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Abstract: Aortic aneurysms are responsible for significant morbidity and mortality. Despite their
clinical significance, there remain critical knowledge gaps in the pathogenesis of aneurysm disease
and the mechanisms involved in aortic rupture. Recent studies have drawn attention to the role of
reactive oxygen species (ROS) and their down-stream effectors in chronic cardiovascular diseases
and specifically in the pathogenesis of aortic aneurysm formation. This review will discuss current
mechanisms of ROS in mediating aortic aneurysms, the failure of endogenous antioxidant systems in
chronic vascular diseases, and their relation to the development of aortic aneurysms.

Keywords: reactive oxygen species; aortic aneurysm; abdominal aortic aneurysm; thoracic aortic
aneurysm; oxidative stress; antioxidant

1. Introduction

Aortic aneurysms (AAs), defined as a progressive and pathologic dilation of the aorta,
are responsible for 150,000–200,000 deaths per year worldwide [1]. Despite this clinical
significance, there remain critical knowledge gaps in the mechanism and pathogenesis
of all types of AAs, and how these differences can increase rupture potential. Current
understanding of the pathogenesis of sporadic AAs suggests a complex interplay of protein
degeneration, thrombosis, hemodynamic stress, and inflammatory cytokines [2]. Recent
studies by our lab and others have drawn attention to the role of reactive oxygen species
(ROS), antioxidant pathways such as itaconate and other TCA derivatives, and the down-
stream effects of these pathways in AA pathogenesis and rupture [3,4]. Emerging evidence
suggests ROS pathways modulate lipid homeostasis, protein stability and location, epi-
genetics, mitochondrial fission and fusion, and energy metabolism and when present
in relative excess, such as a state of oxidative stress, drive pathophysiologic changes in
cellular signaling. Evidence also supports a role for ROS in the regulation of chronic in-
flammation, including in the setting of vascular diseases such as atherosclerosis and aortic
aneurysms [1,5,6]. Therefore, understanding the ability of ROS to influence the signaling
pathways underlying AA formation or rupture and may provide novel insight for routes
of clinical intervention. This review will evaluate the link between known mechanisms
of inflammation and potential roles of ROS in the activation of these inflammatory path-
ways in AAs. We will also discuss the role of oxidative stress, whether due to excessive
ROS production or deficiency of endogenous antioxidant defenses, in AAs. Finally, we
highlight endogenous antioxidant defense systems as potential therapeutic targets in aortic
aneurysm disease.

2. Aortic Aneurysms

AAs are characterized by at least 50% increased dilation of the aorta [7]. Categorized
based on their anatomic location, AAs are generally divided into three distinct types;
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ascending aortic aneurysms (aAAs) located in the aortic arch, descending thoracic aortic
aneurysms (dTAAs) located proximal to the diaphragm in the thoracic aortic cavity, and
abdominal aortic aneurysms (AAAs) located between the infrarenal abdominal aorta. AAs
possess unique genetic and/or environmental risk factors with varying levels of penetrance
based on location. For example, mutations in genes such as fibrillin, ACTA2, MYH11 and
LOX have been found to influence aneurysms of the ascending aorta [8]. Conversely, AAAs
tend to develop with aging and in conjunction with certain risk factors such as gender,
tobacco use, and cardiovascular disease. A crucial shared characteristic of all types of AAs
is the elevated morbidity and mortality associated with aortic rupture. All types of AAs are
generally clinically silent until impending dissection and/or rupture, and when rupture
does occur, mortality approaches 90% [8,9]. Therefore, the development of a medical
treatment therapy to prevent aortic rupture would address a significant medical health
care burden.

While all AAs involve progressive dilation of the aorta, the mechanisms of the lo-
calized dilation and capacity to rupture are different based on the anatomical location
and embryological origin of the resident cells. The lack of comprehensive knowledge
of the causal mechanisms of AAs and effective strategies for intervention is reflected in
the growing incidence of AAs. In 2022, the prevalence of AAA was an estimated 0.92%,
representing roughly 35 million individuals [10].

