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Abstract: The concept of redirecting metabolic pathways in cancer cells for therapeutic purposes has
become a prominent theme in recent research. Now, with the advent of ferroptosis, a new chink in
the armor has evolved that allows for repurposing of ferroptosis-sensitive lipids in order to trigger
cell death. This review presents the historical context of lipidomic and metabolic alterations in
cancer cells associated with ferroptosis sensitization. The main proferroptotic genes and pathways
are identified as therapeutic targets for increasing susceptibility to ferroptosis. In this review, a
particular emphasis is given to pathways in cancer cells such as de novo lipogenesis, which has been
described as a potential target for ferroptosis sensitization. Additionally, we propose a connection
between ketolysis inhibition and sensitivity to ferroptosis as a new vulnerability in cancer cells. The
main proferroptotic genes and pathways have been identified as therapeutic targets for increasing
susceptibility to ferroptosis. Proferroptotic metabolic pathways and vulnerable points, along with
suggested agonists or antagonists, are also discussed. Finally, general therapeutic strategies for
ferroptosis sensitization based on the manipulation of the lipidome in ferroptosis-resistant cancer cell
lines are proposed.

Keywords: ferroptosis; cancer cells; de novo lipogenesis; ketolysis; lipidomics; metabolic reprogramming;
cancer treatment; therapeutic resistance

1. Introduction: Ferroptosis History and Concept

The first report on ferroptosis was published in 2012 [1], marking the emergence of
a unique cell death mechanism. The authors of the summary of ten years of ferroptosis
demonstrated that its characteristics had been observed for several decades, but it was not
until 2012 that it was established as a distinct form of cell death [2]. Providing a historical
background is necessary for a better understanding of the development of the concept
of ferroptosis and the mechanisms associated with it, based on data collected over the
last decade.

As a result, ferroptosis has a research history spanning 12 years (Figure 1), with the
initial publication on the mechanism appearing nine years after the discovery of its inducers.
Ferroptosis research encompasses a vast number of papers, and a cursory historical analysis
of the literature revealed the most salient papers related to ferroptosis (Figure 1) [3].

The discovery of erastin marked the beginning of ferroptosis research [4,5], followed
by the discovery of RSL3 and RSL5 [6].

Subsequently, numerous scientists became involved in studying the phenomena of
ferroptosis. Linkermann et al. reported that ferrostatin-1, an inhibitor of ferroptosis,
displayed poor stability in vivo and proposed a new generation of ferrostatins, such as
SRS16-86, which demonstrated efficacy in vivo [7]. Another article described novel ferro-
statins, with SRS11-92 being identified as the most sensitive [8]. The authors conducted an
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in-depth analysis of iron and reactive oxygen species (ROS)-dependent mechanisms of cell
death [9]. They found that GPX4 knockdown rendered cancer cells highly susceptible to
RSL3-induced ferroptosis, while its overexpression conferred resistance [10].
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Figure 1. Illustration of the history of ferroptosis based on analysis conducted using the “Connected
papers” tool [1,2,4–32].

Dixon et al. suggested that the activity of the ACSL4 (Acyl-CoA Synthetase Long
Chain Family Member 4) and LPCAT3 (Lysophosphatidylcholine Acyltransferase 3) genes
demonstrated sensitivity to ferroptosis [11]. Glutaminolysis and transferrin were identified
as essential factors for ferroptosis [12]. Kwon et al. proposed that ferroptosis was supported
by iron-containing heme oxygenase-1 (HO-1) [13]. Activation of p53 sensitized H1299
cells led to erastin-induced ferroptosis through increased ROS production without DNA
damage [14]. The mitochondria-related genes RPL8, IREB2, ATP5G3, CS, TTC35, and
ACSF were found to regulate ferroptosis, and the authors reviewed cancer cells that were
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sensitive to ferroptosis [15]. Shimada et al. showed using the example of FIN56 that
a third type of ferroptosis inducers exist and are destructors of GPX4 [16]. ACSL4 was
found to be more highly expressed in ferroptosis-sensitive cell lines (HepG2 and HL60)
compared to resistant cancer cells (LNCaP and K562) [17]. Ferritinophagy, associated with
NCOA4, was identified as a participant in ferroptosis due to an increase in the labile iron
pool (LIP) [18]. Hou et al. also confirmed the role of ferritin autophagy (genes Atg5 and
Atg7) in erastin-induced ferroptosis, showing that NCOA4 knockdown led to a decrease
in Ferritinophagy and blocked ferroptosis [19]. Yang and Stockwell proposed that lipid
peroxidation in ferroptosis is a controlled process involving iron-containing enzymes, with
potential involvement of lipoxygenases [20]. Shimada et al. discovered that NADPH
serves as a biomarker of susceptibility to ferroptosis, either due to increased NADPH
concentrations (low [NADP+]/[NADPH]) or because stability to NADPH elimination
by FIN56 corresponds to resistant cell lines [21]. Doll et al. confirmed, through ACSL4
knockout experiments, that the ACSL4 gene is essential for ferroptosis sensitization as it
activates the inclusion of arachidonate (AA) into the membrane phospholipids [22].

