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Abstract: The limited reproducibility of the grading of non-muscle invasive papillary urothelial
carcinoma (NMIPUC) necessitates the search for more robust image-based predictive factors. In a
cohort of 157 NMIPUC patients treated with Bacille Calmette–Guérin (BCG) immunotherapy, we
explored the multiple instance learning (MIL)-based classification approach for the prediction of
2-year and 5-year relapse-free survival and the multiple instance survival learning (MISL) framework
for survival regression. We used features extracted from image patches sampled from whole slide
images of hematoxylin–eosin-stained transurethral resection (TUR) NPMIPUC specimens and tested
several patch sampling and feature extraction network variations to optimize the model performance.
We selected the model showing the best patient survival stratification for further testing in the context
of clinical and pathological variables. MISL with the multiresolution patch sampling technique
achieved the best patient risk stratification (concordance index = 0.574, p = 0.010), followed by a
2-year MIL classification. The best-selected model revealed an independent prognostic value in the
context of other clinical and pathologic variables (tumor stage, grade, and presence of tumor on
the repeated TUR) with statistically significant patient risk stratification. Our findings suggest that
MISL-based predictions can improve NMIPUC patient risk stratification, while validation studies are
needed to test the generalizability of our models.

Keywords: digital image analysis; bladder cancer; deep learning; cancer prognosis; survival prediction;
feature extraction

1. Introduction

Non-muscle invasive papillary urothelial carcinoma (NMIPUC) is the most common
type of urinary bladder cancer, with variable clinical courses ranging from very indolent
tumors with low risks of relapse after transurethral resection (TUR) to highly aggressive
tumors with very high risks of early relapse and progression to muscle-invasive bladder
cancer [1]. Based on clinical and pathological data, NMIPUC patients are stratified into
risk groups, where patients with a higher risk of relapse are treated with Bacille Calmette–
Guérin (BCG) immunotherapy to reduce the risk of cancer relapse. However, even after
immunotherapy, over 30% of patients suffer disease relapse and, in some cases, progres-
sion [2]; meanwhile, a delayed cystectomy leads to worse cancer-specific survival [3]. Better
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risk stratification is needed to select patients for more aggressive treatment strategies,
which might prevent very high-risk patients from developing metastatic disease and thus
reduce cancer-related mortality.

Tumor grading is among the most critical factors for NMIPUC patient risk strati-
fication [4–6]. However, the limited reproducibility of NMIPUC grading [7] requires a
search for more robust methods of tumor histology assessment. Advances in digital whole
slide image (WSI) and deep-learning (DL) techniques open new possibilities to extract
computational biomarkers based on tumor histology [7].

Recently, several studies showed promising results employing deep-learning-based
automatic tumor grading [8–10]. Jansen et al. developed a fully automated tumor detection
and grading network [8]. Subsequently, Wetteland et al. developed an automatic diagnostic
tool predicting tumor grade with an average F1 score of 0.91 for high- and low-grade
tumors [9]. Zhang et al. developed a deep-learning-based system that not only outperforms
pathologists but also produces descriptions of histological findings in the NMIPUC tumor
tissue [10]. However, this approach depends on histological features defined by patholo-
gists. Therefore, it only reproduces current medical knowledge. To evade this limitation,
Lucas et al. performed a study predicting 1-year and 5-year relapses of NMIPUC using
features extracted by a pre-trained VGG16 neural network, reaching 0.61 and 0.67 accuracy,
respectively, thus demonstrating that the prediction of NMIPUC patient outcomes directly
from hematoxylin and eosin (H&E) is possible.

Intratumoral heterogeneity poses a problem in the assessment of tumors in the WSI
of full-face histology sections. Previous studies have shown the importance of identifying
focal areas of higher grade for the assessment of NMIPUC risk with tumors having both
high- and low-grade areas showing clinical behavior intermediate between the high-grade
and low-grade tumors [11–14]. The attention-guided multiple instance learning (MIL)
framework addressed this problem by adding an attention layer, helping us to focus on the
most important image areas while also addressing the variability in the number of image
patches [15]. Furthermore, the deep attention-guided multiple instance survival learning
approach in lung and colorectal tumors developed by Yao et al. uses complete survival
data (survival time and censoring data), thus better representing patients’ outcomes in
comparison to the assessment of relapse-free survival (RFS) in a specific timeframe (e.g.,
one year) [16].

Here, we present a study on the prediction of NMIPUC relapse using an attention-
guided deep MIL framework in a cohort of 157 patients treated with BCG immunotherapy.
This rather uniformly treated patient cohort limits the spectrum of the tumors to intermedi-
ate and high risk, thus focusing the research question on the clinical setting where more
aggressive patient treatment is in consideration.

2. Materials and Methods
2.1. Patient Cohorts

We retrospectively collected clinical and pathological data of all 230 bladder cancer
patients who received BCG immunotherapy at VUH SK between 2009 and 2020. For
predictive modeling, 166 patients were selected according to the following inclusion criteria:
diagnosed with papillary urothelial carcinoma at pTa or pT1 stage; completion of full
(6-week) BCG induction therapy; availability of tumor resection material collected prior to
the BCG induction (within one year before induction); and complete clinical, pathological,
and follow-up data (time to tumor relapse or last follow-up if the patient did not experience
relapse) available. Survival data were censored at 5 years of follow-up to exclude cases
with more likely development of new primary tumor rather than true relapse of primary
tumor. Data also included findings of repeated TUR (reTUR), which was performed in
121 patients.