It is commonly believed that AA formation and rupture are multifactorial processes
that involve a combination of genetic and environmental factors, both known and unknown,
to produce localized aortic dilation. The first known key difference between AAs in the
thoracic vs. abdominal aorta stem from the unique cellular and structural composition
of the residential architecture of the thoracic and abdominal aorta. The ascending and
descending thoracic aorta exhibit thinner intima, thicker media, and a higher elastin and
collagen content when compared to the abdominal aorta [11]. These differences have
recently been attributed to the embryological origin of the resident cells as vascular smooth
muscle cells (VSMCs) of the thoracic aorta are of neural crest origin, whereas abdominal
VSMCs originate from mesoderm and endothelial cells [11–13]. However, in both cases
the dysregulation of VSMC function has been linked to the formation and progression of
AA [14]. The unique segmental composition of the thoracic and abdominal aorta provides
the framework for pathogenetic mechanisms to impart effects of unequal magnitude and
leads to differential AA characteristics based on anatomical location. Recent evidence
suggests that TAAs are fibrotic diseases of modulated VSMCs and fibroblasts while AAA
pathology is reflective of a chronic inflammatory disease of the aging aorta. However, it is
important to note that there remain key unresolved knowledge gaps in the pathogenesis of
both types of AA disease that prevent regional-specific medical treatment therapies from
being developed.

Another key difference in thoracic and abdominal aortic aneurysm formation is the
genetic predisposition to aneurysm formation based upon location. Approximately 30% of
TAA cases have a genetic component from clinical syndromes or connective tissue disorders
such as Marfan, Loeys-Dietz, and Ehlers–Danlos Syndrome, associated with mutations in
genes such as fibrillin, ACTA2, MYH11 and LOX [8]. In contrast, there has not been a strong
genetic link to AAAs.

Both TAA and AAA share causal environmental risk factors such as tobacco use,
hypertension, atherosclerosis, age, and male sex [15]. Risk factor modification remains the
only means of medical management of AAs, leaving a significant need for the development
of novel medical treatment therapies. Current treatment strategies include invasive open
surgical or endovascular repair when the aorta reaches a crucial size or enlarges at a rapid
rate; however, these procedures are associated with substantial morbidity and represent a
significant medical treatment burden to current health care systems [16–18]. Size threshold
and growth rate are currently key triggers for intervention, and this intervention does
not come without risk. Risk factors such as increased age and female gender have been
associated with higher mortality rates following surgical intervention [18]. Given the
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morbidities of aortic intervention, a significant effort to establish alternative means of
medical management is underway. There exists a window of potential medical intervention
between diagnosis and invasive surgical treatments in which targeted medical therapy
could halt progression or prevent aortic aneurysm rupture.

3. Inflammatory Mediators of Aortic Aneurysm Formation

As previously discussed, the pathogenesis of aortic aneurysm formation is both com-
plex and multifactorial. Generalized destruction of elastin and collagen in the aortic media
and adventitia, VSMC loss, and the infiltration of lymphocytes and macrophages are all
pathophysiologic mechanisms that propagate aneurysm formation [11]. Dysregulation
of the physiologic process of inflammation is considered a key contributing upstream
mechanism of AA formation. Activated macrophage and pro-inflammatory CD4 T-cell
infiltration has been linked to aneurysm formation and rupture in murine models [11,19].
This process is driven by several inflammatory mediators which have been linked to cardio-
vascular diseases, including IL-1β, the NLRP3 inflammasome, NF-Kβ, and IL-6. We aim to
introduce the intricate connection among dysregulation of these inflammatory mediators,
ROS signaling, and AA formation.

In the setting of aortic aneurysm formation, IL-1β serves as a potent inflammatory
cytokine and acts primarily through its receptor, IL-1R1 [16]. Recent evidence from our lab
and others suggests that IL-1β and IL-1α, which both bind the IL-1R1 and in some cases
are believed to have overlapping functions, are not functionally redundant and that IL-1α
could exert protective effects in AAs. In contrast, IL-1β has various downstream inflam-
matory effects, perhaps its most well-known being stimulation of macrophage infiltration
into the aortic wall during AA formation [17]. IL-1β activation occurs primarily through
cleavage of its precursor via the NLRP3 inflammasome, which also results in the increased
activity of the pro-inflammatory caspase-1 [16,17,20]. This protease cleaves pre-IL-1β into
its active form, which is released extracellularly and binds to effector cells and lymphocytes
via IL-R1, propagating further inflammatory mediators such as TNF-α, IL-6, MCP1 and
IFN-Y (Figure 1) [19,21]. Previous studies have identified a 20-fold increased level of IL-1β
in human TAA samples when compared to non-aneurysmal human aortic samples [17].
Conversely, genetic deletion of IL-1β in murine models has been found to preserve aortic
elastin and smooth muscle cells, with less pronounced inflammatory cell infiltration, and
attenuation of AAA and dTAA formation [17,20]. Additionally, deficiency of CD4 Th17
cell signaling, a process driven by IL-1β, is associated with reduced aortic macrophage
infiltration and attenuated aneurysm formation in murine models [21]. Canakinumab, a
monoclonal antibody to human IL-1β, has been shown to suppress tumorigenic inflamma-
tory pathways and angiogenesis in certain types of lung cancers, and is currently under
investigation for effects in cardiovascular disease [22,23]. These studies establish the role of
IL-1β as an early mediator of AAs.

