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Abstract: Cancer remains a major global health challenge, necessitating the development of inno-
vative treatment strategies. This review focuses on the functionalization of porous nanoparticles
for combination therapy, a promising approach to enhance cancer treatment efficacy while miti-
gating the limitations associated with conventional methods. Combination therapy, integrating
multiple treatment modalities such as chemotherapy, phototherapy, immunotherapy, and others, has
emerged as an effective strategy to address the shortcomings of individual treatments. The unique
properties of mesoporous silica nanoparticles (MSN) and other porous materials, like nanoparticles
coated with mesoporous silica (NP@MS), metal–organic frameworks (MOF), mesoporous platinum
nanoparticles (mesoPt), and carbon dots (CDs), are being explored for drug solubility, bioavailability,
targeted delivery, and controlled drug release. Recent advancements in the functionalization of
mesoporous nanoparticles with ligands, biomaterials, and polymers are reviewed here, highlighting
their role in enhancing the efficacy of combination therapy. Various research has demonstrated the
effectiveness of these nanoparticles in co-delivering drugs and photosensitizers, achieving targeted
delivery, and responding to multiple stimuli for controlled drug release. This review introduces the
synthesis and functionalization methods of these porous nanoparticles, along with their applications
in combination therapy.

Keywords: porous nanoparticle; combination therapy; nanomedicine; functionalization

1. Introduction

Cancer remains a significant global health issue, and extensive efforts and research
have been devoted to understanding cancer and advancing its treatment [1,2]. To date,
various treatment methods have been developed, with approaches such as chemother-
apy (CHT) [3], photodynamic therapy (PDT) [4–7], photothermal therapy (PTT) [8–12],
immunotherapy (IMT) [13–16], cancer starvation therapy (CST) [17–21], thermodynamic
therapy (TDT) [22–27], chemodynamic therapy (CDT) [28–33], magnetothermal therapy
(MTT) [34–38], and radiotherapy (RT) [39–41]. However, each treatment method has its own
limitations and disadvantages. For example, CHT-induced multidrug resistance (MDR),
which is one of the major causes of cancer treatment failure. CDT has the challenge of
the limited H2O2 content in the tumor microenvironment (TME). PDT has the challenge
of the low photosensitizer stability and high dependence on O2. PTT has limitations in
treating cancer in deep tissues because light has difficulty penetrating deeply into tissues.
The immune system activated by IMT can attack normal tissues, causing immune-related
complications [42–44]. Thus, the development of new treatment methods is necessary to
effectively treat cancer patients [5,45,46].

Recently, there has been growing interest in combining two or more different treatment
methods, known as combination therapy, to effectively treat cancer while addressing the
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shortcomings of individual treatments [43,47–50]. CHT and IMT, when combined, can
reduce the side effects and enhance the immune response to tumor cells, proving effective
in treating various types of cancers [51–54]. The combination of CHT and PTT can enhance
drug absorption and effectiveness by generating heat during phototherapy, improving
CHT drug delivery to the tumor site and enhancing the cytotoxic effects [55–59]. Moreover,
PTT induces the release of tumor antigens and activate immune cells. Therefore, when
combined with IMT, PTT can further stimulate immune responses, resulting in improved
treatment outcomes [60–63]. The combination of PDT and CHT allows for effective cancer
treatment with smaller drug doses, as PDT generates reactive oxygen species (ROS) that
sensitize the TME to the effects of CHT [64–66]. Moreover, it can target cancer cells through
different mechanisms, making this combination therapy effective against a broader range
of cancer types and reducing the risk of drug resistance. In addition, various therapeutic
methods are combined and have been used in cancer treatment research [67–71].

However, combination therapy still faces challenges related to drug solubility, biosta-
bility, non-specific distribution, side effects, and tumor penetration [72–78]. Therefore,
research efforts have also been directed toward overcoming these issues by utilizing
mesoporous nanoparticles [79–84]. Mesoporous nanoparticles, with their high surface
area and porosity, can effectively encapsulate and deliver various therapeutic agents,
addressing the limitations associated with traditional treatments [85–89]. Additionally,
the post-functionalization of mesoporous nanoparticles with ligands, biomaterials, and
polymers plays a crucial role in unlocking the full potential of these materials for combi-
nation therapy [90–93]. This review paper introduces various mesoporous nanoparticles
used in combination therapy, the substances used for post-functionalization, and the post-
functionalization methods used in the past five years.

2. Porous Nanoparticles for Combination Therapy
2.1. Mesoporous Silica Nanoparticles

Mesoporous silica nanoparticles (MSNs) are classified by the FDA as ‘Generally
Recognized as Safe’ (GRAS) and are used in cosmetics and as food additives [94]. An
MSN, known for its high biocompatibility, is a porous material widely used for drug
delivery [95–97]. The particles can be adjusted by size and porosity, and they have a high
surface area. Drugs can be loaded into the pores of MSNs, and the adjustable size and
chemical properties of these pores allow for controlled drug release [98–100]. Addition-
ally, the high surface area facilitates functionalization, enabling cancer-targeting ligand
modification for targeted cancer therapy [101,102].