To train the feature extraction network, we recruited an independent training cohort
of 981 NMIPUC patients from the same period who were not part of the study cohort.
Pathology diagnosis of NMIPUC was the only selection criterion; no clinical or additional
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pathology data were collected. This strategy for training on a sizable, independent cohort
was selected to develop a feature extraction network that yields more generalizable features
(Figure 1).

Biomedicines 2024, 12, x FOR PEER REVIEW 3 of 15 
 

To train the feature extraction network, we recruited an independent training cohort 
of 981 NMIPUC patients from the same period who were not part of the study cohort. 
Pathology diagnosis of NMIPUC was the only selection criterion; no clinical or additional 
pathology data were collected. This strategy for training on a sizable, independent cohort 
was selected to develop a feature extraction network that yields more generalizable fea-
tures (Figure 1). 

 
Figure 1. Study design chart. Upper panel: feature extraction network training on 981 patients H&E 
WSIs. Lower panel: prognostic modeling on image data (blue arrows) and clinical, pathological data 
together with best-selected image-based model (red arrows). 

H&E-stained tumor tissue slides from patients in both cohorts were reviewed by the 
pathologist (JD). The most representative single tissue slide per patient was selected for 
further analyses. All slides were digitized at 20× magnification (0.5 µm per pixel) using an 
Aperio® AT2 DX scanner (Leica Aperio Technologies, Vista, CA, USA). 

2.2. Tissue Area Classification and Artifact Exclusion 
To classify tumor tissue into ‘stroma’, ‘epithelium’, and ‘artifacts’ compartments (Fig-

ure 2 A), we trained the HALO® AI (Indica Labs, Albuquerque, NM, USA) Densenet v2 
classifier using manual annotations provided by the pathologist (JD) in BCG-treated 

Figure 1. Study design chart. Upper panel: feature extraction network training on 981 patients H&E
WSIs. Lower panel: prognostic modeling on image data (blue arrows) and clinical, pathological data
together with best-selected image-based model (red arrows).

H&E-stained tumor tissue slides from patients in both cohorts were reviewed by the
pathologist (JD). The most representative single tissue slide per patient was selected for
further analyses. All slides were digitized at 20× magnification (0.5 µm per pixel) using an
Aperio® AT2 DX scanner (Leica Aperio Technologies, Vista, CA, USA).

2.2. Tissue Area Classification and Artifact Exclusion

To classify tumor tissue into ‘stroma’, ‘epithelium’, and ‘artifacts’ compartments
(Figure 2), we trained the HALO® AI (Indica Labs, Albuquerque, NM, USA) Densenet v2
classifier using manual annotations provided by the pathologist (JD) in BCG-treated patient
cohort. The annotations were created using a built-in HALO® AI annotation tool via the
user-friendly graphical user interface. The image data within the annotated regions are
automatically incorporated into the model training pipeline through HALO® AI’s native
methods, eliminating the need for manual data management. The ‘artifacts’ class was
incorporated to exclude areas of coagulation, necrosis, hemorrhage, or calcifications that
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could potentially interfere with further analyses. The quality of tissue classification masks
produced by HALO® AI was visually assessed by a pathologist (JD). Following initial
tissue classification and artifact exclusion, due to the very low area (less than two mm2) of
the remaining tumor, 9 cases were excluded, leaving 157 for further analyses. The clinical
and pathological data of these patients are summarized in Table 1.
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Figure 2. Hierarchical patch subdivision for multiresolution analysis. A 1024-pixel patch subdivided
into four 512-pixel patches which were further subdivided into 256-pixel patches. Also, 1024- and
512-pixel patches were resized to 256-pixel using the memory efficient resize method (bilinear inter-
polation resampling) in the OpenCV Python framework. Patches were passed to feature extraction
network, and for each 256-pixel patch, the corresponding larger-sized patch feature vectors were
concatenated.

Table 1. Summary of clinical and pathological data.

Characteristic Value (%)

Patients 157 (100%)
Age, years

Median (range) 69.8 (33–89)
Gender

Male 129 (82.2%)
Female 28 (17.8%)

RFS time, months
Median (range) 16.6 (1–60)
Recurrences 47 (29.9%)

Tumor grade WHO 2004
Low 12 (7.6%)
High 145 (92.4%)
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Table 1. Cont.

Characteristic Value (%)

Tumor grade WHO 1973
G1 5 (3.1%)
G2 67 (42.7%)
G3 85 (54.1%)

pT stage
Ta 95 (61.1%)
T1 61 (38.9%)

Carcinoma in situ association 8 (5.1%)
Positive reTUR 59 (48.8%)
Recurrent tumor 48 (30.6%)
Multiple tumors 79 (50.3%)
Tumor size > 30 mm 43 (31.9%)
EORTC risk group

Intermediate 77 (50.3%)
High 71 (46.4%)
Very High 5 (3.3%)