A review [23] focused on unresolved issues regarding the mechanisms of ferroptosis,
examining the perceived necessity of LOXs in the process. For example, the review looked
into why LOX knockdowns have shown ferroptosis inhibition in erastin-induced models,
but not in RSL3 induction. Additionally, the role of iron metabolism-regulated genes in
ferroptosis remains unclear. Another question raised pertains to why omega-6 polyunsatu-
rated fatty acids (PUFAs) sensitize ACSL4 knockout cells to ferroptosis, whereas omega-3
PUFAs do not.

Wenzel et al. revealed the role of the phosphatidylethanolamine-binding protein
1/15-lipoxygenase (PEBP1/15LOX) complex in ferroptosis. They found that 15LOX, when
not bound to PEBP1, peroxidizes free fatty acids but has minimal effect on PUFA-PLs.
However, the PEBP1/15LOX complex is capable of oxidizing PUFA-PLs [24].

In another study [25], it was shown that inhibitors of 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMG-CoA reductase), known as statins, interrupt the synthe-
sis of GPX4 by inhibiting the synthesis of isopentenyl pyrophosphate in the cholesterol
biosynthesis pathway. This inhibition helps induce ferroptosis in cells involved in epithelial–
mesenchymal transition (EMT). Importantly, the influence of statins cannot be reversed by
lipophilic antioxidants.

In CRC cells (HCT116 and SW48), p53 suppresses ferroptosis by blocking DPP4
activity and preventing DPP4-NOX binding. Inhibition or knockout of TP53 in CRC
cells makes them susceptible to ferroptosis induced by erastin [26]. Kagan et al. suggest
that AA-PE (arachidonic acid—phosphotidylethanolamines) and AdA-PE (adrenic acid—
phosphotidylethanolamines) are responsible for lipid peroxidation during ferroptosis
induced by RSL3 [27].

Shen et al. [28] provided a review of modern strategies for cancer ferroptotic therapy.
They discussed clinically approved ferroptosis inducers such as sorafenib, sulfasalazine,
artemisinin, artesunate, and dehydroartemisinin. The authors also described the application
of nanomaterials for inducing ferroptosis therapy.

H. Feng and Br. R. Stockwell discussed possible areas of localization for lipid peroxida-
tion: membranes, mitochondria, ER (endoplasmic reticulum), and lysosomes. Localization,
as well as the essentiality of the involvement of different organelles and their membrane
compartments, is not completely resolved [29].

Hirschhorn and Stockwell described the evolution of ferroptosis concept in focus on
positive and negative regulation, ferroptosis related diseases, and its relation to cancer. The
concept that it is programmed, rather than accidental, cell death was underscored [2].

Li et al. and Liu et al. discovered a new specific ferroptosis inducer called N6F11,
which selectively attacks cancer cells while sparing immune cells [30,31].