Post-functionalization is led by changing the functional group on the surface of MSNs.
A compound containing silane is used to induce a siloxy bond with MSNs, and the
functional group at the other end is used for functionalization. Yan et al. developed
a pH-responsive and cancer-targeting system combining chemotherapy and phototherapy
by loading doxorubicin (Dox) and pheophorbide a (PA) into hollow mesoporous silica
nanoparticles (HMSNs), followed by functionalization with chitosan (CS) and folic acid
(FA) (Figure 1A) [103]. HMSNs, with their extensive surface area, allow co-encapsulation
of the widely used chemotherapy drug, Dox, and the photosensitizer, PA, which facilitate
CHT, PDT, and PTT. Functionalized CS can block the pores of HMSNs, inhibiting drug
release, and can also induce drug release under acidic conditions via protonation of the
amine groups in CS, leading to shell swelling. FA interacts with FA receptors, which are
overexpressed in cancer cells, enabling targeted cancer therapy. Before functionalization of
HMSNs, CS interacts with glycidoxypropyl-trimethoxy-silane (GPTMS) through an epoxy
amine reaction, where the silane in GPTMS forms siloxy bonds with the nanoparticle sur-
face. FA is functionalized by forming amide bonds between the amine groups in CS and the
carboxylic acid in FA, after CS has been functionalized onto HMSNs. To investigate cellular
uptake of the system (HMSNs-GM-CS-FA@Dox/PA), normal L-02 cells and FA-receptor
overexpressing KB cells were examined using a confocal laser microscope (CLSM). After
incubation with HMSNs-GM-CS-FA@Dox/PA, weak fluorescence was observed in L-02
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cells, while strong fluorescence was observed in KB cells (Figure 1B). This result suggests
that FA modified the system and facilitated cancer-targeting delivery. Furthermore, to
confirm the combination therapy effect, HMSNs-GM-CS-FA@Dox/PA was injected into
tumor-bearing mice. The group treated with HMSNs-GM-CS-FA@Dox/PA without light
irradiation showed a greater tumor growth inhibition effect compared to the other groups.
However, the most significant inhibition of tumor growth was observed in the group treated
with HMSNs-GM-CS-FA@Dox/PA when exposed to light irradiation. This result indicates
that co-encapsulating HMSNs-GM-CS-FA with DOX and PA can achieve a better combined
treatment effect in inhibiting tumor growth by integrating photothermal, photodynamic,
and chemotherapy in a single formulation, thereby enhancing therapy effectiveness.
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Figure 1. (A) The synthesis of HMSNs-GM-CS-FA@DOX/PA and pH-responsive drug release.
(B) CLSM images of KB and L-02 cells incubated with HMSNs-GM-CS-FA@DOX/PA and HMSNs-
GM-CS-FA@DOX/PA with/without excess free FA. Reproduced with permission from [103]. Copy-
right (2020): Elsevier (Amsterdam, The Netherlands).

Dopamine has abundant catechol and amine groups and can form a polydopamine
(PDA)-modified layer on almost any surface via self-polymerization. This can be used
for functionalization by coating silica nanoparticles with dopamine [104]. Lei et al. de-
veloped a system that responds to multiple stimuli by coating MSNs with PDA, enabling
controlled drug release of a combination of PTT and CHT (Figure 2A–C) [105]. More-
over, 3-mercaptopropyltrimethoxy silane (MPTMS) was used to introduce thiol groups
into MSNs. Then, 3-mercaptopropionic acid was introduced to form the disulfide bonds
in MSNs with carboxylic acid groups. After loading Dox as the chemotherapy drug,
they coated it with PDA. The PDA coating was prepared through the oxidative self-
polymerization of dopamine in a mild alkaline aqueous medium with a pH of 8.5. First,
dopamine was oxidized and self-polymerized spontaneously at room temperature, forming
5,6-dihydroxyindole through intermolecular cyclization. Finally, PDA was formed through
the polymerization reaction. The PDA coating seals the pores of MSNs to prevent drug
leakage and allows PTT in response to near-infrared light. MSN-SS-PDA/Dox, which is
loaded with Dox and coated with PDA, responds to stimuli such as pH, glutathione (GSH),
and near-infrared light irradiation to release the drug (Figure 2D–G). MSN-SS-PDA/Dox
displayed a higher drug release rate at pH 5.0 compared to pH 7.4, which was attributed to
the partial peeling of the PDA coating on nanoparticles. Additionally, 3-mercaptopropionic
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acid modified via the disulfide bond of MSNs is removed by GSH, which also induces
the removal of PDA, resulting in drug release. Finally, NIR irradiation induces a tempera-
ture increase, further promoting drug release by disrupting the electrostatic interactions
between the drug and the carrier. To validate the effects of combining CHT and PTT,
MSN-SS-PDA/Dox was injected into 4T1 tumor-bearing mice. The single CHT and PTT
treatments showed significant tumor suppression. Meanwhile, in the CHT and PTT combi-
nation therapy, effective tumor growth inhibition was observed, which could be attributed
to the synergistic effect.
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on tumor cells. Cumulative percentage release of (D) MSN-SS-PDA/DOX and (E) MSN-PDA/DOX
in pH 5.0 PBS and pH 7.4 PBS with or without the addition of 10 mM GSH. In vitro drug release
profile of MSN-SS-PDA/DOX with NIR laser irradiation in different media (F) pH 7.4 PBS and
(G) pH 5.0 PBS. Red symbol means NIR irradiation. Reproduced with permission from [105].
Copyright (2019): Elsevier (Amsterdam, The Netherlands).

