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Abstract: Alzheimer’s disease (AD) is a multi-stage neurodegenerative disorder characterized by beta-
amyloid accumulation, hyperphosphorylated Tau deposits, neurodegeneration, neuroinflammation,
and cognitive impairment. Recent studies implicate CD8 T cells as neuroimmune responders to the
accumulation of AD pathology in the brain and potential contributors to toxic neuroinflammation.
However, more evidence is needed to understand lymphocytes in disease, including their functional
states, molecular mediators, and interacting cell types in diseased brain tissue. The scarcity of
lymphocytes in brain tissue samples has limited the unbiased profiling of disease-associated cell
types, cell states, drug targets, and relationships to common AD genetic risk variants based on
transcriptomic analyses. However, using recent large-scale, high-quality single-nuclear sequencing
datasets from over 84 Alzheimer’s disease and control cases, we leverage single-nuclear RNAseq data
from 800 lymphocytes collected from 70 individuals to complete unbiased molecular profiling. We
demonstrate that effector memory CD8 T cells are the major lymphocyte subclass enriched in the brain
tissues of individuals with AD dementia. We define disease-enriched interactions involving CD8 T
cells and multiple brain cell subclasses including two distinct microglial disease states that correlate,
respectively, to beta-amyloid and tau pathology. We find that beta-amyloid-associated microglia
are a major hub of multicellular cross-talk gained in disease, including interactions involving both
vulnerable neuronal subtypes and CD8 T cells. We reproduce prior reports that amyloid-response
microglia are depleted in APOE4 carriers. Overall, these human-based studies provide additional
support for the potential relevance of effector memory CD8 T cells as a lymphocyte population of
interest in AD dementia and provide new candidate interacting partners and drug targets for further
functional study.
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1. Introduction

Alzheimer’s disease (AD) is the most common cause of late-onset dementia, and
it is characterized neuropathologically by the co-occurrence of senile plaques contain-
ing beta-amyloid (Aβ) and neurofibrillary tangles composed of hyperphosphorylated
tau (pTau) [1]. Beta-amyloid accumulation is known to precede pTau accumulation and
cognitive impairment by ~10 years based on longitudinal biomarker studies, indicating
that AD is a multi-step disorder spanning over 10 years [2]. Recent advances in genetics
highlight neuroinflammation as a major causal factor in AD pathogenesis with the iden-
tification of multiple immune-related AD risk genes such as CD33, TREM2, and major
histocompatibility complex (MHC) genes [3–6].

The role of neuroinflammation in the pathogenesis of AD is a major area of investiga-
tion [7–11]. Single-nuclear RNA sequencing (snRNAseq) studies of human AD brain tissue
support a greater diversity of disease-associated states involving immune cells and asso-
ciated pathways in microglia that only partially overlap the disease-associated microglia
(DAM) pattern first described in AD mouse models [12–15]. Corresponding with diverse
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microglia transcriptomic states, microglia play varied roles in disease, ranging from benefi-
cial functions like clearing toxic Alzheimer’s pathology and dead cells to maladaptive roles
such as synapse clearance, triggering inflammatory cascades, spreading pathology and
driving cellular injury [13,16–20]. Among them, microglial responses against Beta-amyloid
and senile plaques have been particularly well characterized both in AD mouse models
and human postmortem brain to delineate associated transcriptomic cell states and marker
genes [21,22]. For example, Nguyen et al. validated markers of three distinct microglial pop-
ulations whose abundance vary based on the co-existence of APOE or TREM2 risk variants:
dystrophic microglia (marked by FTL and FTH1), amyloid-responsive microglia (ARM)
expressing CD163, BIN1, MSA4A6A, and homeostatic or motile microglia [9]. Among them,
amyloid-responsive microglia (ARM) were depleted in cases carrying the risk-associated
APOE4 alleles [9]. Unlike microglial response and neuroinflammation against Beta-amyloid
accumulation, late neuroinflammation involving pTau is less well characterized. Addi-
tionally, the topic of cell–cell communication involving microglia with other cell types,
including immune cells, is an emerging area of investigation, but it also remains poorly
understood in the context of neurodegenerative disease [23]. Recognizing the significance
of these interactions is crucial, as they broaden the potential impact of targeting microglial
genes and pathways for therapeutic modulation.

The single-cell sequencing of immune cells in human spinal fluid has revealed sig-
nificant changes in CD8 T lymphocytes in AD cases compared to controls [24]. Recent
functional studies support the causal involvement of CD8 T cells in late neuroinflammation
involving pTau in mouse models and organoid models [15,25,26]. Chen et al. demonstrated
a causal role of CD8 T cells in tau-mediated neurodegeneration and brain atrophy in mice
models expressing a human tau mutation (P301S MAPT) [25]. T cell infiltration and the
induction of interferon-γ and neuroinflammatory pathways in glia have been demonstrated
in a human 3D organoid system [26]. However, knowledge of transcriptomic signatures of
CD8 T cells in human AD brains is lacking partly due to the rarity of CD8 T cells in the brain,
posing technical challenges to their characterization. Furthermore, while both microglia
and T cells emerge as important players in neuroinflammation and AD pathogenesis, the
scope of interaction between the two cell types in human AD brains remains to be fully
characterized.

Here, we analyzed a large snRNAseq dataset of the middle temporal gyrus from
84 donors with AD or unaffected control from the Seattle Alzheimer’s Disease Atlas (SEA-
AD) cohort [27] to characterize disease-associated microglia and CD8 T cells and their
interactions. We depict gene co-expression network modules that correlate with amyloid-
responsive, dystrophic, and pathology-associated microglia [9,10]. We demonstrate that
CD8 T cells are increased in AD brain but not natural killer (NK) cells or CD4 T cells. Using
cell–cell interaction (CCI) analysis, we describe ligand–receptor pairs (LR pairs) unique to
CD8 T cells and disease-enriched microglia.