The authors discussed the side effects associated with classical ferroptosis inducers,
highlighting their low selectivity for cancer cells and potential harm to normal cells. They
supported the discovery of N6F11 as a promising alternative [32].
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In summary, the concept of ferroptosis can be defined as an iron-dependent, non-
apoptotic, non-necrotic form of regulated cell death. It is characterized by specific morpho-
logical changes and is regulated by alternative genetic, protein, metabolic, and execution
mechanisms. Ferroptosis is associated with increased levels of lipid reactive oxygen species
(ROS) when the systems responsible for glutathione (GSH)-dependent lipid peroxide re-
covery are compromised. Ferroptosis can be prevented by lipophilic antioxidants, iron
chelators, inhibitors of lipid peroxidation, and depletion of polyunsaturated fatty acyl
phospholipids (PUFA-PLs) that are susceptible to ROS-induced damage [2,27].

Ferroptosis is a form of regulated cell death (RCD) that is primarily driven by lipid
peroxidation and does not involve caspases. Intrinsic apoptosis is a type of RCD character-
ized by mitochondrial outer membrane permeabilization and participation of CASP3 and
dependent on the inner cell changes. Extrinsic apoptosis, on the other hand, is initiated
through death receptors and involves the activation of CASP8 and CASP3, triggered by
external factors influencing the cell’s outer surface [33].

Key Points in Ferroptosis Historical Observation and Purpose of This Review

Reactive oxygen species (ROS) include oxygen ions, oxygen-containing free radicals,
and peroxides. ROS peroxidate lipids through a free radical chain mechanism.

Indicators of ferroptosis include the inhibition of GPX4′s ability to recover phospho-
lipids (PL) after lipid peroxidation, the presence of redox-active iron, and the peroxidation
of PUFA-PLs [34].

The topic of ferroptosis is of great importance due to its involvement in the pathophysi-
ology of various degenerative diseases, including cardiovascular diseases, digestive system
and liver diseases, neurological disorders, urinary and reproductive system diseases, and
immune system disorders [35,36]. Ferroptosis also holds promise as a potential approach
for cancer treatment, especially for drug-resistant cancer types [37].

Several paradoxes surrounding ferroptosis have been partially or completely resolved
over the past decade. One such question concerns the mechanism of lipid peroxidation in
ferroptosis—is it genetically determined, controlled by enzymatic processes, or a chaotic
free radical chain process?

A review on this topic is necessary to summarize the data on the relationship between
the lipid and metabolite composition of cells and their sensitivity to ferroptosis. A better
understanding of lipid compositions in cancer cells can help identify new strategies to
sensitize them to ferroptosis.

The purpose of this review is to provide a comprehensive understanding of the concept
of ferroptosis, with a focus on identifying specific lipid target pathways that can sensitize
cancer cells while sparing normal cells. The review aims to explore the vulnerabilities in the
lipidome of ferroptosis-resistant cancer cells and propose potential strategies to overcome
them. Additionally, the review will address the existing ambiguities and contradictions in
the literature regarding the concept of ferroptosis. It will strive to provide possible solutions
or explanations for these inconsistencies and highlight the prospect of utilizing ferroptosis
as a therapeutic approach for various diseases.

2. Cancer Cells Metabolome and Lipidome Alteration

The origin of cancer has been primarily attributed to somatic cell mutations [38,39]. It
is widely known that these mutations accumulate with age and contribute to both cancer
development and aging. It is worth noting that mutations can also be present in normal
states and other diseases [40,41]. Cancer risk factors can be broadly classified into three
groups: intrinsic factors (such as DNA errors), and two categories of non-intrinsic factors
(endogenous factors like immune responses, metabolic changes, inflammation, DNA repair
problems, aging, and exogenous factors like viruses, chemicals, radiation, lifestyle, etc.) [42].
Non-mutagenic factors can also play a significant role in cancer development.
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Allan Balmain reported that mutations are important but not sufficient for carcinogen-
esis [43]. He suggests that non-genotoxic factors that induce cancer have a more substantial
impact than previously thought.

In their study [44], the authors demonstrated that certain metabolites, such as 2-
hydroxyglutarate, can have oncogenic effects by altering cell signaling and disrupting
cell differentiation.