2.3. Image Data Sets

Our study employed 1024-, 512-, and 256-pixel-sized patches and a multiresolution
patch approach. In computer vision, it is commonplace to employ image patches with
dimensions that are integer powers of 2, as these sizes align seamlessly with the hierarchical
subdivision framework, enabling a comprehensive analysis of the image’s hierarchical
structure. The decision to commence with a patch size of 256 pixels was deemed appropriate
due to its ability to achieve a harmonious balance between the extraction of fine-grained
details and the preservation of the image’s overall context. This selected patch size was also
shown to be optimal for medical image analysis in the study by Rukundo [17]. Figure 2
visually demonstrates the efficacy of patches of varying sizes in capturing distinct tissue
characteristics. Smaller patches (256 pixels) are expected to put emphasis on tumor cytology
details, whereas larger patches (1024 pixels) represent tissue microarchitecture. To prepare
image data for multiresolution analysis, a hierarchical subdivision technique was employed,
facilitating the seamless integration of patches at disparate resolutions. To prepare image
data for multiresolution analysis, we employed a hierarchical subdivision. Initially, 1024-
pixel-sized image patches were extracted from the WSIs. To ensure the analysis focused on
relevant tissue regions, we selected patches with at least 50% tissue content as determined
by the ratio of total pixels belonging to the ‘stroma’ or ‘epithelium’ classes and the total
number of pixels in a corresponding patch in the predicted HALO® AI classifier mask
(as described in Section 2.2). This tissue content control mechanism is a crucial safeguard
against artifacts and non-tissue regions, enhancing the reliability and relevance of our
findings. Subsequently, the 1024-pixel patches meeting the tissue content criterion were
subdivided into 512-pixel patches, followed by a further division into 256-pixel patches.
This procedure resulted in a hierarchical series of image patches at different resolutions
(see Figure 2), providing multiscale representations for subsequent analyses.

Patches in each resolution were assigned into 3 clusters according to stroma and epithe-
lium content defined by HALO® AI tissue classifier (C1 cluster being predominantly (>50%)
composed of stroma, C2 cluster—having <50% of stroma and <50% of epithelium, and C3
being predominantly (>50%) composed of epithelium). Similarly, multiresolution patches
were assigned into clusters according to 1024-pixel patch epithelium–stroma content.

We associated demographic information (sex, age), clinical data (treatment modalities,
history of tumor recurrence, status of repeated transurethral resection (TUR), location,
number and size of tumors, and relapse-free survival data), and pathological details (tumor
grade, stage, association with carcinoma in situ) with each WSI in our study cohort.



Biomedicines 2024, 12, 360 6 of 15

2.4. Image Feature Extraction

To predict patient outcomes from readily available data, routinely H&E-stained histol-
ogy tissue WSIs, we converted the sampled image patches into feature vectors. This feature
extraction was performed according to the method published by Rawat et al. [18]. Similarly,
we designed our feature extraction model based on InceptionResNetV2 architecture and
tasked it to assign the same identity index correctly to all patches sampled from the same
patient WSI. To train the feature extraction network, we composed a dataset of neighboring
patch pairs sampled from training cohort WSIs. One patch from each pair was reserved
to train the feature extraction network, while the second was only used to validate the
training (resulting in a 0.5 training validation data ratio).To optimize the feature extraction
network, we have run experiments with 256 pixel-sized patches employing variations in
the dataset and the mode of feature extraction (Figure 3). We tested the patch pair matching
accuracy for the different numbers of patch pairs per WSI used to train feature extraction
models. We prepared datasets by extracting 3 patch pairs, 10 patch pairs, and 100 patch
pairs per single WSI. When 100 patch pairs per WSI were unavailable, we employed all
available patch pairs. To reduce the length of extracted feature vectors, we employed an
additional compression layer—the last layer before the decision layer, with two variations
utilizing the 2D convolutional or the dense layers and conditioning these layers with a
different number of output features—1536, 1024, 512, 256, 128, 64, 32, 16, 8, 4, and 2.
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Figure 3. (A) Feature extraction network architecture based on Inception-Resnet-v2 with variation
in patch counts in the input layer and variations in patch feature layer (variations in architecture
dense layer vs. convolutional 2D, and number of features from 1536 to 2). (B) Feature extraction
network optimization. The best results were achieved using all available patch pairs in comparison
with three and ten pairs, and convolutional 2D architecture outperformed dense layer architecture
constantly. Decreasing number of features to 64 did not hinder the performance of network, while
further decrease led to fast deterioration in performance.

2.5. Deep Multiple Instance Learning (MIL) to Predict Patient Relapse

We adopted the MIL implementation as proposed by Ilse [15] to train a simple convo-
lutional neural network (CNN) model (Figure 4). This classical MIL assumption involves
feeding the network with batches of data extracted from WSIs and provides the ability of
binary classification based on clinical data categories. We modified the original method
to accept image feature vectors instead of image patches. Therefore, each MIL batch com-
prised a set of feature vectors from image patches originating from the same WSI, and
the batch label was derived from the associated clinical data value for the corresponding
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WSI. The model is capable of handling bags of varying lengths. Training involves a small
CNN with the Adam optimization algorithm, terminating when validation loss remains
unchanged for 200 epochs. As per the original method, an attention-based MIL pooling
layer is incorporated before the model’s final layer. The objective function is the negative
log-likelihood of the Bernoulli distribution.
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To evaluate the performance of our MIL model, we implemented a 5-fold cross-
validation scheme, randomly dividing the patient cohort into five equal folds. The model
was trained on four folds and evaluated on the remaining fold, repeating this process for
each fold. This procedure provided a robust assessment of the model’s generalizability to
unseen data.

