, TAp73 and BGN control EMT
marker expression and TGF-β1 signaling via SMAD1/5 in the same way, which confirms
our contention that all three proteins are part of the same signaling pathway. Hence,
we provide proof for the existence of a RAC1b-TAp73α-SMAD4-BGN axis operating in
both murine and human cells to provide tumor suppression by maintaining epithelial
differentiation. Moreover, this is the first demonstration of RAC1b collaborating with an
established tumor suppressor pathway.

We also sought to know whether RAC1b is located upstream or downstream of TAp73.
In a series of expression experiments with reciprocal inhibition and overexpression or
mutual rescue experiments with migratory activities as readout, we came to the conclusion
that RAC1b acts upstream of TAp73. If RAC1b is to activate TAp73 then it should be located
in the nucleus. In fact, nuclear localization of RAC1b has been reported and compared
to the parental isoform, RAC1. Interestingly, RAC1b more strongly accumulates in the
nucleus as a result of less prenylation, which in turn is due to a more stable association
with SmgGDS-607 [26]. This spatial proximity to TAp73 may explain why RAC1b can
induce SMAD4 via TAp73 binding to the DPC4 promoter. As speculated earlier for murine
cells [14], TAp73 deficiency in PANC-1 cells may cause a decrease in transactivation of the
DPC4 promoter harboring a p53 response element [14].

Despite being a mesenchymal matrix protein, BGN is nevertheless subject to positive
regulation by both RAC1b [16], TAp73 ([14], this study) and SMAD4 (this study). This is
noteworthy as it clearly shows that the type of regulation depends on the protein’s function
with respect to EMT (here a TGF-β inhibitor) rather than its general structure. Thakur and
colleagues have shown that Bgn, unlike other mesenchymal proteins, is a potent inhibitor
of the EMT process in murine cells, likely by its ability to bind TGF-β and neutralize its
biological activity [14]. Our data here in human cells are in good agreement with those
from the mouse as we have shown that inhibition of BGN expression or its biological
activity derepresses the cells’ migratory/invasive activities and that this is associated
with activation of non-SMAD/ERK signaling (Figure 8). The strong promoting effect of
TAp73 on the induction of BGN by TGF-β1 via intermittent SMAD4 expression may thus
serve to ensure sufficient BGN production for the neutralization of this growth factor in a
TGF-β-rich microenvironment.

Of note, although RAC1b inhibition caused a decrease in SMAD3 and SMAD4 abun-
dance, the overall TGF-β signaling activity was higher, due to the loss of RAC1b-mediated
suppression of the synthesis of ALK5 (the major TGF-β type I receptor) (Figure 8). Notably,
this function of RAC1b was not shared by TAp73 (H.U., unpublished observation), which
we interpret as additional evidence for RAC1b being located upstream of TAp73, because
in case of the reverse orientation, TAp73 would be expected to also impair ALK5 expression
and signaling.

Altogether, these data clearly suggest that the absence of RAC1b or TAp73 impairs
TGF-β signaling toward the tumor-suppressing SMAD4-dependent pathway. Hence, the
collaboration between RAC1b and TAp73 in suppressing EMT and cell motility might
extend to other tumor-suppressive modes of TGF-β; for instance, a SMAD4-dependent
lethal form of EMT [27]. Also, in vivo data in mouse models will reveal if TAp73 or RAC1b
deficiency will reduce the number of liver metastases developing from the cells after their
injection into the pancreas, and—mechanistically—if the resulting mesenchymal conversion
accounts for the pro-metastatic effect.
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RAC1b in negative control of EMT, cell migration (CM) and TGF-β activity in human PDAC cells.
Upon exposure of TAp73+/+ or RAC1b+/+ or high epithelial tumor cells to EMT inducers such as
TGF-β1 (blue ovals, left-hand scheme), RAC1b increases the level of or activate TAp73α to induce
SMAD3/4 expression and signaling, BGN secretion (red ovals) and, ultimately, inhibition of TGF-β
and TGF-β-induced activation of the ERK pathway. A decrease in activation of the SMAD pathway,
i.e., by limiting the synthesis of SMAD4 following RAC1b or TAp73 inhibition (right-hand scheme,
TAp73−/− or low or RAC1b−/− or low) induced a switch in TGF-β signaling to SMAD4-independent
pathways, e.g., activation of ERK1/2. In the course of this study, we have also carved out that RAC1b
is located upstream of TAp73 in this pathway and that the α rather than the β isoform of TAp73 is
controlling BGN. Unlike TAp73α, RAC1b is a potent suppressor of ALK5 expression (indicated by
the red line between RAC1b and the blue-filled rectangle in the left-hand scheme) and this function
overrides the increase in TGF-β responsiveness otherwise awarded by TAp73α. The green arrows
denote activation and the red lines suppression. Arrows and lines in grey mark the inactive state. For
details see text.

5. Conclusions

The results of this study may have implications for therapeutically targeting TGF-β in
patients. A series of clinical trials with agents that inhibit either the TGF-β ligand or the
receptors are currently in progress [28]. However, PDAC treatment with these inhibitors is
challenging due to the lack of predictive biomarkers that aid in identifying those patients
that are likely to respond. The availability of those biomarkers may facilitate the selection
of patients and the optimal time for treatment with regard to TGF-β activity. There is also
evidence from other cancer types that RAC1b [29,30], TAp73 [31,32] and BGN [33–35] all
promote chemoresistance and that they may even operate through the same downstream
signaling, i.e., NF-κB [30,33]. Future studies should reveal if the levels or activation states
of TAp73 and/or RAC1b in patients could aid in assessing whether the oncogenic- or
tumor-suppressive actions of TGF-β predominate at a given time.
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