Additionally, MSNs can be used not only for cancer therapy but also for imaging
in cancer diagnosis. Huang et al. developed a system that enables both PDT and PTT
combination therapy, as well as fluorescence and ultrasound (US) imaging, by loading
MSNs with indocyanine green (ICG) and perfluorohexane (PFH) (Figure 3A) [106]. ICG,
a photosensitizer that can be activated by 808 nm NIR light, has shown an extraordinary
capacity to induce both hyperthermia and ROS for PTT/PDT combination therapy. In
addition, ICG has been widely used for medical imaging and diagnostics. However, ICG
has complications, like an inherent instability, quick elimination in vivo, and a lack of
targeting ability. Due to the acoustic variations between gas and plasma, microbubbles
(MBs) are typically used as contrast agents in US imaging, but their relatively large size,
blood instability, and lack of targeting capacity hinder their application to cancer diagnosis.
Therefore, perfluorohexane (PFH) was loaded into the nanocarrier, which can undergo a
‘liquid-to-gas’ phase transformation in response to laser or high-intensity US. By modifying
or loading the two substances into MSNs, these complications can be resolved and effective
cancer theranostics can be achieved. After loading liquid PFH into MSNs, PDA is used
to decorate the MSN surface and effectively encapsulate the PFH. PDA promotes mod-
ifications of ICG, through π-π stacking, and poly ethylene glycol (PEG)-modified folate
with thiol groups (FA-PEG-SH), through Michael addition. MSNs loaded with PFH and
modified with PDA, ICG, and PEG-FA (MSNs-PFH@PDA-ICG-PEG-FA) enable PDT and
PTT combination therapy, as the modified ICG on the surface responds to NIR light irra-
diation (Figure 3B). Furthermore, the generated heat energy induces a phase transition of
PFH, enabling US imaging as well as the breakdown of PDA (Figure 3C). This leads to the
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release of ICG, preventing ICG’s self-quenching and enabling fluorescence imaging with
a strong fluorescent intensity. To verify the imaging effect, MSNs-PFH@PDA-ICG-PEG-
FA was injected into tumor-bearing mice. In the MSNs-PFH@PDA-ICG-PEG-FA-treated
group, a stronger fluorescence intensity and US signal were obtained at the tumor site
compared to the control group. Additionally, it was confirmed that MSNs-PFH@PDA-
ICG-PEG-FA effectively suppressed the growth of the tumor. These results suggest that
MSNs-PFH@PDA-ICG-PEG-FA facilitates both dual imaging and the combination therapy
of PDT and PTT.
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FA. In vitro US imaging in (B) and contrast modes of (C) PFH, (D) MSNs@PDA-ICG-PEG-FA, and
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Furthermore, other nanoparticles can be functionalized onto MSNs for use in com-
bination therapy. Modified nanoparticles provide new functions for cancer therapy to
the system through their unique properties. Ong et al. developed a system capable of
combining PTT and IMT by synthesizing extra-large pore mesoporous silica nanoparticles
(XL-MSN), then loading them with gold nanoparticles (GNPs) and oligodeoxynucleotides
containing unmethylated cytosine phosphorothioate-guanine (CpG) motifs (CpG-ODNs)
(Figure 4A) [107]. XL-MSN react with (3-aminopropyl) trimethoxysilane (APTMS) to mod-
ify their surface with amine functional groups. The surface of XL-MSN is modified with
amine functional groups to carry a positive charge, and the size of the pores is approxi-
mately 20–30 nm, allowing 1–2 nm sized negatively charged GNPs to be loaded through the
pores via electrostatic interaction. XL-MSNs doped with GNP (Au@XL-MSNs) absorb NIR
light to induce a photothermal effect, and thiol-modified Polyethylene Glycol (PEG-SH)
and CpG-ODN can be modified through Au–thiol interfacial interactions (Figure 4B). PEG
increases the bio-compatibility of the system. CpG-ODNs, a type of pathogen-associated
molecular pattern (PAMP), are short synthetic single-stranded DNA molecules containing
unmethylated CpG motifs and can be used as an adjuvant in cancer vaccines. Therefore,
Au@XL-MSNs modified with PEG and CpG-ODNs (Au@XL-MSN-CpG/PEG) facilitate
PTT and IMT combination therapy. To observe the effects of this combination therapy,
phosphate-buffered saline (PBS), CpG, Au@XL-MSN/PEG, and Au@XL-MSN-CpG/PEG
were injected into tumor-bearing mice. The treatment group with Au@XL-MSN-CpG/PEG
and NIR light irradiation showed the highest inhibition of tumor growth compared with
the PBS, CpG, or PTT group. This indicates that PTT and IMT combination therapy could
effectively treat cancer (Figure 4C).
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2.2. Mesoporous Silica-Coated Nanoparticles

Mesoporous silica (MS)-coated nanoparticles (NP@MS) are composite nanoparticles
with a core–shell structure, where the core is made up of other nanoparticles and the shell is
MSNs [108,109]. These MS-coated nanoparticles are synthesized by first creating nanoparti-
cles that consist of material other than silica. Then, tetraethyl orthosilicate (TEOS) is added
to the solution containing the nanoparticles. Through the added TEOS sol–gel process, an
MS shell is formed on the surface of the nanoparticles. The MS shell has a porous structure,
which not only provides space for loading or storing drugs but also provides various
functions to the system through easy surface modification [110]. Different nanoparticle
possesses have unique physicochemical properties. These properties can facilitate cancer
treatment even without the addition of extra therapeutic materials [108,111,112].