To balance the MIL training dataset due to a low number of patients with relapse
(positive class), we employed minority class oversampling. Oversampling was achieved
by repeatedly drawing random positive cases from the minority pool to balance the class
distribution.
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2.6. Deep Multiple Instance Survival Learning (MISL) to Predict the Risk of Relapse

An image feature vector-based standard MIL assumption for binary classification
can be adapted to model patient survival by utilizing a loss function based on survival
probability. For MISL, we have adopted a method published by Yao et al. [16]. The
MISL method adapts the negative partial log-likelihood as a loss function and an average
concordance index as a training metric.

To train the MISL model effectively for patient survival prediction, we designed an
oversampling technique that specifically addresses the imbalance in the patient survival
status distribution. By augmenting the minority class, which represents patients with
poorer survival outcomes, our oversampling technique ensures that the model is adequately
exposed to the diverse patterns associated with shorter survival times.

The technique involves identifying the longest follow-up time (tmax = 1826 days)
among all patients in the cohort. Subsequently, we artificially extend the follow-up period
for each patient to match tmax, ensuring consistent evaluation of survival status across
patients. Next, we define a fixed time interval (tstep = 30 days) to check the survival status
of each patient at regular intervals. A cohort-wide survival matrix (T) with dimensions
m x n is constructed, where m represents the number of patients, and n represents the
number of tsteps. The matrix is filled row-wise by assigning the appropriate survival
status (left-censored, event, or right-censored) for each patient at each tstep. The resulting
oversampled MISL training set, represented by the completed survival matrix T, provides a
balanced representation of patient survival status and facilitates effective training of the
MISL model. We trained the MISL model in a 3-fold cross-validation setting.

2.7. Survival Analysis

Both MIL and MISL predictions from each fold of a k-fold cross-validation were
aggregated to reconstruct the entire cohort’s survival statistics and were assessed by Kaplan–
Meyer survival analysis. A one-sided log-rank test was used to assess the difference
between patient groups in MIL and MISL experiments. To compare different outcome
prediction methods, we have stratified patients into two groups according to cut-off value
with lowest MISL-predicted log-rank test p-value. We performed multiple Cox regressions
to analyze MISL model prediction performance in the context of other clinical features.
We have used partial Akaike information criterion (AIC) for assessment of the model’s
prediction error and concordance index (C-index) to assess predictive performance of the
models. We used Kaplan–Meyer survival analysis in patient groups defined by other
prognostic features. Additionally, differences in the distribution of prediction values
between patient subgroups were assessed using Kruskal–Wallis and Man–Whitney U tests
where applicable.

3. Results
3.1. Optimization of Feature Extraction Network

The goal of optimization was to reduce the dimensionality of image feature space by
removing redundancy. We aimed to retain a low number of highly informative features.
The accuracy of patch pairing was the only metric used to measure the performance of
feature extraction models. Overall, the highest accuracies were obtained by models trained
on a maximum number of patch pairs per WSI and models utilizing convolutional feature
compression (see Figure 3). Models using the dense feature compression layer in all
scenarios resulted in a lower patch pairing accuracy. The accuracy of models trained on
100 patch pairs per WSI remained stable as the convolutional feature extraction layer was
compressed from its original width of 1536 features down to 64 features. However, further
compression to 32 features and below resulted in a rapid decline in accuracy. In this setting,
the dense feature extraction resulted in an even earlier decline in patch pairing accuracy.
Even though the accuracy of models trained on lower numbers of patch pairs per WSI was
significantly lower in the whole range of extracted features, the effect of compression of the
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feature extraction layer was quite the opposite—in this setting, the patch pairing accuracy
increased in the range from 1536 features down to 64 features retained.

We ran the optimization experiments on a dataset prepared from 256-pixel-sized
image patches. Based on these observations, for our further experiments, we utilized image
feature vectors produced by models trained on 100 patch pairs per WSI using convolutional
feature compression and a 64-feature-long image feature vector.

3.2. Prediction of Patient Relapse by Deep MIL

Table 2 summarizes the results of different image resolution deep MIL models’ cross-
validation metrics of patient relapse prediction and the log-rank statistics of survival
differences between the two predicted groups.

Table 2. Performance of multiple instance learning models predicting relapse in 2-year and 5-year
periods by different input image (patch) sizes.

Patch Size
(Pixels)

2-Year Relapse Prediction 5-Year Relapse Prediction

F1 Score Accuracy Log-Rank
p-Value F1 Score Accuracy Log-Rank

p-Value

Multiresolution 0.618 0.622 0.208 0.422 0.446 0.916
1024 0.590 0.610 0.423 0.412 0.438 0.427
1024 resized to
256 0.654 0.672 0.257 0.476 0.492 0.486

512 0.572 0.566 0.134 0.472 0.492 0.579
512 resized to
256 0.592 0.592 0.323 0.494 0.502 0.613

256 0.626 0.620 0.441 0.480 0.490 0.268

The best results of 2-year relapse prediction were obtained with image features ex-
tracted from down-sampled 1024-pixel patches (resized to 256 pixels). Although this
experimental setting allowed for the highest F1 score (0.654) and accuracy (0.672), the sur-
vival differences between the predicted groups were not statistically significant (log-rank
p-value 0.257). The features extracted from the multiscale and the 256-pixel-sized patches
also allowed reasonable prediction results, achieving both F1 scores and accuracies above
0.6. However, the relatively high log-rank values of 0.208 and 0.441, respectively, suggest
lower predictive reliability.