2. Materials and Methods
2.1. Data and Samples

Single-nuclear RNA sequencing data of the middle temporal gyrus from 84 donors
with AD (n = 42) or healthy control (n = 42) were downloaded from the Seattle Alzheimer’s
Disease Atlas (SEA-AD) for microglia and perivascular macrophages (Microglia-PVM),
layer 2/3 intratelencephalic excitatory neurons (L2/3 IT), layer 4 intratelencephalic excita-
tory neurons (L4 IT), parvalbumin interneurons (Pvalb), somatostatin interneurons (Sst),
astrocytes, oligodendrocytes, and oligodendrocytic progenitor cells (OPC). All SEA-AD
data used in this study including detailed sequencing methods are accessible at the SEA-
AD Brain Cell Atlas (https://portal.brain-map.org/explore/seattle-alzheimers-disease,
(accessed on 23 February 2023)). Metadata provided with the SEA-AD dataset include case
ID, age at death, sex, postmortem interval (PMI), pathological stages (ADNC, Thal phase,
CERAD score, Braak stage), APOE4 carrier status, race, and ethnicity. These data were
curated and made public by the Allen Brain Institute as described by Gabitto et al. [27]. As
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per Gabitto et al., Lewy body disease scores were based on the National Institute on Aging
guidelines [27–29].

The analysis was performed with Seurat (version 4.4.0) in R (version 4.3.0). Samples
were removed from the microglial population to reduce confounding and to limit poorly
represented neuropathological traits. The implemented filters aimed to refine the sample
set, ensuring a focused analysis of changes in microglia cells related to AD. Specifically,
we removed all cases with diffuse neocortical Lewy body pathology (high “LBD”), as they
were disproportionately identified in cases over 90 years of age and only found in cases
with AD co-pathology (Supplementary Figure S1). In addition, we removed 4 cases that
were the only cases with a certain Braak stage among normal or dementia cases. For the
CD247+ lymphocyte population, due to their scarcity, we did not filter out cases due to
age or Braak stage. However, upon clustering of the lymphocyte population, one donor
comprised one independent cluster (donor H20.33.004), and this donor was removed from
the downstream analysis. Based on these filters alone, we removed cases with advanced
AD pathology but no cognitive impairment, as well as cases that were clinically diagnosed
as AD but had minimal AD pathology. This filtering reduced the total number of Microglia-
PVM analyzed from 39,200 cells from 84 donors (42 controls, 42 AD) to 11,052 cells from
28 donors (15 controls, 13 AD).

2.2. Annotation of Lymphocyte Subclasses and States

To classify representative lymphocytes and microglial states in AD and unaffected con-
trols (Schema: Figure 1), we extracted all cells in the SEA-AD dataset that were designated
as the group containing microglia or perivascular macrophages (“Micro-PVM”) based on
inference-based cell type annotation, as described [27,30]. To further annotate lymphocytes
including T lymphocytes and natural killer (NK) cells, we used the marker gene CD247
(T cell receptor ζ chain). As expected, CD247 expression was low in all other cell clusters
in SEA-AD (Figure 2A). Furthermore, consistent with identifying lymphocytes, the top 10
marker genes discriminating the CD247+ subcluster from others included THEMIS, CD247,
and CD96. In order to identify subtypes of lymphocytes among the CD247+ subcluster, we
isolated these cells and performed another round of clustering using Seurat. This identified
7 distinct subclusters. Lymphocyte subclusters were then annotated into their subtypes
and states using markers manually curated from the literature to represent distinct types
of tissue-resident lymphocytes (Supplementary Table S1), such as NCAM1 for NK cells,
CD8A/B for CD8 T cells, and PRF1 and GZMA for cytotoxic cells [31–35].

2.3. Lymphocytes Cell Proportion and Differential Gene Expression Analysis

We used multivariable linear regression to calculate the proportions per donor of
CD8 T cells, NK cells, and CD4 cells relative to all “Microglia-PVM” designated cells,
including biological and technical covariables (age, sex, and PMI) using lme4 (version
1.1-35.1), lmerTest (version 3.1-3), and modelssummary (version 1.4.3) packages. Similarly,
we applied multivariable linear regression to define relationships between T cell counts
and either donor cognitive status or AD neuropathological traits, with each run as separate
models, using the same series of biological and technical factors listed above (see sample
metadata in Supplementary Table S2). In order to measure differential gene expression
among CD8 T cells, we filtered out genes whose maximum expression was less than
200 counts per million across all cells (7140 genes remained) and then performed differential
gene expression analysis using linear regression to identify genes differentially up and
downregulated in CD8 T cell from cases with AD dementias vs. unaffected controls (see
Supplementary Methods for additional details) [36].
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Figure 2. CD8 T cells are abundant in AD brains. (A) left—Distinct subcluster of CD247 (+) cells 
identified in microglia-perivascular macrophages (PVM) Seurat object downloaded from Seattle 
Alzheimer’s Disease Brain Cell Atlas. Middle, right—UMAP plot of microglia and lymphocytes 

Figure 2. CD8 T cells are abundant in AD brains. (A) left—Distinct subcluster of CD247+ cells
identified in microglia-perivascular macrophages (PVM) Seurat object downloaded from Seattle
Alzheimer’s Disease Brain Cell Atlas. Middle, right—UMAP plot of microglia and lymphocytes
showed reasonable intermixture of cognitive status (disease) and APOE4 carrier status. (B) left—UMAP
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plot representing major lymphocyte subtypes in the CD247+ cluster, identifying independent sub-
clusters of CD8 T cells, CD4 T cells, and natural killer (NK) cells. Middle and right—Feature plots
represent normalized expression of CD3E, NCAM1, CD4, and CD8A based on Seurat. (C) Heatmap
of scaled expression of the representative markers for effector memory T cells with re-expression of
CD45RA (PTPRC). X-axis color bar shows that none of the clusters are comprised of a single donor.
(D) Box plot of cell proportion of CD8 T cells. Cell proportions were calculated as number of CD8
T cells per sample divided by the total cell number per sample in the microglia-PVM object. Cell
proportions and the p-value are from a regression model including cognitive status, age, sex, and
postmortem interval (PMI); Y-axis represents estimate from the model. For pathological staging
(ADNC, CERAD, Braak, Thal), only dementia cases are plotted.

