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Abstract: Cognitive dysfunction is more frequent in end-stage renal disease (ESRD) patients under-
going hemodialysis compared with the healthy population, emphasizing the need for early detection.
Interest in serum markers that reflect cognitive function has recently increased. Elevated serum
growth differentiation factor 15 (GDF-15) levels are known to be associated with an increased risk
of decreased renal function and cognitive dysfunction. This study investigated the relationship
between GDF-15 and cognitive dysfunction in hemodialysis patients using a retrospective analysis of
92 individuals aged ≥ 18 years. Cognitive function was assessed using the Korean version of the
Mini-Mental Status Examination (K-MMSE), categorizing patients into normal (≥24 points) and cog-
nitive dysfunction (<24 points). As a result, serum GDF-15 concentrations were at significantly higher
levels in the cognitive dysfunction group (7500.42 pg/mL, p = 0.001). Logistic regression indicated an
increased risk of K-MMSE scores < 24 points when serum GDF-15 exceeded 5408.33 pg/mL. After
indoxyl sulfate exposure in HT22 cells, HT22 cells survival was decreased and GDF-15 expression
in HT22 cells was increased. Similarly, exposure to indoxyl sulfate in mouse brain tissue resulted
in an increased expression of GDF-15. This study highlights the potential of serum GDF-15 as a
marker for cognitive dysfunction in hemodialysis patients, offering a valuable screening tool. Serum
GDF-15 is related to cognitive dysfunction in hemodialysis patients and may be helpful in screening
for cognitive dysfunction in hemodialysis patients.

Keywords: hemodialysis; GDF-15; cognitive dysfunction

1. Introduction

As renal function decreases, the brain undergoes various changes. Chronic kidney
disease (CKD) increases brain atrophy, a reduction in gray matter volume, and the dis-
ease burden of white matter [1–3]. In particular, the decreased volume of gray matter in
hemodialysis patients causes changes in functional connectivity with other brain regions
and is associated with functional brain defects [4]. Furthermore, as the enlarged perivascu-
lar spaces increase, the incidence of cerebral small vessel disease also increases [5]. Cerebral
oxygenation is significantly reduced in CKD [6]. If brain oxygenation becomes unstable
during hemodialysis, these hemodynamic changes may cause brain hypoxia and cognitive
dysfunction [7].

Cognitive dysfunction is characterized by an impairment in specific cognitive domains
caused by neurologic diseases or other systemic diseases. Cognitive function is evaluated
by assessing cognitive domains, such as language, memory, attention, and executive
functions [8]. Cognitive dysfunction is more frequent in end-stage renal disease (ESRD)
patients undergoing hemodialysis compared with the healthy population [9].
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Early suspicion and diagnosis of cognitive dysfunction are crucial because cogni-
tive dysfunction is associated with a decreased quality of life as well as decreased drug
adherence, increased mortality, and increased care costs [10–13].

Interest in serum markers that reflect cognitive function has recently increased. In
previous studies, factors, such as total tau, amyloid α42, high-sensitivity C-reactive protein
(CRP), and GDF-15, have been suggested to be serum markers for cognitive dysfunc-
tion [14,15]. Among these, serum GDF-15, a member of the transforming growth factor-
cytokine superfamily, has an overall anti-inflammatory effect [16]. GDF-15 is thought to be
elevated in inflammatory responses associated with cardiovascular disease, cancer, insulin
resistance, and obesity [17]. A high serum GDF-15 level is known to be associated with a
rapid decline in renal function as well as decreased renal function [18]. In a few studies,
brain imaging revealed changes associated with brain atrophy in a group with high serum
GDF-15 levels, and the risk of cognitive dysfunction was reportedly increased [19]. In
addition, GDF-15 has been reported as a prognostic marker of mortality in hemodialysis
patients [20–22].

Although there have been several studies on the relationship between GDF15 and mor-
tality in hemodialysis patients, very few studies have evaluated serum GDF-15 as a marker
for screening cognitive dysfunction in hemodialysis patients. This study investigated the
relationship between cognitive dysfunction and serum GDF-15 levels in hemodialysis
patients. In this study, our objective was to evaluate whether exposure to uremic toxins,
observed in hemodialysis patients with an inclination towards elevated GDF-15 levels and
cognitive dysfunction, would result in comparable outcomes in terms of GDF-15 expression
in brain cells and tissues, as well as the survival of brain cells. The relationship between the
expression of GDF-15 in mice and HT22 brain cells under conditions of increased uremia
was investigated to determine whether uremic toxins were associated with an increase in
brain GDF-15 levels.