There are two types of genes involved in cancer development, often referred to as
“brake and gas pedals”. Proto-oncogenes regulate cell growth and proliferation, and when
mutated, they become oncogenes (e.g., Ras). On the other hand, tumor suppressor genes
(e.g., p53, Rb) act as guardians by detecting mutations and repairing damages or halting the
cell cycle until cell death. Suppressor genes can also reverse mutagenic effects [45].

The year 2023 marked the 100th anniversary of Otto Warburg’s discovery that cancer
cells preferentially generate energy from glucose through “aerobic glycolysis” in the cytosol
rather than using mitochondria, resulting in lactate formation [46]. Warburg proposed
that irreversible damage to respiration is the cause of cancer [47,48]. Thus, an alternative
perspective suggests that the origin of cancer lies in metabolic alterations, particularly in
energy metabolism with dysfunctional mitochondria [49,50]. Thomas N. Seyfried referred
to cancer as a “metabolic disease” and suggested that mutations in p53 and Ras impair
mitochondrial respiratory function. Cells with compromised respiration are more prone to
genome instability and transformation into malignancy.

Metabolically reprogrammed cells, especially those with impaired mitochondria and
altered energy metabolism, become more susceptible to genetic mutations. Genetic muta-
tions, in turn, drive profound metabolic reprogramming. This exemplifies a pathological
feedback loop (see Figure 2).
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Additionally, cancer cells have the ability to communicate with normal cells through
signaling molecules, allowing them to reprogram the metabolism of surrounding cells
to promote tumor growth [51]. Tumors produce a pro-tumoral and immunosuppressive
microenvironment [52].
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Lipidomics studies play a crucial role in understanding the pathogenesis of various
diseases [53]. Alterations in lipidomics pathways can serve as biomarkers or therapeutic
targets for the treatment of disorders [54]. Lipidomics and metabolomics research contribute
to personalized medicine approaches [55].

Numerous studies have suggested that cancer cells undergo significant changes in lipid
metabolism. Lipids serve as essential energy sources, and alterations in lipid metabolism
align with the concept of disrupted energy metabolism in cancer cells. Understanding the
unique lipidomic characteristics of cancer cells is important for elucidating their role in
cancer development and progression.

Lipids are targeted compounds in ferroptosis; this is why the specific characteristic of
lipidomics in cancer is important to explain.

Munir et al. discussed the metabolic adaptation of cancer cells in response to the harsh
tumor microenvironment and the requirement for de novo fatty acid biosynthesis [56].

Koundouros and Poulogiannis showed the role of fatty acids biosynthesis in cancer
metabolism [57].

Khan et al. explained lipid metabolism reprogramming in cancer progression [58].
Pakiet et al. [59] emphasized the potential of specific saturated and monounsaturated

lipids, such as PC-16:0/16:1, as possible biomarkers in colorectal cancer.
Beloribi-Djefaflia et al. [60] proposed disrupting lipid metabolism in cancer cells,

through targeting enzymes, receptors, or bioactive lipids, as a potential approach for
cancer treatment.

Metabolic and lipidomic reprogramming plays a significant role in the development
and progression of cancer throughout the entire organism. Therefore, an effective approach
to treating cancer is to disrupt the pathological feedback loop by inducing reverse metabolic
reprogramming, which includes altering the feeding of cancer cells or the overall nutrition
of the organism.

It is essential to differentiate between reprogramming and reverse-reprogramming.
Pathological reprogramming refers to the malignant transformation of normal cells, as
well as alterations in the lipidome and metabolome during carcinogenesis. Therapeutic
reprogramming, on the other hand, aims to decrease malignancy, increase sensitivity to cell
death, and ultimately restore cells to a normal state.

Understanding metabolic and lipidomic reprogramming in cancer cells is crucial for
identifying more effective strategies for inducing ferroptosis in cancer treatment. The
first step is to study the metabolome and lipidome characteristics of cancer cells and
identify the target genes and pathways that can be manipulated to induce ferroptosis as a
therapeutic approach.

This review focuses on the two most selective pathways related to lipid metabolism in
cancer cells and prospective targets for ferroptosis sensitization, namely de novo lipogenesis
and ketolysis.

The connections between de novo lipogenesis inhibition and ferroptosis sensitization
are exemplified in the deep genetics and lipidomics study [61].