As previously mentioned, the assembly and activation of the NLRP3 inflammasome, a
multiprotein complex, results in caspase 1 activation and the dependent release of IL-1β,
with associated increases in cytokines such as IL-18 [24–27]. The NLRP3 inflammasome
represents a critical upstream mediator of pro-inflammatory cytokines and is therefore a
potential “gatekeeper” for pro-inflammatory states and diseases such as AAs. Studies in
NLRP3 knockout murine models have shown reduced aortic destruction and aneurysm for-
mation, suggesting the NLRP3-caspase-1 inflammasome is contributory in aortic aneurysm
formation [28]. Additional investigation in Apolipoprotein E (ApoE) –/– mice (deficient
in NLRP3, caspase recruitment domains, and caspase-1) found reduced elastic lamina
degradation and MMP activation in early AAA formation, further supporting a role for
the NLRP3 inflammasome in aneurysmal disease [29]. Some current research efforts have
investigated the potential effects of NLRP3 inflammasome inhibition through the use of
pharmacologic inhibition, representing a possible avenue for clinical intervention in AAs,
especially given the mixed effectiveness of the IL-1 pathway in other chronic vascular
diseases [30,31].
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NF-Kβ is a protein complex that acts as a cytokine-responsive transcription factor,
stimulating the production of matrix metalloproteinases (MMP) in macrophages and
other acute phase inflammatory reactants and is a known down-stream effector of IL-1β
signaling. The intricate NF-Kβ cascade contributes to the breakdown of aortic wall integrity
during the formation of AAs [8]. Elevated levels of NF-Kβ have been detected in human
thoracic (TAA) and abdominal (AAA) aortic tissues when compared to non-aneurysmal
control tissues, associated with increases in MMP-2 and MMP-9 [32]. In murine models,
the inhibition of NF-Kβ has been demonstrated to attenuate AAA formation through
a reduction in endothelial adhesion molecule expression, which is thought to trigger
macrophage infiltration and inflammatory sequela in the aortic adventitia and media [33,34].
IL-6 is a downstream chronic and acute phase inflammatory cytokine with a key role
in aortic aneurysm formation, involved in stimulation of protein synthesis, neutrophil
production, and macrophage recruitment [35]. As previously discussed, activation of
secondary inflammatory mediator IL-6 is driven by IL-1β activation, through a cascade
activation of mitogen-activated protein kinases [36]. IL-6 has been linked to chemokine
and chemokine receptor-mediated inflammatory cell migration in the setting of AAA [30].
Levels of circulating IL-6 have been found elevated in patients with AAA and TAA and
correlated with the size of the aneurysm in cross-sectional studies [37,38]. Murine models
have established that IL-6-knockout mice exhibit TAA attenuation, suggesting a possible
novel target for aneurysm prevention in humans [39].

Although the role of inflammatory signaling in aortic aneurysm development is well
investigated, the precise cellular processes and mechanisms underlying increased inflam-
mation in aneurysmal disease remains incompletely understood, especially in chronic
growth and rupture. A growing body of evidence suggests that oxidative stress, charac-
terized by an excess of ROS production relative to endogenous antioxidant defenses, can
incite pro-inflammatory signaling and potentially play a substantial role in the progression
of vascular diseases, including AAs.