In this study, we aimed to evaluate the potential of serum GDF-15 as a screening
marker for cognitive decline in patients undergoing hemodialysis.

2. Materials and Methods
2.1. Study Population

This retrospective study analyzed data from hemodialysis patients treated at Chung-
nam National University Hospital, Daejeon, Republic of Korea, from January 2017 to June
2020. Ninety-two patients with end-stage renal disease on maintenance hemodialysis who
underwent the Korean Mini-Mental Status Examination (K-MMSE) within 1 month of
blood sample collection were included in the study population. The patients included
in this study maintained hemodialysis three times a week, with each session lasting four
hours. Patients diagnosed with dementia and taking medication were excluded. Patients
diagnosed with depression or those taking medication for depression were excluded. This
study conformed to the Declaration of Helsinki and was approved by the Ethics Committee
of Chungnam National University Hospital (19 February 2021; Institutional Review Board
approval no. CNUSH 2021-02-007).

2.2. Cognitive Function Assessment

The K-MMSE was used as a tool to evaluate cognitive dysfunction. The K-MMSE
comprises seven components, encompassing spatial orientation, memory registration,
memory recall, temporal orientation, language function, comprehension and judgment,
and attention and calculation, and has a maximum possible score of 30 [23]. A score of
20–23 points is considered suspected dementia, and a score of ≤19 points is considered
determined dementia. The cutoff point for cognitive dysfunction is a score of 23 [24]. In
this study, the K-MMSE results for patients aged > 60 years were corrected according to
their educational background. Thus, for uneducated patients, one point was added for
temporal orientation, two for attention and calculation, and one for language function.
However, the corrections were made so that each question did not exceed the maximum
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score. Furthermore, cognitive function in this study was classified as normal if the K-
MMSE score was ≥24 or as cognitive dysfunction if the score was <24. For comparing the
characteristics of the patient group based on cognitive function, the hemodialysis patients
were divided into a normal cognitive function group (group A) and a cognitive dysfunction
group (group B) based on the K-MMSE score.

2.3. Clinical Parameters

Patients’ clinical data were obtained from electronic medical records. Data collected
included age, sex, body mass index, medical history, date of hemodialysis initiation, the
period from hemodialysis initiation to the date of the K-MMSE, and education level.
Medical history included hypertension, diabetes mellitus (DM), cerebral infarction, ischemic
heart disease, and the causative disease of end-stage renal disease (ESRD). Blood sampling
was performed immediately before hemodialysis. Laboratory data for serum GDF-15,
serum creatinine, albumin, blood urea nitrogen (BUN), total protein, total cholesterol, total
calcium, serum phosphorus, sodium, potassium, total CO2, and CRP were collected.

2.4. Measurement of Serum GDF-15 in Humans

The biospecimens and data used for further analysis on GDF-15 were provided by
the Biobank of Chungnam National University Hospital, a member of the Korea Biobank
Network. Blood samples for the measurement of serum GDF-15 were collected before
dialysis on the day of hemodialysis. The samples were centrifuged immediately after
collection and stored at −80 ◦C prior to use. Serum GDF-15 concentrations were determined
in duplicate using a quantitative enzyme-linked immunosorbent assay kit (Human GDF-15
Quantikine ELISA Kit, R&D Systems, Minneapolis, MN, USA). All samples were analyzed
in duplicate and measured according to the manufacturer’s instructions. In this study, the
serum GDF-15 level was used as the average of the two replicates.

2.5. Mice and Drugs

To confirm that similar results were obtained in the in vitro and in vivo experiments
regarding the analysis of GDF-15 measurement and cognitive decline in hemodialysis
patients, experiments were also conducted in mice.

All animal experiments were performed using 10-week-old male C57BL/6 mice weigh-
ing 22–25 g each (Damul Science, Daejeon, Republic of Korea). The mice were bred under
managed conditions at a controlled temperature of 22–23 ◦C under 50–55% humidity with
a 12/12 h light/dark cycle. Animal care and all experiments were performed according
to the institutional guidelines of the Korean Research Institute of Biotechnology and Bio-
science, and the mice were cared for according to the protocol approved by the Chungnam
National University Institutional Animal Care and Use Committee (202012A-CU-161). The
mice were divided into two groups: sham (n = 5) and ischemia–reperfusion injury (IRI)
(n = 6). All surgeries were performed under anesthesia with ketamine (60 mg/kg) and
xylazine (8 mg/kg), and all efforts were made to minimize suffering. IRI was performed
as previously described [25]. Briefly, following an abdominal incision, both renal pedicles
were bluntly clamped for 35 min to induce ischemia. The mouse’s body temperature was
maintained at 31–33 ◦C during the procedure. The sham-treated control mice underwent a
similar surgical procedure without clamping. At 72 h after the IRI or sham operation, mice
brains were collected under anesthesia. The mice died due to bleeding from the excision
site while under anesthesia.