2.4. Weighted Gene Co-Expression Network Analysis of Lymphocytes and Microglia

Toward the goal of defining relationships between lymphocyte and microglia signaling
states or functional classes, we leveraged weighted gene expression analysis to define
stable gene sets (“modules”) that may relate to changes in biological signaling or function
among lymphocytes or microglia in disease. We selected this approach because markers
of microglia disease states based on differential gene expression alone have been reported
to be highly variable across AD studies [21], and we reasoned that the modules based on
WGCNA, which are highly reproducible [15,22], would offer alternative gene markers based
on robust correlations with the biological phenomenon that are altered in disease. Therefore,
we applied high dimension-Weighted Gene Co-expression Network Analysis (hdWGCNA;
version 0.2.18), which is a version of WGCNA adapted for single-cell datasets (WGCNA:
version 1.72-1) [37]. In this analysis, gene sets known as “modules” are generated, and
their combined expression is represented as a module eigengene (ME). By quantifying
the expression of the ME in cells or samples, we measure the differential expression of
the biological changes that are represented by the module. We performed this analysis
based on published code without modification [37]. Details regarding the application of
this analysis in this study, including module generation parameters, are described in the
Supplementary Methods. We performed gene ontology and pathway enrichment analysis
using the enrichR package (version 3.2) [38–40]. We generated ten microglia (mg) modules
that were designated mg1–10, ranging from the largest (1) to the smallest (10) module. In
addition, we generated 19 CD8 T cell modules that were designated CD8T1-19.

To further annotate microglial modules with respect to substantial precedent work,
we curated, published, and validated markers from the literature and tested module
enrichment using Fisher’s exact test. We prioritized markers from human studies with
distinct relationships to AD neuropathological traits. This included microglia differentially
associated with beta-amyloid, APOE and TREM2 genotypes validated in human brain
tissue by immunohistochemistry in Nguyen et al. [9], including homeostatic microglia
(TMEM119), motile microglia (ARHGAP15), dystrophic microglia (FTL, FTH1), and amyloid-
responsive microglia (ARM; CD163) [5]. In addition, we leveraged microglial gene sets
reported from human AD brain tissue to be differentially expressed in relationship to
beta-amyloid, including CD163 in addition to APOE as well as distinct genes related to
pathological tau load, including LRRK2 and GPNMB [10]. Finally, we used commonly
used markers of homeostatic microglia, including TMEM119 and CX3CR1 [41]. Based on
these markers, we annotated the four microglial modules significantly associated with
disease status as representing signatures of either amyloid-related (ARM; mg1), pathology-
associated (mg3), dystrophic (mg2), or homeostatic (mg8 and mg10) (Supplementary
Figures S6 and S7). We identified subsets of cells representatives of each module (for
example ARM microglia) by designating the cell with the highest module eigengene (ME)
expression (top 20% by rank) unique to a particular module (Supplementary Figure S7). In
addition, we identified a subset of cells with ME scores among the top 20% for both mg1 and
mg3 modules. Building on the understanding that beta-amyloid precedes tau pathology
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chronologically, we designated this subset of microglia with intermediate scores for both
ARM and pathology-associated modules as putative intermediate phase or “transition”
microglia (Supplementary Figure S7). These cells were then used for downstream cell-based
analyses, including cell–cell interaction analysis.

2.5. Cell–Cell Interaction Analysis

We used the package Multinichenetr (version 1.0.0) to perform cell–cell interaction
analysis to compare interactions involving different types of microglia and lymphocytes
with other brain cell types. In addition to interactions involving glia, we were interested
specifically in distinguishing interactions involving subclasses of neurons depleted from
disease cases as a function of cognitive decline and neuropathology [27]. For this reason, we
chose to use Multinichenetr for CCI analyses, which measures differential CCI across cell
populations and sample groups [42]. We performed CCI as described in the Multinichenetr
package without modification, and we included only paracrine interactions [42]. We applied
the analysis to a subset of 23 cases in which both disease-associated microglia and CD8 T
cell populations were represented. We then performed pathway enrichment using enrichR
and KEGG 2021 Human and Wikipathway 2023 Human databases, which we applied to
the top 100 ligands per sender cell type, top 100 receptors per receiver cell type, or top
100 ligand-receptor pairs per specific sender and receiver pairs. To further annotate ligands
and receptors involving CD8 T cells according to pathways represented by hdWGCNA
modules for CD8 T cells, we calculated and tabulated gene-module connectivity scores
(kME) for each ligand or receptor against each CD8 T cell module (Supplementary Table
S4).

3. Results
3.1. Characterization of Brain-Tissue-Associated Lymphocytes
3.1.1. Differential Composition Analysis and Marker-Based Annotation Demonstrate an
Increase in Effector Memory CD8 T Cells in Samples with AD Dementia

Studies of human cerebral spinal fluid and blood have demonstrated various compo-
sitional changes involving peripheral lymphocytes in Alzheimer’s disease (AD) demen-
tia [24,43]; however, the specific alterations of brain lymphocytes within AD brain tissue
remain undefined. To fill this gap, we performed snRNAseq-based cell classification and
compositional analysis to characterize peripheral blood cells present in brain tissue of AD
dementia and matched unaffected control cases. We classified as lymphocytes a specific
subcluster of 800 cells from 84 cases in the SEA-AD dataset, based on its unique enrich-
ment for the lymphocyte marker gene CD247, which encodes the T cell receptor subunit
CD3ζ (Figure 2A). To annotate specific subtypes of CD247+ lymphocytes, we performed
subclustering and marker-based annotation [31–35]. We identified seven subclusters that
were uniquely enriched for markers of either natural killer (NK) cells, CD4 T cells, and
CD8 T cells (Figure 2B; see Section 2). Among these, CD8 T cells were the most abundant
lymphocytes in the dataset (384 cells from 70 donors). The expression of specific marker
genes can distinguish different activation and maturation stages of CD8 T cells (Supple-
mentary Table S1) [31–35]. Among these, we observed markers for effector memory T cells
(TEMRA) including high CD45RA positivity concurrent with slightly increased cytotoxic
enzyme genes (PRF1, GZMA, GZMB, and NKG7; Figure 2C, Supplementary Figure S3).
Therefore, based on the snRNAseq of human brain tissue, we identified various popula-
tions of CD3ζ+ lymphocytes, defined their empiric transcriptomic signatures (presented in
Figure 2C and Supplementary Figure S3), and classified subtypes based on marker gene
expression, including TEMRA as the most abundant CD3ζ+ cell population.