Porous polydopamine nanoparticles have received great attention as drug delivery
systems due to their high biocompatibility and biodegradability. They are also of great
interest for cancer treatment due to their ability to generate heat in response to light.
Seth et al. developed mesoporous silica-coated PDA nanoparticles (PDA@MS) for PTT
and IMT combination therapy by loading the immunomodulatory drug (gardiquimod
(Gardi)) (Figure 5A,B) [113]. The PDA core of PDA@MS possesses photothermal properties.
Additionally, an increase in the PDA@MS concentration under NIR light irradiation leads to
an increase in the temperature of the solution. The MS shell provides sites for loading Gardi
and 1-tetradecanol. Here, 1-tetradecanol, a biocompatible phase-changing material, has a
melting temperature of 38–39 ◦C, slightly higher than normal human body temperature.
Therefore, the increased temperature induced by the photothermal properties of PDA
causes a phase change of 1-tetradecanol, blocking the pores and triggering the release of
the encapsulated drug (Figure 5C,D). Moreover, PTT induces a partial removal of tumors
and the release of tumor-associated antigens (TAAs) and damage-associated molecular
patterns (DAMPs). The released TAAs and DAMPs, in synergy with Gardi, create a
tumor inhibitory environment. To confirm the therapeutic effect of this combination, PBS,
PDA@MS, and PDA@MS loaded with Gardi were injected into B16-F10 cancer-bearing
mice. It was observed that the group treated with PDA@MSs loaded with Gardi under NIR
irradiation had significantly inhibited tumor growth compared to groups treated with PBS
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and PDA@MS alone. This result indicated that effective PTT and IMT combination therapy
was achieved through PDA@MSs loaded with Gardi.
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In addition to antibacterial activity, silver nanoparticles (AgNPs) have unique cytotoxic
functions against mammalian cells. Therefore, AgNPs are receiving a lot of attention
in cancer therapy. In particular, silver ions released from AgNPs cause an imbalance
in cellular homeostasis and induce cell death. Zhang et al. developed a system that
facilitates the combination therapy of CHT, CST, and ion therapy using mesoporous silica-
coated silver nanoparticles (AgNP@MS) (Figure 6A) [114]. They synthesized AgNP@MS
modified with glucose oxidase (GOx) (AgNP@MS-GOx) by creating an amide bond between
the amine groups of the yolk–shell structured AgNP@MS surface and the carboxylic
acid in GOx. Furthermore, the prodrug, tirapazamine (TPZ), was loaded into the silica
shell to synthesize the combination therapy system (TPZ-AgNP@MS-GOx). TPZ forms
toxic metabolites under hypoxic conditions, damaging DNA and proteins and inducing
cell apoptosis. GOx depletes glucose and oxygen, nutrients essential for cancer cells,
and promotes the production of gluconic acid and hydrogen peroxide, thus inducing
CST. The GOx reaction changes the TME, reducing the oxygen levels and activating TPZ.
Additionally, the produced hydrogen peroxide accelerates the oxidation process of Ag,
increasing the production of highly toxic Ag+ ions in cancer cells. The efficacy of this
combination therapy was confirmed by observing the inhibition of cell proliferation after
MCF-7 cells were treated with MSN, AgNP@MS, AgNP@MS-GOx, and TPZ-AgNP@MS-
GOx. It was observed that TPZ-AgNP@MS-GOx more effectively inhibited cancer cell
proliferation compared to other groups (Figure 6B,C).

Gold nanorods (GNRs) not only have high biocompatibility but also generate local
heat through the surface plasmon resonance effect caused by light stimulation, facilitating
non-invasive PTT in normal cells. Dai et al. developed a system using mesoporous silica-
coated gold nanorods (GNR@MS) to facilitate the combination therapy of CHT and IMT



Biomedicines 2024, 12, 326 8 of 24

(Figure 7A) [115]. They modified the surface of the core–shell structured GNR@MS with
3-triethoxysilylpropylamine (APES) to introduce amine functional groups, and then loaded
BMS1166 into the GNR@MS. Afterwards, pegylated anti-vascular endothelial growth factor
peptide vaccine (VVP) was modified with BMS1166-loaded GNR@MS through an amide
bond to create a combination therapy system based on GNR@MS (GSBVVP). The GNR
core in this system generates hyperthermia upon NIR light irradiation, enabling PTT. The
MS shell provides a space for encapsulating BMS1166 and allows for post-functionalization
with VVP. BMS1166 inhibits the interaction between programmed cell death protein 1 (PD-
1) and its ligand, PD-L1, thereby enhancing the effectiveness of IMT. PD-L1, which is
overexpressed on cancer cells, interacts with the T-cell receptor PD-1 and blocks T-cell-
mediated cancer cell attacks. Therefore, BMS1166 suppresses the cancer cells’ ability to
evade T-cell detection through PD-L1. VEGF promotes angiogenesis, and inhibiting it plays
a crucial role in treating conditions like hepatocellular carcinoma. Hence, VVP inhibits
VEGF, blocking angiogenesis in tumor tissue and enhancing therapeutic efficacy. The
hyperthermia generation effect of GSBVVP was observed at various concentrations, with
an increase in the temperature of the solution as the concentration increased (Figure 7B).
Additionally, to verify the combination therapy effect, GSBVVP was injected into tumor-
bearing mice. Under NIR light irradiation, the combination of PTT and IMT provided by
GSBVVP showed a more effective tumor growth inhibition rate than each therapy alone.
Moreover, it demonstrated the potential to treat metastatic cancer, showing effectiveness
toward treating tumors that were not exposed to NIR light.
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Wen et al. developed a system utilizing GNR@MS for the combination of PTT and
TDT (Figure 8A) [116]. Here, 2,2′-azobis [2-(2-imidazolin-2-yl)propane]-dihydrochloride
(AIPH) and lauric acid were loaded onto GNR@MS, followed by modifying the nanoparticle
surface with PEG to increase biocompatibility. The GNR core generates heat in response
to NIR light irradiation, increasing the local temperature and facilitating PTT. AIPH, a
thermally activated alkyl free radical-releasing molecule, decomposes under heat, forming
radicals and enabling TDT (Figure 8B). In a hypoxic TME, traditional dynamic therapy has
used methods to generate or deliver oxygen and improve treatment efficacy. However,
TDT overcomes the limitations of traditional dynamic therapy that depends on the oxygen
concentrations by generating radicals through decomposition of the encapsulated material.
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Lauric acid, a phase-change material (PCM), has a melting point of 43.8 ◦C, which is
higher than normal body temperature. Therefore, lauric acid, in a liquid state, is loaded
into the MS and changes into a solid, blocking the pores of the MS and preventing AIPH
leakage. The solid lauric acid then changes back to a liquid state due to heat generated
from the GNR, opening the pores of the MS and allowing the release of encapsulated
AIPH (Figure 8B). Therefore, GNR@MS modified with PEG after loading AIPH and PCM
(ASAPP) promotes drug release in response to NIR light and facilitates the combination
therapy of PTT and TDT. To confirm the combination therapy effect, PBS, GNR@MS, and
ASAPP were injected into tumor-bearing mice. The group treated with ASAPP under NIR
light irradiation showed a significantly smaller tumor size compared to groups treated
with PBS and GNR@MS (Figure 8C,D).
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2.3. Metal–Organic Framework