2.6. Blood and Tissue Preparation

Blood samples were collected from the inferior vena cava at sacrifice under anesthesia
and placed into prechilled Eppendorf tubes (4 ◦C). The serum was separated by centrifuga-
tion for 20 min at 4 ◦C. Then, serum aliquots were shock-frozen using liquid nitrogen and
stored at −70 ◦C. The brain tissue samples were prepared as previously described [26]. The



Biomedicines 2024, 12, 358 4 of 16

brain was perfused transcardially with 4% PFA in PBS, and the brain tissues were collected
for Western blot analysis.

2.7. Immunoblots

The brain tissue from the sham and IRI mice was dissected and homogenized in lysis
buffer. Then, the brain tissue lysates (15 µg) were separated by 10% or 15% sodium dodecyl
sulfate–polyacrylamide gel electrophoresis and transferred to nitrocellulose membranes.
The primary antibodies (1:1000) used to probe the blots were anti-GDF-15 (Abcam, Cam-
bridge, CB2 OAX, UK) and anti-α-tubulin (Cell Signaling Technology, Inc., Beverly, MA,
USA). The blots were then incubated for 2 h with anti-rabbit IgG-HRP-linked antibody
(1:1000) and anti-mouse IgG-HRP-linked antibody (1:1000) (Cell Signaling Technology, Inc.)
as secondary antibodies. The protein bands were visualized using a chemiluminescence
detection kit (Thermo Scientific, South Logan, UT, USA). The optical density of the proteins
was determined using Gel-Pro Analyzer v3.1 software (Media Cybernetics, Silver Spring,
MD, USA) to quantify the protein amount.

2.8. Cell Viability Assay

Brain cell injury was confirmed on the treatment of uremic toxin. Mouse hippocampal
neuronal cell line HT22 was incubated with Dulbecco’s modified Eagle’s medium (DMEM;
WELGENE, Gyeongsan-si, Republic of Korea) containing 10% fetal bovine serum (FBS; Gen-
DEPOT, Katy, TX, USA) and 100 U/mL of penicillin–streptomycin (Gibco, Waltham, MA,
USA) at 37 ◦C under 5% CO2. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide; Sigma-Aldrich, St. Louis, MO, USA) assay was used to measure cell viability via
mitochondrial reductase. Briefly, HT22 cells were seeded into a 96-well plate at a density of
5 × 103 cells/well in DMEM containing 10% FBS and incubated for 24 h. Then, the culture
medium was treated with indoxyl sulfate (a representative uremic toxin) at concentrations
of 1, 5, and 10 mM, respectively, for 24 h. Next, MTT solution was added to each well to a
final concentration of 0.5 mg/mL and incubated for 2 h at 37 ◦C. After removing the culture
medium containing MTT, dimethyl sulfoxide was added, and the plate was incubated
to dissolve the reduced formazan crystals at 37 ◦C for 1 h. Finally, the absorbance was
measured at 540 nm.

2.9. Statistical Analysis

All statistical analyses were performed using SPSS version 26.0 (IBM Corp., Armonk,
NY, USA). The t-test was used to compare continuous variables with a normal distribution,
and the results were expressed as the mean and standard deviation. Categorical variables
were compared using the chi-squared test. The correlation between K-MMSE scores
and other parameters was analyzed using the Pearson correlation coefficient, and the
association between serum GDF-15 and K-MMSE scores was examined with univariate and
multivariate linear regression analyses. We used hierarchical regression analysis to assess
the extent to which GDF-15 provides additional predictive value or validity in relation to
age. Furthermore, the odds ratios and 95% confidence interval (CI) for the risk of acquiring
an MMSE score of <24 were estimated with logistic regression analysis. A receiver operating
characteristic (ROC) curve of the GDF-15 results was plotted to determine its sensitivity and
specificity in predicting cognitive dysfunction. Using the ROC curve, a cutoff value of GDF-
15 that is indicative of cognitive dysfunction (K-MMSE score < 24) was derived. Using the
Youden index, the cutoff value for GDF-15 was set to 5408.33 pg/mL. Based on this cutoff
value, a low serum GDF-15 level group (group C) and a high serum GDF-15 level group
(group D) were made, and their characteristics were analyzed [27]. Data obtained from
cells and mice tissues were analyzed using the Kruskal–Wallis non-parametric ANOVA
test with Dunn’s test for multiple comparisons. The null hypothesis (no difference) was
rejected if the p-value was <0.05.
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3. Results
3.1. Baseline Characteristics