4. Reactive Oxygen Species Link to Aortic Aneurysms

ROS are chemically reactive molecules that contain at least one oxygen molecule and
one or more unpaired electrons that are derived from redox reactions and are formed
as a natural by-product of aerobic metabolism [3]. Common species of ROS include
superoxide anion (O2

−), hydroxyl radical (−OH), hydrogen peroxide (H2O2), nitrous
oxide (N2O), peroxynitrite (ONOO−), and hypochlorite (ClO−). These molecules possess

biorender.com
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physiologic roles when produced appropriately and in limited quantities, including but
not limited to the modulation of cell survival/death, immunologic differentiation, and
modulation of physiological functions [40]. Many ROS-mediated responses protect cells
against oxidative stress and reestablish redox homeostasis [41]. As the mitochondria
perform the majority of cellular metabolism, they are an important source of ROS and
generate approximately 90% of cellular ROS in certain tissue types [42]. During periods of
oxidative stress, the over-production of ROS leads to imbalance, resulting in the oxidative
damage of cellular components [42]. Oxidative imbalance results in pathophysiologic
consequences, and the recent literature suggests increased oxidative stress alters signaling
pathways responsible for inflammation and pathogenesis of cardiovascular diseases [2].
Atherosclerosis, hypertension, cardiomyopathy, cardiac arrhythmias, and AAs have all
been linked to redox imbalance [40–42]. Of specific relevance to AAs, overproduction of
vascular ROS results in increased MMP activity, vascular smooth muscle cell apoptosis,
and alteration to aortic wall collagen integrity [6,43].

The current literature has established multiple pathways contributing to the gener-
ation of ROS in AAs. Notably, pathways associated with NADPH oxidase and iNOS are
responsible for the generation of the superoxide anion (O2

−), a factor consistently associ-
ated with AAA formation in numerous studies [43–45]. Pioneering research by Xiong et al.
determined that the selective genetic knockout of iNOS as well as NADPH oxidase inhi-
bition with orally administered apocynin resulted in the decreased expression of MMP-2
and MMP-9, lower levels of NO2 and NO3 production, and a notable reduction in AAA
formation [45].

Another important redox pathway in vascular physiology and AA disease is endothe-
lial nitric oxide synthase (eNOS). This enzyme serves a pivotal role in safeguarding vascular
cells against oxidative harm. By generating nitric oxide (NO−), it deactivates superoxide
anions and other ROS, thereby serving as a protective mechanism against deleterious ox-
idative stress. Nitric oxide, when present at appropriate levels, acts as a potent vasodilator
necessary for maintaining hemodynamic balance and is also critical for promotion of a
cellular milieu which favors vasodilation and inhibition of inflammation, proliferation,
and coagulation. Research has demonstrated that suboptimal nitric oxide levels or limited
bioavailability contribute to the worsening of atherosclerosis [46]. In cases of advanced
atherosclerosis, damage to the vascular endothelium due to lipid plaque deposition dis-
rupts laminar blood flow, triggering the upregulation of inflammatory pathways. This
oxidative stress perpetuates a positive feedback loop, exacerbating both local and systemic
inflammation. When eNOS loses its connection with vital cofactors like tetrahydrobiopterin,
it leads to the formation of superoxide anion (O2

−) instead of nitric oxide (NO−), resulting
in endothelial dysfunction and vascular disease. Siu et al. confirmed in murine models
of AA disease the consequences of uncoupled eNOS [47]. They found uncoupling eNOS
with vital cofactor tetrahydrobiopterin (H4B) led to the development of abdominal aortic
aneurysms (AAA) in hph-1 mice [47]. Interestingly, supplementation with folic acid, known
to reestablish the coupling of eNOS by enhancing dihydrofolate reductase (DHFR) function,
significantly reduced AAA formation in these mice [48,49].

As previously mentioned, mitochondria are a source of ROS and account for ap-
proximately 90% of total cellular ROS in some tissues [2]. Although mitochondria are
classically understood as organelles responsible for ATP production, there is increasing
recognition that mitochondria are central in numerous additional cellular processes, includ-
ing intracellular signaling, damage sensing and repair, oxygen and fuel sensing, cellular
death, and inflammation. ROS are critical mediators of some of these aforementioned
physiologic processes, especially when produced in low quantities. The electron transport
chain comprises a series of proteins anchored to the inner mitochondrial membrane and
is a key source of superoxide production. Through a sequence of redox reactions, this
chain transfers electrons to liberate energy by producing a proton gradient which then
generates ATP via ATP-synthase [50]. Under normal physiological conditions, this process
functions smoothly, and healthy mitochondria are vital for the maintenance of vascular
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homeostasis. However, during episodes of oxidative stress, this finely tuned balance can be
disrupted, leading to an escalation in the production of mitochondrial ROS [42]. Circular
mitochondrial DNA is particularly susceptible to DNA damage by ROS and can be an
indicator of ROS damage in chronic inflammatory diseases [50]. Oxidative damage further
impedes the mitochondrion’s capacity to regulate the formation of ROS within the electron
transport chain, creating a paradoxical positive feedback loop which results in the accumu-
lation of damaged, dysfunctional mitochondria. Mitochondrial dysfunction and altered
mitochondrial respiration have been linked to AAA formation [51]. Differential expres-
sion of genes associated with oxidative phosphorylation and mitochondrial function (e.g.,
fibrillin-4), have been identified in human AAA tissues, suggesting the association between
the dysregulated production of mitochondrial ROS and aortic aneurysm formation [52].
Reduced expression of specific markers of mitochondrial biogenesis and vascular smooth
muscle migration (e.g., PPARy coactivator-1-alpha) were identified in AAA tissues, further
reinforcing the role of mitochondrial dysfunction in aortic aneurysm formation [53].