The 5-year relapse prediction analysis did not reveal any significant results, with
an accuracy above 0.5 achieved only using the features extracted from down-sampled
512-pixel patches (resized to 256 pixels). However, none of the experiments reached at least
a 0.5 F1 score.

In general, models using features derived from 256-pixel-sized patches and larger
patches resized to 256 pixels showed a tendency to perform better in both 2-year and 5-year
relapse prediction. However, none of these experiments yielded a statistically significant
stratification of the patients in the survival analysis. Thus, these findings should be received
with caution.

3.3. Prediction of Risk of Relapse by Deep MISL

The MISL results are summarized in Table 3. Only two models using a multiresolution
approach and features extracted from 1024-pixel-sized patches were able to stratify patients
into risk groups with similar statistical significance in survival difference (log-rank p-value
< 0.05), with the multiresolution approach showing a slightly higher C-index (0.574 vs.
0.564) and slightly better performance on the validation splits, hence better generalizability
of the models’ performance. In general, features obtained from smaller patches (256-pixel
size or larger patches resized to 256-pixel size) performed worse in survival prediction.
In contrast, the MISL models trained with features extracted from downsized 512-pixel
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patches (resized to 256-pixel) reached the highest (0.579) C-index; however, these models
did not stratify patients into statistically significant risk groups.

Table 3. Performance of multiple instance survival learning models by different input image (patch)
sizes compared by concordance index and log-rank test p-values.

Patch Size (Pixels) Concordance Index Log-Rank p-Value

Multiresolution 0.574 0.010
1024 0.564 0.007
1024 resized to 256 0.562 0.687
512 0.569 0.053
512 resized to 256 0.579 0.126
256 0.532 0.095

3.4. Clinicopathological Variables and Cox Regression Analysis

Significant relapse hazard differences were observed only by a repeated TUR tumor
grade and stage (reTUR) with hazard ratios 5.018, 1.9902, and 1.8545, respectively (Table 4
and Figure 5). These features were selected for multiple Cox regression together with
stratified MISL prediction.

Notably, tumor grade demonstrated a significant difference in relapse hazard stratifi-
cation (p-value 0.0451) only when assigned using the WHO 1973 classification system but
not when assessed using the WHO 2004 system (p-value 0.1807).
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Table 4. Univariate Cox regression results of clinicopathological data and stratified multiple instance
survival learning prediction results.

Feature Hazzard Ratio p-Value

Positive reTUR 5.018 0.0001
pT1 stage 1.9902 0.0187
MISL prediction > −0.0082 2.1849 0.0237
G3 (1973 grading system) 1.8545 0.0451
High grade (2004 grading system) 2.6389 0.1807
Association with carcinoma in situ 1.8076 0.2586
EORTC high or very high risk group 1.3548 0.3012
Multiple tumors 1.3395 0.3489
Recurrent tumor 1.255 0.4549
Muscle presence in TUR 1.2098 0.6668
Sex 1.1822 0.683
Tumor size > 30 mm 1.1281 0.7376

We generated all possible combinations of selected features and evaluated them us-
ing multiple Cox regression. Three Cox regression models yielded significant individual
features (p-values < 0.05). All three models (see Table 5) consisted of two independent
predictive features combining MISL-based risk stratification with one of the selected clini-
copathologic features (stage, grade, and reTUR status). This finding prompted a further
investigation of the relationship between MISL prediction and histology-derived features,
as well as an evaluation of MISL-based risk stratification in the tumor grade and stage
subgroups. We found that MISL prediction was capable of successfully substratifying the
patients in the pTa, pT1 stage, and G1–G2 grade groups. Additionally, we found a similar
distribution of MISL prediction scalar values between the tumor stage and grade groups
(p = 0.876 and p = 0.365, respectively), supporting the independence of this feature (see
Figure 6).

Table 5. Multiple Cox regression models with p values of individual features < 0.05.

Features Hazard Ratio 95% CI p-Value

Model: positive reTUR + MISL prediction. AIC = 302.40; C-index = 0.73
Positive reTUR 4.907 2.245–10.726 <0.001
MISL prediction 2.181 1.058–4.499 0.035

Model: G3 grade (WHO 1973) + MISL prediction. AIC = 418.59; C-index = 0.64
G3 grade (WHO 1973) 2.026 1.105–3.716 0.023
MISL prediction 2.374 1.202–4.688 0.013

Model: pT1 stage + MISL prediction. AIC = 418.76; C-index = 0.63
pT1 stage 1.969 1.109–3.495 0.021
MISL prediction 2.164 1.099–4.263 0.026
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4. Discussion

In our study, we have developed a DL-based NMIPUC risk stratification model, which
can improve the prediction of tumor relapse in the setting of BCG immunotherapy. By
comparing two DL approaches for patient risk prediction, we found that models based
on time-dependent survival probability data performed better than models based on a
dichotomous prediction of the relapse event during a given time period. In other words,
survival data, including the status of relapse and the exact time of the event, provide a more
precise definition of patient outcome, thus improving predictions of the more aggressive
behavior of the tumor.