Metal–organic frameworks (MOFs) are compounds with a three-dimensional structure
composed of metal ions and organic ligands [117–119]. This structure can be precisely
controlled, as MOFs provide a large surface area and volume while retaining stability,
authorized by the strong bonds between the metal ions and organic ligands [120–122]. The
abundant functional groups present on the MOF surface enable interaction with other
materials and facilitate the modification of other materials. These properties allow MOFs to
be used as drug carriers that control drug release in response to various stimuli or facilitate
various cancer therapies [123–127].
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PCN-224, a Zr-based porphyrin-based MOF, has high stability even in aqueous solu-
tions and is stable over a wide pH range. In addition, it is attracting much attention as a
drug carrier because it can generate 1O2, which is essential for PDT. Kim et al. developed
a system using PCN-224, hyaluronic acid (HA), and Dox that facilitates the combination
therapy of CHT and PDT (Figure 9A) [128]. PCN-224 is fabricated through the coordination
connection between zirconium and meso-tetra (4-carboxyphenyl)porphine (TCPP). Dox, a
well-known anticancer drug, is loaded into the pores of PCN-224 through physical adsorp-
tion to synthesize Dox-loaded PCN-224 (Dox-PCN). HA is added to Dox-PCN, where its
carboxylic acid forms a coordination bond with zirconium, resulting in an HA-coated Dox-
PCN system (HA-Dox-PCN). TCPP, which composes PCN-224, is a porphyrin derivative
used as a PDT reagent and can facilitate PDT in response to light irradiation. Additionally,
HA, which coats PCN-224, interacts with the overexpressed cd44 receptor in cancer cells,
facilitating cancer targeting and blocking the pores of PCN-224 as a gatekeeper. HAdase,
which is present in cancer cells, decomposes HA and opens the pores of PCN-224, promot-
ing the release of encapsulated Dox. Thus, HA controls drug release by responding to the
enzyme. To confirm the cancer targeting, HA-Dox-PCN was incubated with CD44-negative
HEK 293T cells and CD44-positive MDA-MB231 and SCC-7 cells, followed by observation
through CLSM. In HEK 293T cells, the fluorescence of Dox was not observed, but a strong
fluorescence of Dox was observed in MDA-MB231 and SCC-7 cells (Figure 9B). Further-
more, to confirm the effects of the combination therapy, PCN and HA-Dox-PCN were
incubated with HEK 293T and MDA-MB231 cells. In HEK 293T cells, only those treated
with light irradiation and PCN showed the inhibition of cell proliferation. In contrast, in
MDA-MB cells, both the HA-Dox-PCN-treated group and the HA-Dox-PCN-treated with
light irradiation group showed the inhibition of cell proliferation. Notably, the HA-Dox-
PCN with light irradiation group exhibited a stronger inhibition of cell proliferation than
the HA-Dox-PCN-only group, suggesting this was caused by the combination of CHT
and PDT.