The initial study included 95 patients. However, 3 patients had dementia and were
excluded, so 92 patients were included in the final analysisBased on the K-MMSE score
classification used in this study, group A (K-MMSE score ≥ 24) comprised 59 patients,
and group B (K-MMSE score < 24) comprised 33 patients. The mean K-MMSE score
was 26.41 ± 4.469 points in group A and 19.36 ± 3.560 points in group B, and the older
age of group A was statistically significant. DM was the predominant cause of ESRD
in both groups, but the rates of hypertension and glomerulonephritis differed. DM was
the underlying disease in 66.1% and 60.6% and hypertension was the underlying disease
in 74.6% and 87.9% of patients in groups A and B, respectively. Regarding educational
background, 83% of patients in group A had received >7 years of education, whereas 48.5%
of patients in group B had a low level of education (Table 1).

The mean serum GDF-15 level in the two groups was 4808.22 vs. 7500.42 pg/mL,
which was statistically significant (p = 0.001). On comparing group A with group B, the
mean hemoglobin, BUN, serum creatinine, and potassium levels in group A were found
to be higher than in group B, but these differences were not statistically significant. On
the other hand, the levels of total cholesterol and CRP in group B were not statistically
significant compared with group A (Table 1).

Table 1. Baseline patient characteristics according to the K-MMSE score (group A, score ≥ 24; group
B, score < 24) (N = 92).

Group A (n = 59) Group B (n = 33) p-Value

K-MMSE score 26.41 ± 4.469 19.36 ± 3.560 <0.01 *

Age (years)
(Mean ± SD) 64.03 ± 11.675 72.76 ± 8.700 <0.01 *

Gender (n, %) 0.16 †
Male 38 (64.4%) 19 (57.6%)
Female 21 (35.6%) 14 (42.4%)

ESRD causes (n, %)
DM 39 (66.1%) 20 (60.6%) 0.31 †
Hypertension 6 (10.2%) 7 (21.2%)
Chronic GN 9 (15.3%) 4 (12.1%)
PCKD 0 (0%) 1 (3.0%)
Others 5 (8.5%) 1 (3.0%)

Medical history (n, %)
DM 40 (67.8%) 23 (69.7%) 0.85 †
Hypertension 44 (74.6%) 29 (87.9%) 0.13 †
IHD 12 (20.3%) 7 (21.2%) 0.92 †
CI 7 (11.9%) 5 (15.2%) 0.65 †

HD vintage (days)
(Mean ± SD) 618.69 ± 1158.8 305.12 ± 380.7 0.14 *

Education duration (years) <0.01 †
0 1 (1.7%) 6 (18.2%)
1–6 9 (15.3%) 11 (33.3%)
7–9 11 (18.6%) 5 (15.2%)
10–12 26 (44.1%) 8 (24.2%)
>12 12 (20.3%) 3 (9.1%)

BMI (kg/m2)
(Mean ± SD)

24.098 ± 3.730 22.930 ± 3.877 0.17 *
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Table 1. Cont.

Group A (n = 59) Group B (n = 33) p-Value

Laboratory test (Mean ± SD)
GDF-15 (pg/mL) 4808.22 ± 1585.21 7500.42 ± 5080.78 <0.01 *
Hemoglobin (g/dL) 12.21 ± 21.49 9.43 ± 1.24 0.33 *
Total protein 6.14 ± 0.85 5.98 ± 0.72 0.34 *
Albumin 3.21 ± 0.54 3.00 ± 0.55 0.08 *
Total cholesterol 138.09 ± 47.92 148.08 ± 69.66 0.52 *
BUN 62.43 ± 36.08 58.42 ± 32.41 0.59 *
Serum creatinine 7.41 ± 3.75 6.62 ± 2.89 0.26 *
Total calcium 8.00 ± 0.99 7.93 ± 0.76 0.68 *
Phosphorus 4.55 ± 1.73 4.05 ± 1.45 0.14 *
Sodium 136.49 ± 4.27 135.99 ± 4.57 0.61 *
Potassium 4.68 ± 0.86 4.28 ± 1.06 0.07 *
Total CO2 20.88 ± 4.82 21.47 ± 3.20 0.50 *
CRP 2.81 ± 4.52 4.91 ± 5.76 0.06 *
B2-MG 21.54 ± 12.14 21.10 ± 11.27 0.87 *
Homocysteine 17.83 ± 10.01 17.14 ± 7.78 0.70 *

SD, standard deviation; K-MMSE, Korean Mini-Mental Status Examination; ESRD, end-stage renal disease; DM,
diabetes mellitus; GN, glomerulonephritis; PCKD, polycystic kidney disease; IHD, ischemic heart disease; CI,
cerebral infarction; HD, hemodialysis; BMI, body mass index; GDF 15, growth and differentiation factor 15; BUN,
blood urea nitrogen; CRP, C-reactive protein; B2-MG, beta-2 microglobulin. * Student’s t-test. † Chi-square test.