Oxidative stress can be a potent regulator of cellular signaling in many tissues, includ-
ing the promotion of pro-inflammatory signaling, and the co-occurrence of oxidative stress
and inflammation in human and pre-clinical models of AA disease give credence to the
possibility that these processes interact to drive the pathophysiologic changes leading to
AA formation. However, the specific association between the excessive generation of ROS
and activation of the IL-1β pathway via the inflammasome pathway has some controversial
linkages. Some studies in other diseases such as chronic granulomatous diseases (CGDs),
which carry mutations in the p47-phox gene and are NADPH oxidase-deficient, are still able
to activate IL-1 independent of ROS production; however, other inflammatory diseases are
suggested to in part require ROS generation for IL-1 activation [54]. Further work is needed
to provide a more comprehensive understanding of the interplay between oxidative stress
and inflammatory signaling in AA disease.

5. Role of Endogenous Antioxidant Systems in Aortic Aneurysms

As previously discussed, oxidative stress is characterized by excessive levels of ROS
relative to endogenous antioxidant defenses, and can be the result of the overproduction of
ROS, deficiency of antioxidant systems or both. There exist several endogenous antioxidant
systems that counteract the deleterious effects of ROS. Examples include Superoxide
Dismutase (SOD), Glutathione Peroxidase (GPx), catalase, and Nuclear factor erythroid
2-related factor 2 (Nrf2). There are also several non-enzymatic antioxidant molecules
including include iron and copper chelators, alpha-tocopherol (vitamin E), ascorbic acid
(vitamin C), uric acid, melatonin, polyphenols, and polyamines (e.g., spermidine).

There is growing evidence that AAs are associated not only with increased abundance
of pro-oxidant molecules but also with the disruption of endogenous antioxidant defense
systems resulting in increased susceptibility to oxidative stress [55]. For example, plasma
levels of alpha tocopherol (vitamin E) were observed to be lower in patients with AAA
versus control patients [56]. Vitamin C levels have also been observed to be lower in aortic
tissue from patients with AAA versus those without disease [57].

Superoxide Dismutase (SOD) is an enzyme that facilitates the conversion of super-
oxide anions (O2

−) into oxygen (O2) and hydrogen peroxide (H2O2), thus mitigating the
detrimental effects of ROS (Figure 2) [58]. Elevated SOD levels have been observed in
murine models of abdominal aortic aneurysms (AAA), suggesting a natural effort to coun-
teract oxidative stress during aneurysm development [58,59]. Some studies have observed
the decreased activity of CuZnSOD in aortic tissue from patients with AAA versus non-
diseased control tissue [60,61]. The activity of SOD has been linked to the supplementation
of riboflavin, vitamin B2, and will be discussed further in later sections [59].

Glutathione Peroxidase (GPx), another enzyme, shields cell membranes from oxidative
harm by reducing hydrogen peroxide, a byproduct of superoxide anion conversion, (H2O2)
and lipid hydroperoxides into innocuous water (H2O) (Figure 3) [62]. Reduced GPx
activity, resulting in increased oxidative burden and the activation of transforming growth
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factor-beta (TGF-β), has been linked to the formation of TAAs [63,64]. TGF- β has been
established as a vital regulator of vascular function, with over-activation or over-inhibition
being associated with AA formation [65].
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Figure 3. Conversion of hydrogen peroxide via Glutathione Peroxidase (figure generated via
biorender.com, accessed 1 November 2023).