The difference in the accuracy of prognostic performance between the 1973 WHO
and the 2004/2016 WHO grading system may be explained by the fact that the threshold
between G2 and G3 grades defined by the 1973 WHO system might be more relevant in
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our cohort of patients than groups defined by 2004/2016 WHO. Since our study includes
predominantly patients in intermediate or higher risk groups, the latter system separates
only a small subgroup of low-grade NMIPUC tumors. This observation supports the
current NMIPUC grading approach by reporting both grading systems in the diagnostic
workup. However, since our study includes predominantly patients with intermediate or
higher risk groups, the latter system separates only a small subgroup of low-grade NMIPUC
tumors. The limited prognostic performance of 2004/2016 WHO might be attributed to
class imbalance in our patient cohort.

From other clinical and pathological variables, only the tumor stage and findings of
residual tumor at reTUR showed prognostic significance in univariate and multivariable
models. We have reported these findings in our previous study, which focused on tumor-
infiltrating CD8 lymphocytes in a very similar patient cohort [19]. While the tumor stage is
widely used for the assessment of patient risk, the adverse effects of positive reTUR were
so far not utilized as a prognostic indicator despite strong evidence to support this [20–23].

By comparing MIL models that predict tumor relapse in 2- and 5-year periods, we
found that models based on the prediction of relapse in a shorter period performed better
despite having fewer events. This observation contradicts the results reported by [24],
where they used deep learning to predict relapse in 1-year and 5-year periods. Our finding
may be attributed to the fact that more aggressive tumors tend to relapse earlier, and these
tumors might have a higher degree of architectural and cytological atypia at the histological
level, which makes these tumors more straightforward to identify with image analysis.

A comparison of the models based on different patch sizes revealed that larger patch
size experiments and multiresolution approaches tended to perform better. The perfor-
mance advantage of the multiresolution method might be explained by a more comprehen-
sive representation of the properties of tumor tissue extracting both cytological details and
architectural features at lower and higher resolutions, respectively. On the other hand, the
difference in the performance of single-resolution inputs might indicate that architectural
features (large patches) might be more representative of tumor biological behavior.

The values of the MISL multiresolution approach did not show a significant difference
in the distribution between the stage and grade groups of patients; therefore, they are not
associated with these known indicators and are likely to represent a novel computational
biomarker to predict relapse. Furthermore, the stratification of the patients by the MISL
indicator in most subgroups (see Figure 6) retained significant differences in the relapse
probabilities. Overall, this highlights the potential to improve risk stratification based on
histology image analysis data.

The most important limitation of our study is the lack of external validation. Also,
our cohort included patients from a single center, which might cause relative homogeneity
in patients’ management, H&E staining quality, and evaluation by the pathologist, thus
limiting the generalizability of our findings. We have tested several variations in image
patch sizes and a number of patches used for feature extraction network training. However,
there are many possible variations in DL models and their hyperparameters. Yet, it was out
of the scope of this study, so we implemented the models as they were published in the
previous studies. We look forward to collaborating with other laboratories in the field while
planning the validation of these findings in our prospective patient cohort and refining the
implementation of MISL to facilitate more explainable predictions.

5. Conclusions

We found that DL-based pathology image analysis can extract additional prognostic
information on NMIPUC patient outcomes, independent of current clinical and pathologic
criteria. Our MISL model enabled an improved prediction of disease relapse within the
grade and stage subsets of the patients on BCG therapy. Additionally, we found that models
based on full survival data were superior to dichotomous classification tasks, thus guiding
further work in predictive modeling to more effective methodologies. Further studies are
needed to assess the generalizability and explainability of our models.
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1. Babjuk, M.; Burger, M.; Čapoun, O.; Cohen, D.; Compérat, E.; Escrig, J.L.D.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.;

Mostafid, H.; et al. European Association of Urology Guidelines on Non-Muscle-Invasive Bladder Cancer (Ta, T1, and Carcinoma
in Situ). Eur. Urol. 2022, 81, 75–94. [CrossRef]

2. Kamat, A.M.; Li, R.; O’Donnell, M.A.; Black, P.C.; Roupret, M.; Catto, J.W.; Comperat, E.; Ingersoll, M.A.; Witjes, W.P.; McConkey,
D.J.; et al. Predicting Response to Intravesical Bacillus Calmette-Guérin Immunotherapy: Are We There Yet? A Systematic Review.
Eur. Urol. 2018, 73, 738–748. [CrossRef] [PubMed]

3. Jäger, W.; Thomas, C.; Haag, S.; Hampel, C.; Salzer, A.; Thüroff, J.W.; Wiesner, C. Early vs Delayed Radical Cystectomy for
‘High-Risk’ Carcinoma Not Invading Bladder Muscle: Delay of Cystectomy Reduces Cancer-Specific Survival. BJU Int. 2011, 108,
E284–E288. [CrossRef] [PubMed]

4. Cambier, S.; Sylvester, R.J.; Collette, L.; Gontero, P.; Brausi, M.A.; van Andel, G.; Kirkels, W.J.; Silva, F.C.D.; Oosterlinck, W.;
Prescott, S.; et al. EORTC Nomograms and Risk Groups for Predicting Recurrence, Progression, and Disease-Specific and Overall
Survival in Non–Muscle-Invasive Stage Ta–T1 Urothelial Bladder Cancer Patients Treated with 1–3 Years of Maintenance Bacillus
Calmette-Guérin. Eur. Urol. 2016, 69, 60–69. [CrossRef] [PubMed]