3.2. The Serum GDF-15 Level Was Correlated with the K-MMSE Score

Serum GDF-15 (r = −0.337, p = 0.001), age (r = −0.435, p = 0.000), and CRP (r = −0.257,
p = 0.014) were negatively correlated with the K-MMSE score and serum albumin
(r = 0.259, p = 0.013). Serum creatinine (r = 0.258, p = 0.013), potassium (r = 0.257, p = 0.013),
and phosphorus (r = 0.348, p = 0.001) were positively correlated with the K-MMSE score
(Table 2). A scatterplot also revealed a correlation between the K-MMSE score and GDF-15;
the coefficient of determination was 0.114 (Figure 1 and Table 2).

The association between GDF-15 and the K-MMSE score was confirmed. A multi-
variate linear regression analysis was performed, where the variables included GDF-15,
age, serum albumin, serum creatinine, potassium, phosphorus, and CRP levels. GDF-15
was confirmed as a significant independent factor with a negative correlation (p = 0.007).
Similarly, age also showed a significant negative correlation (p = 0.001) (Table 3).

Table 2. Correlation between the K-MMSE score and clinical parameters.

r p-Value

GDF-15 −0.337 <0.01
Age −0.435 <0.01
BMI 0.149 0.16
Total protein 0.185 0.08
Albumin 0.259 0.01
Total cholesterol 0.030 0.80
BUN 0.191 0.07
Serum creatinine 0.258 0.01
Total calcium 0.042 0.69
Phosphorus 0.348 <0.01
Sodium 0.093 0.38
Potassium 0.257 0.01

Total CO2 −0.122 0.26
C-reactive protein −0.257 0.01
B2-MG −0.077 0.47
Homocysteine 0.121 0.26

BMI, body mass index; GDF-15, growth and differentiation factor 15; BUN, blood urea nitrogen; B2-MG, beta-2
macroglobulin.
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The extent to which GDF-15 provides additional predictive value or validity in relation
to age was assessed using hierarchical regression analysis (Table 4). In Model 1, the variables
included serum creatinine, albumin, potassium, and phosphorus. Age was introduced in
Model 2, resulting in an R2 change of 0.108. Subsequently, in Model 3, GDF-15 was added
as a variable, leading to a substantial increase in the R2 change to 0.61. These results suggest
that the inclusion of GDF-15 in Model 3 likely enhanced incremental validity, indicating an
improved predictive capacity in relation to the studied variables.
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Table 3. Association between GDF15 and the K-MMSE score (multivariate linear regression).

Variables B S.E β t p-Value

(Constant) 32.166 6.216 5.175 0.000
GDF-15 0.000 0.000 −0.255 −2.780 0.007
Age −0.178 0.050 −0.381 −3.536 0.001
Albumin 0.943 1.019 0.097 0.925 0.357
Cr −0.102 0.237 −0.066 −0.431 0.668
Potassium 0.856 0.575 0.152 10.489 0.140
Phosphorus 0.100 0.418 0.031 0.240 0.811
CRP −0.111 0.112 −0.105 −0.989 0.325

GDF-15, growth and differentiation factor-15; Cr, serum creatinine; CRP, C-reactive protein.

Table 4. Incremental contributions of the K-MMSE score (hierarchical regression).

Model 1 Model 2 Model 3

B SE β B SE β B SE β

(Constant) 15.93 4.24 29.74 5.55 31.75 5.39
Albumin 0.80 1.12 0.08 1.05 1.05 0.11 0.94 1.01 0.10
Cr 0.13 0.20 0.08 −0.07 0.19 −0.04 −0.08 0.19 −0.05
Phosphorus 0.64 0.43 0.20 0.17 0.42 0.05 0.11 0.41 0.03
Potassium 0.50 0.62 0.09 0.79 0.59 0.14 0.86 0.57 0.15
CRP −0.15 0.12 −0.15 −0.15 0.11 −0.14 −0.11 0.11 −0.10
Age −0.19 0.05 −0.40 −0.18 0.05 −0.38
GDF-15 0.00 0.00 −0.25
R2 0.17 0.28 0.34
R2 change 0.172 * 0.108 ** 0.61 **

GDF-15, growth and differentiation factor-15; Cr, serum creatinine; CRP, C-reactive protein. * p < 0.05, ** p < 0.01.
Model 1: adjusted for serum creatinine, albumin, potassium, and phosphorus. Model 2: adjusted for Model 1 +
age. Model 3: adjusted for Model 2 + GDF-15.