Similarly, the enzyme catalase, which converts hydrogen peroxide to water, has a
vital role in the attenuation of MMPs (Figure 4). Reduced levels of catalase have been
linked to the development of AAAs in murine models [66]. Given the association of the
MMP degradation of aortic VSMC and the extracellular matrix, the upregulation of catalase
in VSMCs within aortic tissues not only promotes the survival of these cells but also
serves as a preventive measure against aneurysm formation by modulating MMPs [66,67].
Interestingly, the selective estrogen receptor modulator (SERM), tamoxifen, was found to
exhibit vaso-protective effects in murine models through a five-fold increase in catalase
mRNA production (p = 0.02) and an eight-fold increase in catalase protein production
(p = 0.04) [67]. In this study, rats treated with tamoxifen had approximately 50% smaller
AAA diameters when compared to control mice, supporting a role for catalase in the
maintenance of oxidative balance and protection against AA formation [67].
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Important upstream regulators of endogenous antioxidant defense systems include
Sirtuins, a family of histone deacetylases whose activity is important for regulating cellular
functions including antioxidant defenses and inflammation [68]. Sirtuins help to regulate
nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcription factor which pro-
motes transcription of antioxidant genes including SODs and catalase (Figure 5) [68,69].
The inhibition of nuclear Nrf2 has been associated with an increased risk of AAA devel-
opment and rupture in murine models [70]. Additional studies in murine models found
Itaconate, an anti-inflammatory mitochondrial metabolite produced by macrophages and
monocytes, achieved protection against AAA formation via agonistic effects on the Nrf2
pathway and inhibition of the NLRP3 inflammasome [71]. A deficiency of Nrf2 resulted in
increased inflammatory factor expression and AAA formation [71]. Upregulation of the
protective Nrf2 antioxidant system and reduction in the NLRP3 inflammasome represents
a novel and promising approach to aortic aneurysm treatment; however, clinical efficacy
has yet to be established.
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Together, available clinical evidence suggests that aortic aneurysm disease is associated
with a relative deficiency of endogenous antioxidant defenses, which may contribute to
a state of oxidative stress and subsequent activation of pathological signaling processes,
including inflammation. This oxidative imbalance and inflammatory cascade result in
changes in aortic tissue integrity, through macrophage infiltration, MMP activation, elastin
degradation, and VSMC destruction in both thoracic and abdominal AAs (Figure 6).
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6. Oxidative Stress as a Therapeutic Target in Aortic Aneurysms

Considering the role of oxidative stress in the pathophysiology of aortic aneurysms,
there has been substantial interest in exploring the therapeutic potential of mitigating
excessive ROS. Numerous preclinical and clinical investigations have delved into the feasi-
bility of bolstering inherent antioxidant defenses with exogenous antioxidant compounds.
However, only a limited number of studies have made connections between exogenous an-
tioxidant supplementation and its potential to alleviate aortic aneurysm disease in humans,
with limited evidence for its efficacy.

The potential role of various vitamins in preventing or treating aneurysms has been
investigated, primarily due to their well-known potent antioxidant properties. Ascorbic
acid (vitamin C), for instance, has demonstrated the ability to mitigate AAA development,
preserving aortic elastin content, downregulating MMP-2/MMP-9 and IL-6 in murine mod-
els [72,73]. Prolonged treatment with vitamin C has also been shown to enhance nitric oxide
synthase activity through the chemical stabilization of the cofactor tetrahydrobiopterin,
observed in both murine models and human cultured human aortic tissues [74,75]. De-
spite these promising results, few clinical trials exploring the effect of ascorbic acid on
human AA have been performed. Duffy et al. evaluated the antioxidant effects of vitamin
C on ischemia–reperfusion injury during open AAA repairs; however, they found that
parenteral ascorbic acid did not attenuate markers for systemic inflammation or endothelial
damage [76].

Another vitamin explored for its impact on aneurysm formation is α-tocopherol, a
form of vitamin E. α-tocopherol was found to reduce the formation of aortic aneurysms
(resulting in a 24% reduction in maximal aortic diameter), decrease aortic rupture risk,
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lower aortic isoprostane content (a marker for oxidative stress), and reduce macrophage
infiltration in ApoE-deficient murine models [77]. However, unlike vitamin C, vitamin E
did not significantly affect MMP levels and had no impact on atherosclerosis [77]. Promising
results from these studies prompted the evaluation of the clinical relevance and effectiveness
of α-tocopherol and β-carotene (vitamin A) in humans. A randomized, double-blinded,
placebo-controlled trial was conducted involving male smokers aged 50–69 years at the
National Cancer Institute, with a mean follow-up period of 5.8 years. The results showed
that vitamin E and β-carotene supplementation had no preventive effect on AAA formation
or the risk of rupture [78].