5. Sylvester, R.J.; van der Meijden, A.P.M.; Oosterlinck, W.; Witjes, J.A.; Bouffioux, C.; Denis, L.; Newling, D.W.W.; Kurth, K.
Predicting Recurrence and Progression in Individual Patients with Stage Ta T1 Bladder Cancer Using EORTC Risk Tables: A
Combined Analysis of 2596 Patients from Seven EORTC Trials. Eur. Urol. 2006, 49, 466–477. [CrossRef] [PubMed]

6. Lammers, R.J.M.; Hendriks, J.C.M.; Rodriguez Faba, O.R.F.; Witjes, W.P.J.; Palou, J.; Witjes, J.A. Prediction Model for Recurrence
Probabilities after Intravesical Chemotherapy in Patients with Intermediate-Risk Non-Muscle-Invasive Bladder Cancer, Including
External Validation. World J. Urol. 2016, 34, 173–180. [CrossRef] [PubMed]

7. Wu, Y.; Cheng, M.; Huang, S.; Pei, Z.; Zuo, Y.; Liu, J.; Yang, K.; Zhu, Q.; Zhang, J.; Hong, H.; et al. Recent Advances of Deep
Learning for Computational Histopathology: Principles and Applications. Cancers 2022, 14, 1199. [CrossRef]

8. Jansen, I.; Lucas, M.; Bosschieter, J.; de Boer, O.J.; Meijer, S.L.; van Leeuwen, T.G.; Marquering, H.A.; Nieuwenhuijzen, J.A.; de
Bruin, D.M.; Savci-Heijink, C.D. Automated Detection and Grading of Non–Muscle-Invasive Urothelial Cell Carcinoma of the
Bladder. Am. J. Pathol. 2020, 190, 1483–1490. [CrossRef]

9. Wetteland, R.; Kvikstad, V.; Eftestol, T.; Tossebro, E.; Lillesand, M.; Janssen, E.A.M.; Engan, K. Automatic Diagnostic Tool for
Predicting Cancer Grade in Bladder Cancer Patients Using Deep Learning. IEEE Access 2021, 9, 115813–115825. [CrossRef]

10. Zhang, Z.; Chen, P.; McGough, M.; Xing, F.; Wang, C.; Bui, M.; Xie, Y.; Sapkota, M.; Cui, L.; Dhillon, J.; et al. Pathologist-Level
Interpretable Whole-Slide Cancer Diagnosis with Deep Learning. Nat. Mach. Intell. 2019, 1, 236–245. [CrossRef]

11. Cheng, L.; Neumann, R.M.; Nehra, A.; Spotts, B.E.; Weaver, A.L.; Bostwick, D.G. Cancer Heterogeneity and Its Biologic
Implications in the Grading of Urothelial Carcinoma. Cancer 2000, 88, 1663–1670. [CrossRef]

12. Gofrit, O.N.; Pizov, G.; Shapiro, A.; Duvdevani, M.; Yutkin, V.; Landau, E.H.; Zorn, K.C.; Hidas, G.; Pode, D. Mixed High and
Low Grade Bladder Tumors—Are They Clinically High or Low Grade? J. Urol. 2014, 191, 1693–1696. [CrossRef]

13. Reis, L.O.; Taheri, D.; Chaux, A.; Guner, G.; Mendoza Rodriguez, M.A.; Bivalacqua, T.J.; Schoenberg, M.P.; Epstein, J.I.; Netto, G.J.
Significance of a Minor High-Grade Component in a Low-Grade Noninvasive Papillary Urothelial Carcinoma of Bladder. Hum.
Pathol. 2016, 47, 20–25. [CrossRef] [PubMed]

14. Schubert, T.; Danzig, M.R.; Kotamarti, S.; Ghandour, R.A.; Lascano, D.; Dubow, B.P.; Decastro, G.J.; Benson, M.C.; McKiernan, J.M.
Mixed Low- and High-Grade Non-Muscle-Invasive Bladder Cancer: A Histological Subtype with Favorable Outcome. World J.
Urol. 2015, 33, 847–852. [CrossRef] [PubMed]

https://doi.org/10.1016/j.eururo.2021.08.010
https://doi.org/10.1016/j.eururo.2017.10.003
https://www.ncbi.nlm.nih.gov/pubmed/29055653
https://doi.org/10.1111/j.1464-410X.2010.09980.x
https://www.ncbi.nlm.nih.gov/pubmed/21244611
https://doi.org/10.1016/j.eururo.2015.06.045
https://www.ncbi.nlm.nih.gov/pubmed/26210894
https://doi.org/10.1016/j.eururo.2005.12.031
https://www.ncbi.nlm.nih.gov/pubmed/16442208
https://doi.org/10.1007/s00345-015-1598-0
https://www.ncbi.nlm.nih.gov/pubmed/26025189
https://doi.org/10.3390/cancers14051199
https://doi.org/10.1016/j.ajpath.2020.03.013
https://doi.org/10.1109/ACCESS.2021.3104724
https://doi.org/10.1038/s42256-019-0052-1
https://doi.org/10.1002/(SICI)1097-0142(20000401)88:7%3C1663::AID-CNCR21%3E3.0.CO;2-8
https://doi.org/10.1016/j.juro.2013.11.056
https://doi.org/10.1016/j.humpath.2015.09.007
https://www.ncbi.nlm.nih.gov/pubmed/26520419
https://doi.org/10.1007/s00345-014-1383-5
https://www.ncbi.nlm.nih.gov/pubmed/25149472


Biomedicines 2024, 12, 360 15 of 15

15. Ilse, M.; Tomczak, J.; Welling, M. Attention-Based Deep Multiple Instance Learning. In Proceedings of the 35th International
Conference on Machine Learning, PMLR, Stockholm, Sweden, 3 July 2018; pp. 2127–2136.