To assess the relative abundance of CD8 T lymphocytes in cases with AD dementia
vs. unaffected controls, we next performed cell type compositional analysis, applying
multivariable linear regression to control for technical and biological covariates including
age, sex, and PMI (see Section 2). We found that CD8 T cells were significantly enriched
in AD dementia brain samples (Figure 2D; log2FC = 0.21, p-value = 0.036, n = 42 AD and
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42 control cases). In contrast, we did not observe significant increases in the expression of
other lymphocyte classes, including NK cells and CD4 T cells (Supplementary Figure S3).
There was no difference in CD8 T cell proportions between female and male (female versus
male sex: log2FC = 0.087, p-value = 0.41; 54 female, 35 male; Wilcoxon rank sum test). We
also found no significant difference in CD8 T cell proportions relative to APOE4 carrier
status in cases with dementia, but we found a positive trend in APOE4 carriers without
dementia that was not statistically significant (dementia: log2FC = 0.07, p-value = 0.69,
n = 16 APOE4 carriers and 26 APOE4 non-carriers; cognitively normal: log2FC = 0.74,
p-value = 0.07, n = 9 APOE4 carriers and 33 APOE4 non-carriers, Wilcoxon rank-sum
test). To determine if the CD8 T cell proportion was further associated with AD-specific
neuropathology, we examined CD8 T cell abundance relative to stages of beta-amyloid
(Thal), hyperphosphorylated tau (Braak), or neuritic plaque density (CERAD score). While
we observed positive correlations between CD8 T cell proportion and each of these scores
among dementia cases, they were not statistically significant (Figure 2D). Therefore, using
snRNAseq compositional analysis, we observed an enrichment of CD8 T lymphocytes
bearing features of TEMRA as a feature of AD dementia brain tissue with AD pathology
that was independent of the APOE4 genotype.

Having assessed the transcriptome of brain-associated CD8+ lymphocytes from AD
and control cases, we next addressed whether we could detect differentially expressed
genes based on snRNAseq. Analyzing 7140 genes that had sufficient detection in CD8
T cells over 70 donors for differential gene expression analysis, we identified 13 genes
with significant differential expression in disease samples based on significance threshold
(abs(log2FC) > 1, FDR corrected p-value < 0.05; Supplementary Table S3). Prominent among
these genes (12 of 13) were mitochondrial genes and non-coding RNAs, which could
indicate damaged cells or ambient RNA (Supplementary Table S3) [44,45]. In addition,
CD8 T lymphocytes in disease samples had higher expression of ERC1 (log2FC = 1.02,
FDR-corrected p-value = 0.026; limma), which is a regulatory subunit of IKKB believed
to recruit the IkappaB/NFKBIA complex [46]. Therefore, while underpowered for a full
transcriptomic analysis, these data indicate a potential for the differential regulation and/or
activity of CD8 T cells present in AD brain tissue samples.

3.1.2. Weighted Gene Co-Expression Network Analysis of CD8 T Cells Reflects Terminal
Differentiation and Multiple Signaling States

To capture groups of gene sets (network modules) whose expression changes are
correlated to each other and may be related to underlying changes in cell state or signaling
pathways, we next performed weighted gene co-expression network analysis (WGCNA)
on CD8 T cells (see Section 2 [37,47]). This yielded 19 network modules, among which
two (CD8T2 and CD8T4) were more highly expressed in cases with dementia compared to
cognitively normal controls (CD8T2: log2FC of module eigengenes = 2.44, FDR-corrected
p-value = 0.0352; CD8T4 log2FC = 1.63, FDR-corrected p-value = 0.0352; linear regression
with mixed random effect model as described in Supplementary Methods) (Figure 3,
Supplementary Figure S4, and Supplementary Table S4). Therefore, we annotated the hub
genes and associated pathways for CD8T2 (504 genes) and CD8T4 (743 genes) to consider
biological pathways and cell states associated with CD8 T cells in AD dementia samples
(see Supplementary Table S5 for GO term enrichment). Genes more strongly connected to
CD8T2 (kME, see Section 2) included effectors of lymphocyte cytotoxicity including GZMK
(granzyme K) and PRF1 (perforin 1) together with mitochondrial and ribosomal genes
(Figure 3B,C; Supplementary Table S5) [34]. In contrast, among the top-ranked “hub” genes
of the alternative CD8T4 module were modifiers of inflammation or immune signaling,
or “immunomodulatory” genes (Figure 3D,E), including IL7R, which is crucial for the
survival of effector memory T cells and naïve CD8 T cells [48–50], CD226, a regulator of
lymphocyte proliferation and cytokine production [51], and TIGIT, an immune checkpoint
regulator [52]. Additional CD8T4 genes included killer cell lectin family genes, which are
known to be expressed in subsets of TEMRA such as virtual memory T cells as well as NK
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cells [53,54]. Therefore, we identified two modules that represent distinct facets of T cell
signaling, encompassing cytokine-mediated immunomodulation (CD8T4) and cytotoxic
granule formation and cell killing (CD8T2), which are overall consistent with the CD8 T
cells we identified being mainly terminally differentiated effector memory T cells.
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 Figure 3. Gene co-expression network modules of CD8 T cells in AD brain. (A) Box plot of mean
module eigengenes per sample between dementia and control cases for cytotoxic (CD8T2) and im-
munomodulatory (CD8T4) modules. Y-axis represents estimate, derived along with p-values from the
linear regression model including disease, age, sex, and PMI. (B) Pathway enrichment and protein-
protein interactions in CD8T2 module. The network plot denotes proteins with CD8T2 kME > 0.2,
denoting ribosome/translation pathway, mitochondrial pathway, and cytotoxic/inflammatory path-
way. (C) The bar plot shows representative significant GO biological process enrichment terms of
genes with kME > 0.2. X axis shows negative log of Benjamin-Hochberg-corrected p-values. (D) Net-
work plot and pathway enrichment in CD8T4 module. Inner 10 genes of the network plot are top 10
hub genes for CD8T4 module, and the point size denotes kME. (E) The bar plots show representative
significant GO biological process enrichment terms of genes with kME > 0.2. X axis shows negative
log of Benjamin-Hochberg-corrected p-values.
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3.2. Characterization of Disease-Associated Microglia
Weighted Gene Co-Expression Network Analysis of Microglia Defines Distinct
Beta-Amyloid Responsive and Pathology-Associated Microglia That Reproduce Validated
Markers and Disease Traits