3.3. Elevated Serum GDF-15 Indicates Decreased Cognitive Function

An ROC curve was plotted to determine the area under the ROC curve (AUC) of the
GDF-15 level and to identify an optimal cutoff value that predicated cognitive dysfunction.
The GDF-15 AUC was 0.701 ± 0.058 (95% CI, 0.588–0.0.813; p = 0.01). A serum GDF-15
level > 5408.332 pg/mL exhibited 63.6% sensitivity and 64.4% specificity when distinguish-
ing between normal and mild to severe cognitive impairment (Figure 2), and this was set
as the cutoff value.

The patients were classified into either group A (serum GDF-15 ≤ 5408.332 pg/mL) or
group B (serum GDF-15 > 5408.332 pg/mL) based on the determined GDF-15 cutoff value.
Each variable was adjusted to the hazard ratio (HR) at GDF-15 > 5408.332 pg/mL to screen
for cognitive dysfunction. Using logistic regression, the HR was derived by sequentially
applying the variables that showed correlation across the three models. In particular, serum
creatinine, serum albumin, potassium, and phosphorus applied in Model 1 showed the
highest HR (HR: 3.596, p = 0.008). When adjusted for age, the HR was 3.089, which was
also statistically significant (p = 0.034) (Table 5).

The characteristics of groups C and D were compared. The mean K-MMSE score was
22.21 ± 6.261 in group D, which was significantly lower than that of group A (25.28 ± 4.02)
(p = 0.006). Regarding age, although group D was older than group C, this was not
statistically significant. The proportion of patients with DM and hypertension was higher
in group D, but it was not statistically supported. No significant difference was observed
between the two groups except for the GDF-15 levels and K-MMSE scores (Table 6).
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Figure 2. ROC curve linking the GDF-15 level to a K-MMSE score < 24. A serum GDF-15
level > 5408.33 pg/mL exhibited 63.6% sensitivity and 64.4% specificity when distinguishing between
normal and mild to severe cognitive dysfunction.

Table 5. Assessment results of the risk of having a K-MMSE score of <24 in a logistic regression
model (group A, score ≥ 24 and group B, score < 24).

Group A Group B p-Value

Crude Ref. 3.167
(1.153–6.485) 0.011

Model 1 Ref. 3.596
(1.280–7.066) 0.008

Model 2 Ref. 3.492
(1.251–6.665) 0.010

Model 3 Ref. 3.089
(1.128–4.471) 0.034

Crude: GDF-15 > 5408.33 pg/mL. Model 1: adjusted for GDF15 + serum creatinine, albumin, potassium, and
phosphorus. Model 2: adjusted for Model 1 + C-reactive protein. Model 3: adjusted for Model 2 + age.

Table 6. Comparison of GDF-15 level between groups 3 and 4 (group C, ≤5408.33 pg/mL and group
D, >5408.33 pg/mL).

Group C (n = 50) Group D (n = 42) p-Value

K-MMSE score 25.28 ± 4.021 22.21 ± 6.261 0.006 *

Age (mean ± SD)
(years) 65.36 ± 12.059 69.31 ± 10.426 0.096 *

Sex (n, %) 0.660 †
Male (n, %) 32 (64.0%) 25 (59.5%)
Female (n, %) 18 (36.0%) 17 (40.5%)
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Table 6. Cont.

Group C (n = 50) Group D (n = 42) p-Value

ESRD causes (n, %) 0.101 †
DM 30 (60%) 29 (69%)
Hypertension 5 (10%) 8 (19%)
GN 8 (16%) 5 (11.9%)
PCKD 1 (2%) 0 (0%)
Others 6 (12%) 0 (0%)

Medical history (n, %)
DM 30 (60%) 33 (78.6%) 0.056 †
Hypertension 36 (72%) 37 (88.1%) 0.057 †
IHD 9 (18%) 10 (23.8%) 0.493 †
CI 5 (10%) 7 (16.7%) 0.344 †

HD vintage (days)
(mean ± SD) 508.08 ± 1124.32 501.195 ± 729.92 0.972 *

Education duration (years) 0.363 *
0 5 (10.0%) 2 (4.8%)
1–6 7 (14.0%) 13 (31.0%)
7–9 9 (18.0%) 7 (16.7%)
10–12 20 (40.0%) 14 (33.35)
>12 9 (18.0%) 6 (14.3%)