Riboflavin, vitamin B2, was found to reduce AAA size and maintain elastin concentra-
tions in aortic tissues through upregulation of endogenous SOD, in murine models [59].
Interestingly, in murine Marfan Syndrome models, a mixture of vitamin B6, B9, and B12
orally gavaged for 20 weeks was found to mitigate TAA formation and increase collagen
deposition in the aortic media [79]. Overall, there remains a paucity of human trials involv-
ing antioxidant compounds demonstrating significant clinical effects on aortic aneurysms.
However, therapeutic strategies which seek to augment endogenous antioxidant defense
systems remain a promising though incompletely studied avenue of AA disease prevention.

Several preclinical studies in models of AAs suggest that therapeutic interventions
which decrease oxidative stress are associated with the attenuation of vascular inflamma-
tion and aneurysm formation. Genetic overexpression of endogenous antioxidant catalase
attenuated experimental aneurysm formation, accompanied by lower vascular inflamma-
tion [58]. In a preclinical study using a rat model of elastase-induced AAA, treatment with
riboflavin increased endogenous SOD levels, and this was associated with the attenua-
tion of AAA formation [59]. Melatonin treatment in a BAPN-induced mouse model of
TAA increased aortic SIRT-1 abundance and activity, Nrf-2 abundance, and SOD activity
and this increase in endogenous antioxidant defenses was associated with lower aortic
markers of oxidative stress and, importantly, lower incidence of aneurysm formation and
rupture [80]. In a murine model of angiotensin-II induced acute aortic dissection, treatment
with ursodeoxycholic acid increased vascular Nrf2 expression, which was associated with
the decreased expression of pro-oxidant NADPH oxidase and increased expression of
antioxidant enzymes including CuZnSOD, MnSOD and catalase, and a resultant marked
decrease in the incidence of aortic dissection [81].

Naturally occurring compounds with antioxidant properties also appear to attenuate
vascular inflammation in preclinical studies. For instance, flavonoids, a group of phenolic
substances found naturally in various fruits and vegetables, have been found to exhibit
various beneficial biologic effects [82,83]. This group consists of nearly 3000 unique com-
pounds, and have been linked to anti-inflammatory, antitumor, antioxidant, anti-platelet,
and neuroprotective activities [82,83]. Diosmetin, a flavonoid derivative naturally occurring
in citrus fruits, has demonstrated remarkable antioxidant capabilities in both in vivo and
in vitro settings [84,85]. Believed to operate through the activation of the Nrf2 pathway,
diosmetin has displayed anti-inflammatory properties, with indications of relief from car-
diometabolic disorders, enhanced ventricular function, and coronary artery vasodilation
in murine models [84,85]. Despite these promising discoveries, there is currently a lack of
studies examining the impact of Diosmetin on aortic aneurysm formation, leaving space
for future investigations in this domain. Many other natural compounds have been found
to exhibit antioxidant properties yet lack significant clinical relevance.

Quercetin, a flavonoid found in onions, grapes, nuts, and broccoli has been explored
in the realm of aortic aneurysmal disease given its potent antioxidant properties. Treat-
ment of mice with quercetin was shown to prevent the onset of atherosclerosis, prevent
macrophage infiltration of the aortic wall, suppress the formation of AAs, and prevent
aortic dissection through reduction in the macrophage infiltration of aortic tissue, and cause
a reduction in the activation of NF- Kβ and reduction in levels of MMP-2/MMP-9 [86,87].
Quercetin was found to exhibit endothelial cell-protective effects in cultured human umbil-
ical vein endothelial cells, suggesting possibilities for human applicability [87]. Additional
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studies have replicated the protective effects of quercetin of AA formation, through the
downregulation of cyclooxygenase-2 expression and VEGF signaling, and upregulation
of various antioxidant mechanisms such as the SOD and caspase pathways [87,88]. To
date, quercetin remains the only flavonoid with evidence suggesting direct benefit in AA
prevention and treatment.

Overall, there are limited but compelling preclinical data to suggest that therapeutic
strategies to augment endogenous antioxidant defense systems may hold promise for atten-
uating aortic aneurysm development (Table 1). Given limited translational investigation,
future work is required to establish the importance of antioxidant systems in the prevention
or augmentation of AAs.

Table 1. Summary table of exogenous antioxidants and their effect on AA.