16. Yao, J.; Zhu, X.; Jonnagaddala, J.; Hawkins, N.; Huang, J. Whole Slide Images Based Cancer Survival Prediction Using Attention
Guided Deep Multiple Instance Learning Networks. Med. Image Anal. 2020, 65, 101789. [CrossRef] [PubMed]

17. Rukundo, O. Effects of Image Size on Deep Learning. Electronics 2023, 12, 985. [CrossRef]
18. Rawat, R.R.; Ortega, I.; Roy, P.; Sha, F.; Shibata, D.; Ruderman, D.; Agus, D.B. Deep Learned Tissue “Fingerprints” Classify Breast

Cancers by ER/PR/Her2 Status from H&E Images. Sci. Rep. 2020, 10, 7275. [CrossRef] [PubMed]
19. Drachneris, J.; Rasmusson, A.; Morkunas, M.; Fabijonavicius, M.; Cekauskas, A.; Jankevicius, F.; Laurinavicius, A. CD8+ Cell

Density Gradient across the Tumor Epithelium–Stromal Interface of Non-Muscle Invasive Papillary Urothelial Carcinoma Predicts
Recurrence-Free Survival after BCG Immunotherapy. Cancers 2023, 15, 1205. [CrossRef] [PubMed]

20. Ferro, M.; Vartolomei, M.D.; Cantiello, F.; Lucarelli, G.; Di Stasi, S.M.; Hurle, R.; Guazzoni, G.; Busetto, G.M.; De Berardinis,
E.; Damiano, R.; et al. High-Grade T1 on Re-Transurethral Resection after Initial High-Grade T1 Confers Worse Oncological
Outcomes: Results of a Multi-Institutional Study. Urol. Int. 2018, 101, 7–15. [CrossRef]

21. Tae, B.S.; Jeong, C.W.; Kwak, C.; Kim, H.H.; Moon, K.C.; Ku, J.H. Pathology in Repeated Transurethral Resection of a Bladder
Tumor as a Risk Factor for Prognosis of High-Risk Non-Muscle-Invasive Bladder Cancer. PLoS ONE 2017, 12, e0189354. [CrossRef]

22. Han, K.S.; Joung, J.Y.; Cho, K.S.; Seo, H.K.; Chung, J.; Park, W.S.; Lee, K.H. Results of Repeated Transurethral Resection for a
Second Opinion in Patients Referred for Nonmuscle Invasive Bladder Cancer: The Referral Cancer Center Experience and Review
of the Literature. J. Endourol. 2008, 22, 2699–2704. [CrossRef] [PubMed]

23. Guevara, A.; Salomon, L.; Allory, Y.; Ploussard, G.; de la Taille, A.; Paul, A.; Yiou, R.; Hoznek, A.; Dahan, M.; Abbou, C.-C.; et al.
The Role of Tumor-Free Status in Repeat Resection before Intravesical Bacillus Calmette-Guerin for High Grade Ta, T1 and CIS
Bladder Cancer. J. Urol. 2010, 183, 2161–2164. [CrossRef] [PubMed]

24. Lucas, M.; Jansen, I.; van Leeuwen, T.G.; Oddens, J.R.; de Bruin, D.M.; Marquering, H.A. Deep Learning–Based Recurrence
Prediction in Patients with Non–Muscle-Invasive Bladder Cancer. Eur. Urol. Focus 2022, 8, 165–172. [CrossRef] [PubMed]

25. Council for International Organizations of Medical Sciences (CIOMS). International Ethical Guidelines for Health-Related Research
Involving Humans; Council for International Organizations of Medical Sciences (CIOMS): Geneva, Switzerland, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.media.2020.101789
https://www.ncbi.nlm.nih.gov/pubmed/32739769
https://doi.org/10.3390/electronics12040985
https://doi.org/10.1038/s41598-020-64156-4
https://www.ncbi.nlm.nih.gov/pubmed/32350370
https://doi.org/10.3390/cancers15041205
https://www.ncbi.nlm.nih.gov/pubmed/36831546
https://doi.org/10.1159/000490765
https://doi.org/10.1371/journal.pone.0189354
https://doi.org/10.1089/end.2008.0281
https://www.ncbi.nlm.nih.gov/pubmed/19025393
https://doi.org/10.1016/j.juro.2010.02.026
https://www.ncbi.nlm.nih.gov/pubmed/20399454
https://doi.org/10.1016/j.euf.2020.12.008
https://www.ncbi.nlm.nih.gov/pubmed/33358370

	Introduction 
	Materials and Methods 
	Patient Cohorts 
	Tissue Area Classification and Artifact Exclusion 
	Image Data Sets 
	Image Feature Extraction 
	Deep Multiple Instance Learning (MIL) to Predict Patient Relapse 
	Deep Multiple Instance Survival Learning (MISL) to Predict the Risk of Relapse 
	Survival Analysis 

	Results 
	Optimization of Feature Extraction Network 
	Prediction of Patient Relapse by Deep MIL 
	Prediction of Risk of Relapse by Deep MISL 
	Clinicopathological Variables and Cox Regression Analysis 

	Discussion 
	Conclusions 
	References