MIL-88B(Fe) has carboxylic acid and amino groups that can interact with other sub-
stances. Fe3+ ions released from MIL-88B(Fe) convert H2O2 into ·OH through peroxidase-
like activity, causing cell death. Zeng et al. developed a system using MOFs with two
different phases, ZIF-8 and MIL-88B(Fe), to enable the combination of CHT and CDT
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(Figure 10A,B) [129]. MIL-88B(Fe) is synthesized through a coordination connection be-
tween metal ions (Fe3+) and 2-aminoterephthalic acid (NH2-BDC). Afterwards, MIL-88B(Fe)
is partially etched by adding 2-methylimidazole (2-MeIm) and zinc ions to form hollow
MIL-88B(Fe) (hMIL-88B(Fe)). The adsorbed zinc ions on the surface of MIL-88B(Fe) in-
teract with 2-MeIm to form ZIF-8, maintaining the morphology of hMIL-88B(Fe). Dox
and manganese oxide nanoparticles (MnOx) are loaded into ZIF-8 modified hMIL-88B(Fe)
(hMIL-88B(Fe)@ZIF-8), and the surface is modified with folic acid (FA) through a coor-
dination connection. This multifunctional system (hM@ZMDF) is capable of specifically
targeting cancer cells and facilitating magnetic imaging, and the combination of CHT and
CDT. The decomposition of hMIL-88B(Fe) induces the release of Fe3+, which is reduced to
Fe2+ by overexpressed GSH in cancer cells. This Fe2+ then converts H2O2 into hydroxyl
radicals via the Fenton reaction, facilitating CDT. Dox, apart from facilitating CHT, also
acts as a fluorophore for fluorescence imaging. MnOx serves as an MRI reagent, allowing
for real-time monitoring of drug delivery. FA, known as a cancer-targeting ligand, imparts
its cancer-targeting ability to hM@ZMDF through specific interactions with the overex-
pressed FA receptors on cancer cells. To confirm the cancer-targeting combination effect of
hM@ZMDF, both hMIL-88B(Fe)@ZIF-8 and hM@ZMDF were incubated with FA receptor-
negative hCMEC/D3 cells, and FA receptor-positive MCF-7 and HepG-2 cells. Incubation
of MCF-7 and HepG-2 cells with hMIL-88B(Fe)@ZIF-8 showed cell proliferation inhibi-
tion caused by CDT. However, in MCF-7 and HepG-2 cells incubated with hM@ZMDF, a
stronger cell proliferation inhibition was observed, attributed to the combined effects of
CHT and CDT. Meanwhile, in hCMEC/D3 cells, insignificant cell proliferation inhibition
was observed (Figure 10C–H).
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MOF-235 is synthesized through a coordination connection between the metal ions
(Fe3+) and organic linker terephthalic acid (TPA). Similar to MIL-88B(Fe), MOF-235 induces
cell death by releasing Fe3+ ions. Deng et al. developed a system for the combination of
CDT and PTT using MOF-235, PDA, IR820, and piperlongumine (PL) (Figure 11A–C) [130].
Initially, PL is loaded onto MOF-235 to synthesize PL-loaded MOF-235 (MP), and PDA is
coated on the surface of MOF-235 through dopamine self-polymerization. By adding IR820
to the PL-loaded and PDA-coated MOF-235 (MP@P), the PDA on the surface interacts with
IR820 through π−π stacking and hydrophobic interactions, immobilizing IR820 on the
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surface of MOF-235, thereby forming a combination system based on MOF-235 (MP@PI).
MOF-235 is an effective iron donor, reacting with H2O2 to generate a significant amount
of ROS through the Fenton reaction, facilitating CDT. The Fenton reaction requires a
substantial amount of H2O2, which is provided by PL. PL not only kills cancer cells through
the generation of ROS but also increases the level of intracellular H2O2. PDA possesses
excellent biocompatibility and photothermal characteristics. IR820, an NIR dye, generates
heat under NIR light irradiation, facilitating PTT in conjunction with the photothermal
characteristics of PDA. To confirm the effects of the combination therapy, PBS, PL, MP,
MP@P, and MP@PI were injected into tumor-bearing mice. Although the group treated
with MP@P showed some tumor growth inhibition by the CDT, the group treated with
MP@PI and NIR irradiation exhibited more tumor growth inhibition, facilitated by the
combination of CDT and PTT (Figure 11D,E).
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As described previously, the organic ligands that constitute the MOFs can not only
exploit their unique properties in cancer therapy but also form coordination compounds
with metal ions, providing the system with new functionality. Ding et al. developed a
system to facilitate the combination of CHT and CDT using PCN-224 (Fe), GNP, PEG-SH,
dodecane thiol (C12-SH), and camptothecin (CPT) (Figure 12A–C) [131]. PCN-224(Fe) is
synthesized through the coordination connection of zirconium and iron(III) meso-tetra(4-
carboxyphenyl)porphine chloride (TCPP(Fe)). When HAuCl4 solution and a reducing agent
are added to PCN-224(Fe), gold is reduced on the PCN surface and GNP is formed. The
reduced GNP is immobilized on the surface of PCN-224(Fe) to serve as anchors for ligand
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modification. CPT, which forms π–π stacking with TCPP and a coordination connection
with zirconium, is loaded into the pores of GNP-immobilized PCN-224(Fe) (Au/FeMOF).
Upon adding PEG-SH and C12-SH to the CPT-loaded Au/FeMOF (Au/FeMOF@CPT), an
Au–thiol bond is formed with the surface GNP, synthesizing a system modified with PEG
and C12 (PEG-Au/FeMOF@CPT). PCN-224(Fe) provides iron, facilitating CDT through the
Fenton reaction. GNPs not only serve as anchors for ligand modification but also generate
H2O2 by reacting with glucose, mimicking GOx properties. CPT, a topoisomerase I inhibitor
and a well-known cancer drug, facilitates CHT, while the surface-modified PEG and C12
ligands enhance the biostability of the system. Particularly, C12, with its hydrophobic
properties, prevents glucose access until the degradation of the PEG-Au/FeMOF@CPT,
triggered by the high concentration of phosphate inside cancer cells (Figure 11A). Thus,
iron and CPT are released after cellular internalization, inducing the effects of CHT and
CDT. To confirm the effects of the combination therapy, PBS, PEG-Au/FeMOF, CPT, PEG-
Au/HMOF@CPT, and PEG-Au/FeMOF@CPT were injected into tumor-bearing mice. The
PEG-Au/FeMOF-treated group showed a tumor reduction effect by CDT, while the groups
treated with CPT and PEG-Au/HMOF@CPT showed a tumor reduction effect by CHT.
However, the most effective tumor reduction effect was observed in the group treated
with PEG-Au/FeMOF@CPT, supporting the combination therapy effect of CHT and CDT
(Figure 12E).
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2.4. Other Porous Nanoparticles