Exogenous Antioxidants In Vivo/In Vitro Effects on Aortic Aneurysms (AA)
[Murine Models] References

riboflavin (vit. B2)

Reduction of Abdominal AA maximal diameter
Preservation of aortic elastin concentration

Upregulation of endogenous Superoxide Dismutase
Increased collagen deposition in Thoracic AA

[59,79]

Itaconic acid (itaconate) Attenuation of Abdominal AA formation through Nuclear factor erythroid
2-related factor 2 (Nrf2) upregulation [71]

Ascorbic acid (vit. C)
Preservation of aortic elastin concentration

Downregulation of matrix metalloproteinase (MMP-2, MMP-9),
and Interleukin-6

[72–75]

α-tocopherol (vit. E)
Reduction of AA maximal diameter

Decrease aortic rupture rate
Lowers markers of aortic oxidative stress

[77,78]

Melatonin
Lowers incidence of Thoracic AA formation and rupture

Increased endogenous Superoxide Dismutase
Lowers markers of oxidative stress in aortic tissues

[80]

Ursodeoxycholic acid
Reduction of acute aortic dissection

Decreased expression of NADPH oxidase
Increased endogenous Superoxide Dismutase and catalase

[81]

Diosmetin

Endogenous Nrf2 upregulation
Relief of cardiometabolic disorders

Enhanced ventricular function
Coronary artery vasodilation

[84,85]

Quercetin
Downregulation cyclooxygenase-2 and VEGF

Upregulation of Superoxide Dismutase and caspase
Endothelial cell protection *

[86–88]

* studies performed in cultured human cells.

7. Conclusions

AAs are a chronic vascular disease that currently have no medical treatment therapy;
therefore, identification of non-invasive medical therapies to attenuate or slow aneurysm
growth is a valuable biomedical research priority with potential for significant clinical
impact. The pathophysiology of aneurysm formation is complex and remains poorly under-
stood, but current evidence suggests that oxidative stress and inflammation are signaling
processes which interact to drive detrimental changes to the vascular wall. Oxidative stress
results both from the excess abundance of ROS as well as the deficiency of endogenous
antioxidant and scavenging mechanisms. There is a body of preclinical work suggesting
the promise of therapeutic interventions which target excessive ROS and/or augment
endogenous antioxidant systems for attenuating AA development; however, many of these
therapeutic strategies have failed to show clinical benefit in humans despite success in
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preclinical disease models. Therefore, as future work develops novel targets, there is the
need for the greater translational efficacy of these targets for human disease.

Author Contributions: M.K. (conception, initial drafting and critical revision), R.G.-R. (conception
and critical revision), G.A. (critical revision), M.S. (conception, critical revision). All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Institute of Health Surgeon Scientist Train-
ing in Cardiac Disease Grant 1T32HL166113-01 (Kazaleh), the AHA Scientist Development Grant
14SDG18730000 (Salmon), and the National Institute of Health RO1 HL126668 (Ailawadi) grants. The
contents are solely the responsibility of the authors and do not necessarily represent the views of the
NIH or NHLBI.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AA aortic aneurysms
AAA abdominal aortic aneurysm
aAA ascending aortic aneurysm
ApoE apolipoprotein E
dTAA descending thoracic aortic aneurysm
BAPN B-aminopropionitrile
CD4 cluster of differentiation 4
CuZnSOD copper zinc superoxide dismutase
dTAA descending thoracic aortic aneurysm
ECM extracellular matrix
eNOS endothelial nitric oxide synthase
GPx glutathione peroxidase
IL-6 interleukin 6
IL-17 interleukin 17
IL-23 interleukin 23
IL-1α interleukin-1 alpha
IL-1β interleukin-1 beta
IL-1R1 interleukin-1 receptor 1
IL-R1 interleukin receptor 1
iNOS inducible nitric oxide synthase
IFNγ interferon gamma
MCP1 monocyte chemoattractant protein 1
MMP-2 matrix metalloproteinase 2
MMP-9 matrix metalloproteinase 9
MnSOD manganese superoxide dismutase
NLRP3 NLR family pyrin domain containing 3
NF-Kβ nuclear factor kappa beta
NRF2 Nuclear factor erythroid 2-related factor 2
PPARγ peroxisome proliferator-activated receptor gamma
ROS reactive oxygen species
SOD superoxide dismutase
TNF-α tumor necrosis factor alpha
TGF-β transforming growth factor beta
VEGF vascular endothelial growth factor
VSMC vascular smooth muscle cell
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