Microglia are brain resident immune cells previously implicated in transgenic models
to be major mediators of lymphocyte cross-talk in the context of AD pathology [25,26].
However, relationships between microglia and lymphocytes remain poorly defined in the
human disease brain, including whether they involve particular states of microglia, such
as microglia associated with beta-amyloid plaque and APOE4 status or microglia more
associated with tau pathology and neurodegeneration [9,13,16–19]. Therefore, we next
utilized the SEA-AD dataset to define populations of microglia associated with different
types of AD pathology and/or APOE genotype. To define reproducible states and asso-
ciated marker genes, we applied WGCNA to represent microglia transcriptomic profiles
as gene co-expression modules to define robust markers and stable gene sets for pathway
analysis. For this analysis, we selected a subset of cases from the SEA-AD dataset with
typical AD pathology and dementia, removing cases with co-pathology or poorly repre-
sented neuropathological traits (as described in Section 2; n = 28 cases, 11,052 microglial
cells remaining). This analysis defined 10 microglial modules, which we named mg1–10
(Supplementary Table S6). Two of these modules were significantly enriched in AD demen-
tia samples (mg1 and mg3; FDR < 0.1, linear regression with mixed random effect model
as described in Supplementary Methods). Hub genes distinctly marking these modules
included genes previously reported in disease-associated microglia including CD163 (mg1;
Figure 4A–C), a validated marker of amyloid responsive microglia (ARM) [9], and GPNMB
(mg3; Figure 4D), a microglial gene correlated to tau pathology load in prior studies [10].
We next performed gene ontology analysis of the disease-associated modules mg1 and
mg3 modules to characterize represented biological pathways (Supplementary Table S7).
The module mg1 was enriched for neutrophil-mediated immunity, positive regulation
of transcription from RNA polymerase II promoter in response to hypoxia, complement
cascades, and cholesterol metabolism, whereas the mg3 module was enriched for lysosomal
structures and signaling genes (Supplementary Table S7). In contrast, genes associated
with antigen processing and presentation were significantly enriched in the module mg2,
including HLA-C, HLA-DRA/DRB1, and TAP1 (adjusted p-value = 0.005; Supplementary
Table S7). Therefore, using WGCNA, we identified several distinct microglial modules
bearing reproducible marker genes and representing distinct biological pathways.

Multiple traits defined in prior work characterize amyloid-responsive microglia
(ARM), including (1) the marker gene CD163, (2) positive association with beta-amyloid
stage, and (3) relative depletion in APOE4 carriers compared to non-carriers [5]. To ascer-
tain if the mg1 module in SEA-AD represents ARM, we tested these identical associations
in the SEA-AD dataset. In line with previous findings, we observed diminished mg1
expression in APOE4 carriers compared to non-carriers in individuals with AD dementia
and high beta-amyloid burden (APOE4 carriers: log2FC of module eigengenes for high
vs. low beta-amyloid burden = −2.02, p-value = 0.17; APOE4 non-carriers: log2FC = 1.94,
p-value = 0.00076; across 11,052 cells from 28 donors; linear regression with mixed random
effect model as described in Supplementary Methods) (Figure 4B). We also observed a
significant increase in mg1 module expression from the early stages of senile plaque burden
(CERAD score) but not with neurofibrillary tangle burden (Braak stages) until Braak stage
VI (Figure 4C). Hence, the characteristics of mg1 align with the definition of ARM accord-
ing to Nguyen et al. [5]. Furthermore, supporting its association with beta-amyloid, mg1
showed an enrichment with differentially expressed genes for beta-amyloid identified by
Smith et al. [6] (Supplementary Figure S7). Therefore, based on this evidence, we adopted
the prior designation and labeled mg1 as the ARM module.
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Figure 4. Gene co-expression network modules of microglia in AD brain. (A) Amyloid-responsive
module (mg1). Top left—box plot of mean module eigengenes per sample between dementia and
control cases. Y-axis represents estimate, derived along with p-values from the linear regression
model including disease, age, sex, and PMI. Top middle—network plot of top 20 hub genes for mg1
module. Inner 10 genes of the network plot are top 10 hub genes for mg1 module, and the point size
denotes kME. Top right—the bar plots show representative significant GO enrichment terms of genes
with kME > 0.2. X axis shows negative log of Benjamin-Hochberg-corrected p-values. (B) Violin plot
with overlaying boxplot showing per-nucleus module eigengene of mg1 across senile plaque burden,
partitioned to APOE4 carriers and non-carriers. CERAD score was binned for low (absent and sparse)
and high (moderate and frequent). Y-axis shows estimates and p-values derived from a mixed random
effect model including pathological stages, age, sex, PMI; and Donor ID as the random effect. (C) Violin



Biomedicines 2024, 12, 308 12 of 21

plot with overlaying box plot showing per nucleus module eigengene for mg1 module across
pathological stages for beta-amyloid (CERAD score) and phosphorylated-tau (Braak stage). Y-axis
shows estimates and p-values derived from a mixed random effect model including pathological
stages, age, sex, PMI; and Donor ID as the random effect. ****; p < 0.0001. (D) Pathology-associated
module (mg3). Left—box plot of mean module eigengenes per sample between dementia and control
cases. Y-axis represents estimate, derived along with p-values from the linear regression model
including disease, age, sex, PMI. Right top—network plot of top 20 hub genes for mg1 module.
Inner 10 genes of the network plot are top 10 hub genes for mg3 module, and the point size denotes
kME. Right bottom—the bar plots show representative significant GO biological process enrichment
terms of genes with kME > 0.2. X-axis shows negative log of Benjamin-Hochberg-corrected p-
values. (E) Violin plot with overlaying box plot showing per nucleus module eigengene for mg3
module across pathological stages for beta-amyloid (CERAD score) and phosphorylated-tau (Braak
stage). Y-axis shows estimates and p-values derived from a mixed random effect model including
pathological stages, age, sex, PMI; and Donor ID as the random effect. ****; p < 0.0001.