Platinum (Pt), known for its high biocompatibility, can be utilized in computed tomog-
raphy (CT) imaging and possesses the ability to convert laser energy into heat, enabling
PTT [132–135]. Fu et al. developed a system for the combination of CHT and PTT using
mesoporous platinum nanoparticles (mesoPt), PEG-SH, and doxorubicin (Dox) [136]. Dox
is loaded into the pores of mesoPt, and PEG-SH forms Pt–thiol bonds on the surface of Pt,
synthesizing a combination therapy system based on meso Pt (PEG@Pt/Dox). To verify
the combination therapy effect, MCF-7/ADR cells were treated with PEG@Pt/Dox and the
cell proliferation was monitored. A higher suppression of the cell proliferation rate was
observed in those treated with both PEG@Pt/Dox and laser irradiation compared to those
treated with only PEG@Pt/Dox.
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(B) Preparation of the hybrid nanomedicine PEG-Au/FeMOF@CPT. (C) High tumor accumulation
of PEG-Au/FeMOF@CPT NPs via passive targeting and subsequent cancer cell uptake. Triggered
by intracellular phosphate, the chemotherapeutic drug CPT is released and a catalytic cascade of
reactions is initiated. H2O2 generated through the oxidation of glucose by GNPs acts as chemical fuel
for the Fenton reaction to produce highly toxic ROS and release the combination therapy. (D) Cu-
mulative release curves of CPT from PEG-Au/FeMOF@CPT NPs in solutions containing different
concentrations of phosphate ions. (E) Tumor growth curves of mice bearing HepG2 tumors who re-
ceived different treatments. I, PBS; II, PEG-Au/FeMOF NPs; III, CPT; IV, PEG-Au/HMOF@CPT NPs;
V, PEG-Au/FeMOF@CPT NPs (*** p < 0.001). Reproduced with permission from [131]. Copyright
(2020): John Wiley and Sons (Hoboken, NJ, USA).

Carbon dots possess excellent optical properties, including strong fluorescence and
good photostability [137–140]. This facilitates the real-time imaging of cancer cells and
tissues, aiding in the diagnosis and monitoring of the treatment response. Additionally,
carbon dots generate heat energy by responding to light stimuli, facilitating PTT [141–144].
Zhang et al. developed a system for the combination of PTT and PDT using porous carbon
dots (CDs), triphenylphosphonium (TPP), 5-aminolevulinic acid (ALA), and GNP for
CT imaging and targeting mitochondria (Figure 13A) [145]. CDs were synthesized with
glycine and citrin through the hydrothermal carbonization method. TPP modifies CDs
through amide bond formation between the carboxylic acid group of TPP and the amine
group of CDs, forming CDs modified with TPP (T-CDs). When HAuCl4 is added to T-CD,
HAuCl4 is reduced on the T-CD surface, forming GNP-doped T-CDs (T-CDs@Au). ALA
is loaded into the pores of T-CDs@Au through electrostatic interactions, forming ALA-
loaded T-CDs@Au (T-CDs@Au/ALA). TPP imparts its mitochondria-targeting ability to
T-CDs@Au/ALA, and the endogenous nonprotein amino acid, ALA, is converted into the
photosensitive, protoporphyrin IX, within cells, facilitating PDT. GNP, with a high X-ray
attenuation coefficient, can be used as CT contrast agents for tumor imaging. Therefore,
T-CDs@Au/ALA targets mitochondria, facilitating the combination therapy of PTT and
PDT, as well as providing diagnostic capabilities through CT imaging.
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In 2005, Yaghi’s research group first proposed covalent organic frameworks (COFs),
which were described as periodic polymer networks constructed via reversible conden-
sation reactions, with a structural potential for biodegradation [146]. COFs possess a
sophisticated pore structure and a large surface area, allowing for the loading or storage
of drugs [147–149]. Their stability and biocompatibility make them a subject of extensive
research as drug delivery systems [150–152]. Additionally, when COF is synthesized us-
ing organic materials used in cancer therapy, combination therapy is possible without
additional functionalization. Wang et al. developed a system enabling the combina-
tion therapy of PDT and PTT by utilizing COF-366, which is fabricated at the nanoscale
(Figure 13B) [153]. COF-366 is a donor-acceptor type of COF that converts light into heat
energy and changes triplet oxygen into singlet oxygen, facilitating both PTT and PDT.
Additionally, it can be used as a photoacoustic imaging reagent, allowing for simultaneous
cancer therapy and therapy monitoring. COF-366 is synthesized via the reaction of tetra
(p-amino-phenyl) porphyrin (TAPP) with terephthalaldehyde. To verify the combination
therapy effect, COF-366 was injected into tumor-bearing mice for assessment.
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Mesoporous polydopamine (MPPD), a melanin-like polymer, has received consider-
able attention as a drug carrier due to its excellent biocompatibility, high drug loading
capacity, and ease of functional modification [154–157]. Hu et al. developed a system
facilitating a combination of PTT and PDT using MPPD, FA-PEG-SH, perfluorooctane
(PFO), and IR-820 [158]. FA-PEG-SH is modified on the surface of MPPD through a Michael
addition reaction between the thiol group of FA-PEG-SH and the alpha-beta unsaturated
carbonyl in MPPD. The combination therapy system (IR-820/PFO@FA-MPPD) is synthe-
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sized by loading PFO and IR-820 onto FA-PEG-SH-grafted, MPPD. Structurally similar
to ICG, IR820 facilitates both PTT and PDT in response to NIR light, showing improved
stability and an improved singlet oxygen quantum yield compared to ICG. Moreover, PFO,
known for its high oxygen solubility and used as an oxygen carrier, can deliver oxygen to
the hypoxic TME to enhance the PDT effect. To verify the combination therapy effect, IR-
820/PFO@FA-MPPD was injected into tumor-bearing mice to compare the tumor growth
inhibition rates.

3. Conclusions

Various methods utilizing MSNs, NP@MSN, MOFs, mesoPt, CDs, COFs, and MPPD
have been explored to facilitate combination therapy. The high biocompatibility, tunable
size and surface properties of MSNs make them suitable for a variety of therapeutic
strategies, including drug loading and targeted cancer therapy.