BMI (kg/m2)
(mean ± SD)

23.28 ± 3.80 24.16 ± 3.80 0.274 *

Laboratory test (mean ± SD)
GDF-15 (pg/mL) 3988.53 ± 969.81 7899.34 ± 4219.57 0.000 *
Hemoglobin (g/dL) 65.36 ± 12.059 69.31± 10.426 0.096 *
Total protein 12.868 ± 23.301 9.248 ± 1.514 0.278 *
Albumin 6.056 ± 0.7478 6.107 ± 0.876 0.766 *
Total cholesterol 3.152 ± 0.559 3.119 ± 0.551 0.777 *
BUN 147.33 ± 60.784 134.84 ± 51.182 0.354 *
Serum creatinine 61.972 ± 37.557 59.819 ±31.329 0.765 *
Total calcium 9.688 ± 4.923 8.552 ± 3.594 0.205 *
Phosphorus 7.913 ± 0.992 8.052 ± 0.810 0.461 *
Sodium 4.446 ± 1.7385 4.274 ± 1.541 0.616 *
Potassium 136.622 ± 4.205 135.938 ± 4.564 0.461 *
Total CO2 4.4780 ± 0.823 4.6081 ± 1.093 0.527 *
C-reactive protein 21.067 ± 4.657 21.133 ± 3.835 0.942 *
B2-MG 3.033 ± 4.537 4.198 ± 5.635 0.286 *
Homocysteine 22.579 ± 13.283 20.005 ± 9.728 0.293 *

SD, standard deviation; K-MMSE, Korean Mini-Mental Status Examination; ESRD, end-stage renal disease; DM,
diabetes mellitus; GN, glomerulonephritis; PCKD, polycystic kidney disease; IHD, ischemic heart disease; CI,
cerebral infarction; HD, hemodialysis; BMI, body mass index; GDF-15, growth and differentiation factor 15; BUN,
blood urea nitrogen; B2-MG, beta-2 microglobulin. * Student’s t-test. † Chi-square test.

3.4. Brain Experiments of GDF-15 and Uremic Mice

Both BUN and serum creatinine were significantly elevated in mice with renal ischemia–
reperfusion-induced azotemia compared with the sham mice (p < 0.05) (Figure 3). The
expression of GDF-15 in the brain of azotemia-induced mice was significantly increased
compared with the sham mice (Figure 4).
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3.5. GDF-15 Expression in the Brain Tissue and Cells of Uremic Mice

When HT22 cells were treated with indoxyl sulfate, the survival rate decreased in a
concentration-dependent manner (Figure 5). Moreover, indoxyl sulfate treatment increased
the expression of GDF-15 in a concentration-dependent manner (Figure 6).
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4. Discussion

This study confirmed the association between high levels of serum GDF-15 and cogni-
tive dysfunction in ESRD on maintenance hemodialysis. Additionally, GDF-15 expression
was revealed as increased in the brain tissue of uremic mice compared with normal mice.

Cognitive dysfunction is common in patients with CKD undergoing dialysis, and
cognitive dysfunction has been reported in up to 38% of hemodialysis patients [10,28,29].
Additionally, cognitive dysfunction in patients with decreased renal function affects not
only quality of life but also mortality [30]. Cognitive dysfunction in CKD is thought to be
caused by vascular cognitive impairment, such as stroke and transient ischemic attack, and
neurodegenerative processes, such as chronic hypertension, chronic cerebral inflammation,
uremic toxins, and high α-amyloid levels. Malnutrition–inflammation–atherosclerosis
syndrome and inflammation persisted in CKD patients undergoing dialysis, which may
affect systemic blood vessels and organs [31–33].

The two most frequently used screening tests to evaluate cognitive function are the
MMSE and the Montreal Cognitive Assessment [34,35]. In addition to using test scores,
there have been several attempts to assess cognitive function using biochemical markers.
The quantification of several serum markers related to cognitive function, such as total tau,
amyloid α42, and high-sensitivity CRP, have been reported [14,36].

GDF-15 was reported to be associated with cognitive impairment and dementia in
general populations [15,37]. In patients with CKD who are not undergoing dialysis, eGFR
shows a tendency to decrease as GDF-15 levels increase [18,38]. Additionally, higher
levels of serum GDF-15 have been reported to be associated with a rapid decline in renal
function [39]. However, information regarding the relationship between cognitive function
and GDF-15 in ESRD is lacking. Although GDF-15 levels are elevated in hemodialysis
patients compared with patients with normal renal function, it is unclear whether the
serum level of GDF-15 can be used as an indicator of cognitive dysfunction in hemodialysis
patients [21].