In contrast to mg1, genes within mg3 have previously been associated with phosphory-
lated Tau in human Alzheimer’s disease (AD) brain samples [6] (Supplementary Figure S7;
see Section 2). Correspondingly, mg3 expression increased significantly with advanc-
ing AD neuropathological stages in dementia cases, including tau pathology (Braak;
Figure 4C). The module mg3 did not exhibit a significant correlation with APOE4 car-
riers either with or without dementia (Supplementary Figure S5). Consequently, we
designated mg3 as the “pathology-associated” module. Similarly, using reproducible and
validated markers, we annotated additional modules including homeostatic (mg8 and
mg10; TMEM119+CX3CR1+) and dystrophic (mg2; FLT+) (see Section 2; Supplementary
Figures S6 and S7). Derived from weighted gene co-expression network analysis (WGCNA),
this robust annotation offered modules with specific associations to Alzheimer’s disease
(AD) pathology and APOE genotype, facilitating the comparison of immune-related cell–
cell signaling across microglia disease states in the AD brain.

3.3. Cell–Cell Interaction Analysis
3.3.1. MultiNicheNet Reveals Markedly Increased CCI Involving Depleted Neurons and
Beta-Amyloid Responsive Microglia in AD Dementia Brain Samples

To elucidate potential functional consequences of the identified disease-associated
immune cell types and states, we conducted cell–cell interaction analysis to compare inter-
actions gained or lost in the diseased brain. While we applied the analysis broadly across
all major glial cell types and multiple neuronal subclasses, we focused the analysis specifi-
cally on immune cells, pathology-associated microglia, and depleted vs. compositionally
spared neuronal subclasses. To achieve this, we employed the recently developed cell–cell
interaction (CCI) analysis tool, MultiNicheNet, to enable differential CCI analysis across
cell types and disease conditions based on ranked scores.

Our analysis resulted in 359,376 ligand–receptor (LR) pairs scored and differentially
active in disease vs. control conditions, which were further ranked for each cell type [42].
As a preliminary test case, we first compared interactions involving neuronal subclasses
that are either depleted or compositionally spared in dementia cases in the SEA-AD dataset,
reasoning we would expect to find regulators of cell death, stress, and/or survival ranked
more highly among LR pairs targeting depleted vs. spared neurons. Specifically, in the
SEA-AD dataset, including in samples used for this analysis (Supplementary Figure S8),
the disease-depleted neurons include layer 2/3 intratelencephalic excitatory neurons (L2/3
IT) and somatostatin inhibitory neurons (Sst), which we will refer to as vulnerable neuronal
population [42]. Overall, dementia samples contributed to more of the highly ranked
LR pairs compared to controls, contributing 39 out of the top 50 most highly ranked LR
pairs defined by the analysis (Figure 5A and Supplementary Figure S9) [42,55]. Moreover,
many highly ranked LR pairs that were gained in disease samples compared to controls
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involved one of the two “vulnerable” neuronal types (L2/3 IT or Sst) [27], supporting
the use of this analysis to identify disease-associated CCI (Supplementary Figure S9).
Furthermore, disease-specific LR pairs with L2/3 IT and Sst neurons were enriched for
pathways of neurodegeneration including Wnt signaling and LRP6 [56,57]. In contrast,
these same pathways were not enriched among LR pairs involving neuronal subtypes that
were compositionally spared (L4 IT and Pvalb). Thus, CCI analysis identified LR pairs with
differential activity in disease and control cases, emphasizing neurodegeneration-related
LR pairs specifically enriched among neurons selectively depleted from disease tissues.
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the ratio of sums of prioritization scores among total LR pairs between dementia and normal cases.
X-axis lists receiver cell types, and Y-axis lists sender cell types. Grey cells denote autocrine signals as
these were removed from the analysis. AMR-mic—amyloid responsive microglia; Astro—astrocytes;
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Dyst-mic—dystrophic microglia; L2/3 IT or L4 IT—layer 2/3 or layer 4 intratelencephalic excitatory
neurons; Oligo—oligodendrocytes; OPC—oligodendrocytic progenitor cells; Path-mic—pathology-
associated microglia; Pvalb—palvalbumin neurons; Sst—somatostatin neurons; Trans-mic—transition
microglia.

Next, we leveraged CCI analysis to assess whether different microglia states, de-
fined by WGCNA modules, involved shared or distinct disease-associated cell–cell in-
teractions. To enable this, we first identified subpopulations of microglia representative
of each microglia module, defining ARM, pathology-associated, transition, dystrophic,
and homeostatic microglia (see Section 2). We then compared CCIs across microglia in
these different disease states, focusing on paracrine interactions either upregulated or
downregulated in disease compared to control cases (see Section 2). Notably, interactions
involving ARM dominated the LR pairs gained in disease, demonstrating over 10 times as
many interactions as the next most involved microglial state (Figure 5B). Many of the LR
pairs unique to ARM involved neuroprotective and glioprotective factors, such as APOE-
SORL1 [58], CD47-SIRPA [59], and PSAP-GPR37L1 [60]) (Supplementary Figure S10). In
contrast, disease-enriched LR pairs involving pathology-associated microglia included
mediators of cellular damage, including complement (C3-CD46) [61], cholesterol scav-
enger receptors (PTDSS1-SCARB1) [62], and drivers of microglia-mediated neuronal death
(CNTN4-PTPRG) [63] (Supplementary Figure S11). Other LR pairs were shared by both
types of disease-associated microglia such as interactions involving the AD disease gene
APOE with LRP5, but these were different from those with homeostatic or dystrophic
microglia (Supplementary Figures S12 and S13; Supplementary Tables S8–S10). These
findings indicate that microglial states associated with either beta-amyloid, APOE status,
and/or tau pathology may participate in distinct cell–cell interactions, and they highlight
broad and abundant disease-associated multicellular engagement with amyloid-responsive
microglia (ARM).

3.3.2. Disease-Associated CCIs Involving CD8 T Cells

Next, we leveraged CCI to examine interactions between brain resident cells and
brain tissue-associated CD8 T lymphocytes to annotate related functional pathways and
candidate mediators of neuroimmune signaling changes in AD dementia brain tissue. By
applying MultiNicheNet (see Section 2), we identified 11,366 differential CCIs specific to
dementia samples involving CD8 T cells [42]. LR pairs with CD8 T cells that were gained
in the disease prominently included cell adhesion molecules, growth factors, and receptor
tyrosine phosphatases (Supplementary Figure S14). The majority of CCIs involving CD8 T
cells were with microglia, and disease-associated microglia had the majority of CCIs with
CD8 T cells (ARM > transition > pathology-associated). In contrast, CCIs between CD8
T cells and either homeostatic or dystrophic microglia were absent in disease tissues and
only present in unaffected controls (Figure 6). Therefore, interactions between CD8 T cells
and microglia shifted markedly from normal to dementia conditions with interactions pre-
dominantly gained with disease-enriched microglia and lost with homeostatic/dystrophic
microglia.