NP@MSN with a yolk–shell or core–shell structure can be made by coating various
nanoparticles with MSNs, where the properties of both MSNs and nanoparticles can be
utilized for cancer therapy. MOFs composed of metal nodes and organic linkers utilize
the properties of both metal and organic linkers in cancer therapy and are especially used
in phototherapy and CDT. Other porous nanoparticles, like mesoPt, CDSs, CPFs, and
MPPD, have been used in combination therapies, showing an enhanced anticancer effect.
Different nanoparticles, enzymes, targeting ligands, organic reagents, photosensitizers,
and anticancer agents have been modified using various functionalization methods to
further improve the performance of these porous nanoparticles. This kind of modification
has endowed systems with multiple functionalities, including biocompatibility, cancer
targeting, cancer therapy, and control of drug release. Table 1 summarizes the research
on combination therapy using mesoporous nanoparticles. Combination therapies using
functionalized porous nanoparticles have made significant advances in the field of cancer
therapy, and it is expected that new possibilities for cancer theranostics will be explored
through continued research and innovation.

Table 1. Summary of the research on combination therapy using mesoporous nanoparticles.

Nanoparticle Therapy Functionalized
Material Functionalized Method Drug Ref.

HMSN
CHT
PDT
PTT

GPTMS
CS
FA

Siloxy bond
Amide bond

Epoxy–amine reaction

Dox
PA [103]

MSN CHT
PTT

MPTMS
3-mercaptopropionic

acid
PDA

Siloxy bonds
Disulfide bond

Self-polymerization
Dox [105]

MSN PDT
PTT

PDA
FA-PEG-SH

Self-polymerization
Michael addition
π−π stacking

ICG [106]

XL-MSN PTT
IMT

APTMS
GNP

PEG-SH

Siloxy bonds
Electrostatic interaction

Au–thiol bond
CpG-ODN [107]

HMSN CHT
PDT

APTMS
HA

Siloxy bonds
Schiff base bonds

Dox
Rose bengal [159]

HMSN PTT
RT

APTMS
GNP

HA-Dopamine

Siloxy bonds
Electrostatic interaction

Au–catechol bonds
Amide bond

MnOx [160]
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Table 1. Cont.

Nanoparticle Therapy Functionalized
Material Functionalized Method Drug Ref.

PDA@MS PTT
IMT 1-tetradecanol Phase change Gardi [113]

AgNP@MS CHT
CST GOx Amide bond TPZ [114]

GNR@MS PTT
IMT VVP (97-mer peptide) Amide bond BMS1166 [115]

GNR@MS PTT
TDT

PEG
Lauric acid

Physical adsorption.
Phase change AIPH [116]

INP@MS CHT
MTT

CS
FA

Disulfide bond
Amide bond Dox [161]

CDs@MS CHT
PTT

Polyethyleneimine
Trastuzumab Amide bond gemcitabine [162]

PCN-224 CHT
PDT HA Coordination bond Dox [128]

hMIL-88B(Fe)@ZIF-8 CHT
CDT

FA
MnOx Coordination bond Dox [129]

MOF-235 PTT
CDT

PDA
IR820

Self-polymerization
π−π stacking

Hydrophobic interaction
PL [130]

PCN-224 (Fe) CHT
CDT

PEG-SH
C12-SH

Au–thiol bond
π−π stacking,

Coordination bond
CPT [131]

mesoPt CHT
PTT PEG Pt–thiol bond Dox [136]

CDs PTT
PDT TPP Amide bond

Electro static interaction ALA [145]

COF-366 PTT
PDT

TAPP
Terephthaldehyde Imine bond N/A [153]

MPPD PTT
PDT FA-PEG-SH Michael addition IR820

PFO [158]

mesoPt CHT
PTT

Adamantane
β-cyclodextrin

Pt–thiol bond
Host–guest interaction Dox [163]

MPPD CHT
PTT PEG-NH2

Michael addition
Schiff base reactions Dox [164]

HMSN, hollow mesoporous silica nanoparticles; CHT, chemotherapy; PDT, photodynamic therapy; PTT, pho-
tothermal therapy; CS, chitosan; FA, folic acid; Dox, doxorubicin; PA, pheophorbide a; MSN, mesoporous
silica nanoparticles; PDA, polydopamine; ICG, indocyanine green; XL-MSN, extra-large pore mesoporous silica
nanoparticles; IMT, immunotherapy; GNP, gold nanoparticle; CpG-ODN, oligodeoxynucleotides containing
unmethylated cytosine phosphorothioate-guanine motifs; HA, hyaluronic acid; RT, radiotherapy; MnOx, man-
ganese oxide nanoparticles; Gardi, gardiquimod; AgNP, silver nanoparticle; CST, cancer starvation therapy; GOx,
glucose oxidase; TPZ, tirapazamine; GNR, gold nanorod; TDT, thermodynamic therapy PEG, poly ethylene glycol;
AIPH, 2,2′-azobis [2-(2-imidazolin-2-yl)propane]-dihydrochloride; INP, iron nanoparticle; MTT, magnetothermal
therapy; CDs, carbon dots; CDT, chemodynamic therapy; PL, piperlongumine; CPT, camptothecin; mesoPt, meso-
porous platinum nanoparticles; TPP, triphenylphosphonium; ALA, 5-aminolevulinic acid; COF, covalent organic
frameworks; TAPP, tetra (p-amino-phenyl) porphyrin; MPPD, mesoporous polydopamine; PFO, perfluorooctane.
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