In this study, using univariate and multivariate analyses, a statistically significant
association was confirmed between high serum GDF-15 levels and a decline in cognitive
function in hemodialysis patients. Furthermore, logistic regression analysis showed that
the risk of cognitive dysfunction significantly increased by 2.912 times when the GDF-15
level was ≥5408.33 pg/mL in hemodialysis patients.

This study showed that age was independently correlated with the K-MMSE score.
Multivariate linear regression results showed a negative correlation between age and the
K-MMSE score. The tendency of the MMSE score to decrease with increasing age has been
reported in the general population [40,41]. In this study, it was also surmised that age is
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an important factor in the MMSE results of hemodialysis patients. Although some studies
have reported that GDF-15 increases with increased age in the healthy population, there
was no significant relationship between GDF-15 and age in this study. These findings are
presumed to result from decreased renal function, in addition to age-related changes, in
hemodialysis patients [42,43]. In this study, the univariate analysis results showed that the
K-MMSE score was associated with creatinine, albumin, phosphorus, potassium, and CRP.
Creatinine is frequently used as an indicator of muscle mass in dialysis patients, and there
is a possibility of sarcopenia in patients with low creatinine levels. The association between
sarcopenia and cognitive dysfunction has been demonstrated in several studies [44–46].

Previous studies have reported on the relationship between malnutrition and cognitive
dysfunction [47]. Malnourished patients are at increased risk of poor performance, and it
is presumed that immobility is related to cognitive dysfunction. Additionally, hypophos-
phatemia has been reported as a potential marker of β-amyloid deposition associated with
Alzheimer’s disease [48]. In this study, K-MMSE scores tended to decrease in patients with
hypokalemia, hypophosphatemia, and hypoalbuminemia, which are commonly associated
with malnutrition, showing a similar result to that obtained in the previous study.

In this study, we were unable to identify antecedent factors that could be considered
in the relationship between aging and the elevation of GDF-15. Furthermore, the specific
mechanism through which GDF-15 may induce cognitive dysfunction could not be defini-
tively confirmed. Consequently, a clear conclusion regarding whether GDF-15 triggers
cognitive dysfunction or increases in association with cognitive dysfunction could not be
drawn. While GDF-15 may rise in situations such as aging and conditions similar to chronic
kidney disease (CKD), the increase in GDF-15 concentrations when brain cells and tissues
are exposed to uremic toxins (such as indoxyl sulfate) suggests that elevated levels of GDF-
15 may indicate brain damage in the context of cognitive decline. Especially in patients
undergoing hemodialysis, considering GDF-15 elevation beyond a certain threshold as a
potential marker for screening or suspicion of cognitive dysfunction appears plausible.

There are several limitations in this study. First, this study was a retrospective study
and had a small sample size, which limited the analysis of GDF-15 trends by age. When the
cutoff value of serum GDF-15 was set at 5408.33 pg/mL in the ROC curve, it showed 63.6%
sensitivity and 64.4% specificity in predicting cognitive dysfunction. The applicability of
these findings to a broader population is limited because the sample size was too small
to set an accurate cutoff value that could be used as a marker of cognitive function. It is
expected that the prediction rate can be further improved if a relatively larger amount of
data is analyzed in future studies. Second, the results were analyzed based on patients
from a single country, and consideration for other races was not taken into account. It
seems necessary to consider multiple races in future studies. Third, as this study was
retrospective, various tools could not be used to evaluate cognitive function, and only
the K-MMSE was utilized. In future research, it is believed that richer results will be
obtained by using multiple cognitive function assessment tools in retrospective studies.
Fourth, among the patients included in this study, there were no individuals diagnosed
with depression related to cognitive impairment. However, as undiagnosed depression
was not assessed, it is considered crucial for future studies to evaluate not only cognitive
function but also depression.

5. Conclusions

A few studies have evaluated serum GDF-15 as a marker for screening cognitive
dysfunction in hemodialysis patients. In this study, GDF-15 levels were observed to be
elevated in the group of hemodialysis patients with cognitive decline. These findings were
further confirmed in mice experiments, where similar results were demonstrated. Several
cognitive function evaluation tests, including the Mini-Mental Status Examination (MMSE),
should be performed by trained medical personnel as it is costly and time-consuming. In
contrast, the measurement of serum GDF-15 is relatively easy. In the future, it is considered
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that elevated serum GDF-15 levels may be helpful as a potential marker for screening
cognitive function in hemodialysis patients.
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