We further annotated CCIs involving CD8 T cells with their functional pathways
using the predetermined CD8 T cell network modules, including CD8T2 (cytotoxic) or
CD8T4 (immunomodulatory) modules. The majority of disease-associated CD8 T inter-
actions involved genes in the immunomodulatory module, including cell–cell adhesion
interactions FLRT2-UNC5A-D and NRG1-ITGAV/ERBB4 (L2/3 IT and Sst as interacting
partners) (Supplementary Figure S15). In contrast, CCI involving genes within the CD8T2
cytotoxicity module were dominated by ADAM10, an AD GWAS gene and metalloprotease
with many target genes including APP [64]. CCI with ADAM10 included multiple LR pairs
that varied by target cell type, including NOTCH2 (with ARM), CD44 (with pathology-
associated microglia), and TSPANs (L2/3 IT and Sst). Having observed the differential com-
position of ARM to be a consistent feature of APOE4 carriers, we examined if the NOTCH2
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expression differs between APOE4 carriers and non-carriers in dementia cases. We found
NOTCH2 to be significantly upregulated in ARM from APOE4 carriers compared to those
from APOE4 non-carriers (estimate = 0.12, p-value = 0.0198, adjusted p-value = 0.099; linear
regression with mixed random effect models) (Supplementary Figure S16). Hence, our
analysis pinpointed NOTCH2 as a potential mediator in cytotoxic CD8 T cell interactions
with amyloid-responsive microglia (ARM). Moreover, NOTCH2 was found to be upreg-
ulated in APOE4 carriers where ARM depletion occurs. This emphasizes that cell–cell
interactions (CCIs) involving CD8 T lymphocytes play diverse roles, evident in both ligand–
receptor (LR) pairs and functional pathways, highlighting ARM as a potential interacting
microglia type due to significant gains in disease-associated CCIs.
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Figure 6. Cell-cell interactions involving CD8 T cells. Bar plots showing the number of cell-cell
interactions inferred by MultiNicheNet. (Top)—CD8 T cells as the sender, (bottom)—CD8 T cells
as the receiver. Each panel represents the corresponding interaction partners. ‘Micro’ represents
microglia without specific cell state labels such as Homeostatic (Hom), Dystrophic (Dyst), ARM,
Transition (Trans), and Pathology-associated (Path).

4. Discussion

To achieve a systematic view of brain-tissue associated lymphocytes and their re-
lationship with microglial disease states, we analyzed the large snRNAseq dataset of
1,240,908 cells from 84 AD and healthy control donors generated from the Seattle Alzheimer’s
Disease (SEA-AD) cohort [27]. To address the significant need for human-brain-based ev-
idence of neuroimmune targets for functional and mechanistic study, we focused our
analysis on rare brain tissue-associated lymphocytes and microglia, which are the resident
immune cells of the brain. Our analysis demonstrated a significant increase in CD8 T cell
abundance in the brains of individuals with dementia due to Alzheimer’s disease compared
to individuals without dementia. AD brain-enriched lymphocytes matched with effector
memory CD8 T cells based on transcriptomic profiles and were enriched for cytotoxic
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machinery and immunomodulatory pathways represented by distinct gene co-expression
modules. These findings were consistent with complementary evidence from tau mouse
models and spinal fluid from AD patients that also implicate CD8 effector memory T cells
as the major disease-enriched lymphocyte subtype [25,65]. Lymphocytes were rare in brain
tissue; therefore, these observations were remarkable for their consistency across 70 donors
(ranging from 5 to 26 cells per donor) and group-level statistical analyses.

Another major question is how lymphocytes interact with different classes and sub-
classes of brain cells and their disease-associated cell states including microglia. Therefore,
we annotated different states of disease-associated microglia to consider their relation-
ships with other brain cell types. Unlike cell classes and subclasses which can be robustly
mapped to reference atlases, microglia disease states are highly variable across individ-
uals and studies and lack a consensus reference. To enhance the identification of stable
microglial disease states, we leveraged hdWGCNA to identify gene co-expression network
modules independent of dimension reduction methods and unsupervised clustering pa-
rameters. The resulting microglial modules from human brain data captured reproducible
states with distinct pathological associations and markers that have been validated in
prior studies [9,10]. This included homeostatic microglia [41] in addition to two distinct
microglia modules with differential relationships to tissue accumulation of amyloid and
tau pathology, including microglia correlated with beta-amyloid accumulation that are
depleted in APOE4 carriers (ARM; CD163+) [9] and microglia related to the accumulation
of tau-pathology and neurodegeneration (GPNMB+) [66]. In contrast, microglia bearing
markers of dystrophic morphology (FTL+) [9,67] did not accumulate with pathology or
dementia status. These modules also reproduced compositional relationships with different
AD pathological stages and APOE4 status, further supporting their interpretation as robust
states.

Using cell–cell interaction analysis, we observed a marked increase in the number of
significant CCIs in the disease brains compared to controls. Importantly, the majority of the
top 50 gained CCIs involved neuronal subtypes that were significantly depleted from AD
dementia tissues, including L2/3 IT excitatory neurons and Sst interneurons. Therefore,
extensive changes in intercellular cross-talk may participate in the fate of vulnerable
neuronal subclasses in disease, which requires further study. This finding is consistent
with the emerging notion that cellular vulnerability likely involves non-cell autonomous
factors [27,68].

Previous studies have demonstrated that microglia in AD pathogenesis likely have
multifaceted roles, including both immunosuppressive/neuroprotective and inflamma-
tory/neurotoxic [13,16–20]. In our analysis, ARM showed the highest cell–cell interactions
of any other cell type, including multiple neuroprotective and glial protective interactions
such as prosaposin (PSAP) paired with expression of GPR37L1, which is a known mediator
of anti-oxidant effects in astrocytes [60]. The negative correlation with APOE4 status further
supports likely beneficial roles for ARM in disease. On the contrary, CCI analysis linked
pathology-associated microglia with cellular damage responses. In conclusion, our analyses
support dual roles for microglia whose interactions with vulnerable neuronal populations
included both neuroprotective and neurotoxic pathways that varied according to microglia
disease states as annotated by robust marker genes.

Here, we reported an increased number of CD8 T lymphocytes in AD brain tissue
samples based on the snRNAseq of 84 cases. The role of lymphocytes in the AD brain was
previously considered quite controversial and more recently brought to greater attention by
highly sensitive quantitative techniques including cell-specific analyses [25,26]. Therefore,
much remains unknown in this rapidly developing field, supporting the importance of
the convergence over effector memory T cells as a major cell type observed here in the
human brain and previously reported in human AD CSF and tau mouse models [24,25,69].
In combination, this provides a line of independent evidence to elevate the importance
of studying these cells more in the context of AD. Emerging evidence suggests that CD8
T cells in AD brains may infiltrate into the brain from systemic circulation, possibly via
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the CXCL16–CXCR6 axis as previously reported from the analysis of patient-derived CSF
lymphocytes [24,69]. There is also growing awareness of lymphocyte populations that
reside in the meninges that may play specialized roles in brain tissue surveillance or as yet
undefined roles [70,71]. As new data emerge, evidence builds to support a need for basic
and human-specific study into the mechanisms and functions of lymphocytes in the AD
brain.

Our findings indicate that CD8 T cells likely have multiple roles in AD pathogenesis,
including the potential for extensive immunomodulatory and cytotoxic effects involving
multiple cell types, including ARM. Future work, including longitudinal studies, are
needed to clarify the relationship between CD8 T cells and AD neuropathology, brain
atrophy, and clinical decline. As our results from the human brain overlap with findings
previously reported in spinal fluid studies [24,65], it may be possible to use spinal fluid
from AD clinical cohorts to probe these associations in future studies. There is also interest
in identifying distinct markers of AD-associated lymphocytes to support their identification
and future studies. Among the few genes we found to be differentially expressed by CD8
T cells in disease samples, ERC1 is a regulatory component of IKKB, which is part of the
NFkB canonical pathway regulation that is typically induced by proinflammatory ligands
such as TNF, IL-1, or TLR ligands [46,72]. High mitochondrial and ribosomal RNA in the
differentially expressed genes could be indicative of low-quality cells as conventionally
interpreted; however, recent single-cell multiomic studies have shown the presence of
transcription erosion in severely affected cases [27,73], which also aligns with the terminal
differentiation of the enriched CD8 T cell population. Our findings support the value of
differential expression analysis of lymphocytes in AD brain tissue; however, larger numbers
of lymphocytes or more sensitive techniques are needed to probe these relationships further.

We acknowledge several additional technical limitations of this study. Principally,
brain tissue-associated lymphocytes are also not necessarily located within the brain
parenchyma, and cells we designated as microglia throughout the analysis may include
perivascular macrophages. We omitted cases with neocortical Lewy body pathology con-
current with AD pathology in order to focus our analysis. Moreover, the limited number
of non-AD samples with Lewy body pathology in SEA-AD, along with confounders with
age, precluded the extension of our analysis to determine the effects of co-pathology on
the neuroimmune axis. Finally, our results are observational and do not prove causal or
functional associations.

5. Conclusions

An in-depth examination of the SEA-AD snRNAseq dataset focusing on CD8 T cells
and microglia unveiled a significant presence of CD8 T cells escalating with pathological
progression. Notably, we identified prominent cell–cell interactions (CCIs) involving CD8
T cells and amyloid-responsive microglia. Within the expanding literature, our analysis
reinforces CD8 T cells as a noteworthy cell type of interest in Alzheimer’s disease (AD). It
also identifies candidate molecular and cellular interactions, contributing new insight to
our rapidly advancing understanding of the potential role of these cells in AD.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biomedicines12020308/s1. Supplementary Figure S1. Composition
of concurrent Lewy body pathology in different age groups. Supplementary Figure S2. UMAP
plot for sample metadata of Micro_PVM Seurat object. Supplementary Figure S3. NK and CD4 T
cell proportions in the brains and other CD8 T cell markers. Supplementary Figure S4. Network
modules for CD8 T cells in AD brain. Supplementary Figure S5. Network modules for microglia
in AD brain. Supplementary Figure S6. Microglial states in AD brain. Supplementary Figure S7.
Absence of correlation between the proportions of homeostatic/dystrophic microglia and CD8 T
cells. Supplementary Figure S8. Cell type abundance per sample in the CCI input. Supplementary
Figure S9. Top 50 dementia-specific LR pairs. Supplementary Figure S10. Top 50 dementia-specific
LR pairs involving ARM microglia. Supplementary Figure S11. Top 50 dementia-specific LR pairs
involving pathology-associated microglia. Supplementary Figure S12. Top 50 dementia-specific
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LR pairs involving homeostatic microglia. Supplementary Figure S13. Top 50 dementia-specific
LR pairs involving dystrophic microglia. Supplementary Figure S14. Top 50 dementia-specific LR
pairs between CD8 T cells and microglia. Supplementary Figure S15. Top 50 dementia-specific
LR pairs between CD8 T cells and neurons. Supplementary Figure S16. Differential expression of
NOTCH2 in ARM across APOE4 carrier status. Supplementary Table S1. Markers for lymphocytes.
Supplementary Table S2. Donor metadata of 84 cases in the SEA-AD cohort. Supplementary Table
S3. Differentially expressed genes in CD8 T cells. Supplementary Table S4. hdWGCNA network
module assignment and module connectivities (kME) for CD8 T cells. Supplementary Table S5. GO
and pathway enrichment for CD8T network modules. Supplementary Table S6. hdWGCNA network
module assignment and module connectivities (kME) for microglia. Supplementary Table S7. GO and
pathway enrichment for microglial network modules. Supplementary Table S8. Pathway enrichment
for ligands on each sender cell type. Supplementary Table S9. Pathway enrichment for receptors on
each receiver cell type. Supplementary Table S10. Pathway enrichment for ligand–receptor pairs on
each cell type combination.
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