2.1. Genes Involved in Cancerogenesis That Regulate De Novo Lipogenesis in Cancer

In cancer cells, several genes involved in cancerogenesis regulate de novo lipogenesis,
which plays a crucial role in lipid metabolism and can impact ferroptosis resistance and sen-
sitivity. These genes are responsible for the production of saturated fatty acids (SFAs) and
monounsaturated fatty acids (MUFAs), which are essential components of cell membranes.

De novo lipogenesis is selective for cancer cells because, among normal cells, only
adipocytes and hepatocytes are primarily involved in this process [62].

Among the genes regulating de novo lipogenesis in cancer cells, ACC1 (acetyl CoA
carboxylase) is a key enzyme involved in fatty acid synthesis [63]. It catalyzes the carboxy-
lation of acetyl-CoA to malonyl-CoA (Figure 3).
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FASN (fatty acid synthase) is another enzyme involved in de novo lipogenesis. It
catalyzes the conversion of malonyl-CoA to palmitate acid in the cytoplasm of cells [66].
FASN is a proto-oncogene that participates in membrane biosynthesis, cell proliferation,
cell invasion, metastasis, lipid raft construction, immune evasion, recruitment of M2
macrophages and T regulatory cells, resistance to programmed cell death, and alterations
in cell energetics [67].

SCD1 (stearoyl-CoA desaturase-1) is located in the endoplasmic reticulum and contains
iron in its structure. It catalyzes the formation of a double bond in the fatty acid chain
between the ninth and tenth carbon (Figure 3) [68]. SCD1 plays a crucial role in cancer
progression and contributes to tumor aggressiveness [69]. Its expression levels vary across
different cancer types [70].

ELOVL6 (elongation of very long chain fatty acids protein 6) is situated in the micro-
somes of the endoplasmic reticulum and is responsible for elongating SFAs and MUFAs
containing 12, 14, and 16 carbons (Figure 3) [71]. Overexpression of ELOVL6 is associated
with poor prognosis in various types of cancer, including liver cancer, breast cancer, and
head and neck squamous cell carcinoma [72–74] (Table 1).

Table 1. Oncogenes involved in de novo lipogenesis.

Oncogenes Regulate Lipid Metabolism Metabolic and Lipidomic Changes Reference

ACC1 synthesis of malonyl-CoA [63]

FASN synthesis of fatty acids [67]

SCD1 desaturation of FA [69]

ELOVL6 FA elongation [71]

2.2. Ketolysis Is Critical for Acetyl-CoA Production in Cancer

In addition to de novo lipogenesis, there is another specific pathway in cancer cells,
and it generates acetyl-CoA for lipid synthesis, known as ketolysis (Figure 3). Israël and
Schwartz [75,76] suggest that the such production of acetyl-CoA is essential for cancer cells
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due to damaged mitochondria metabolism, in which oxidative phosphorylation is inhibited.
Inhibition of the oxidative phosphorylation process is a phenomenon known as the Warburg
effect. Furthermore, the production of acetyl-CoA through β-oxidation is suppressed in
cancer cells by the presence of malonyl-CoA derived from de novo lipogenesis. Ketolysis
occurs within the mitochondria and is considered the “Achilles heel” of cancer cells [75].
The key enzymes involved in ketolysis are beta hydroxybutyrate dehydrogenase (3-BDH),
succinyl-CoA: 3-oxoacid-CoA transferase (SCOT or OXCT1), and acetyl-Coenzyme A
acetyltransferase 1 (ACAT1) (Figure 3). Therefore, ketolysis serves as the primary precursor
pathway for de novo lipogenesis in cancer cells.

3. Ferroptosis Related Genes and Proteins as Therapeutic Targets

There are many key genes associated with ferroptosis, including GPX4, p53, ACSL4,
LPCAT3, LOX, TRF1, Ferritin, Ferroportin, HO-1, HSPB1, NCOA4, FSP1, GCH1, and NRF2,
among others. Numerous studies have investigated the role of these ferroptosis-related
genes in different types of cancer. There are some reviews related to this topic [77,78].

In this section, we will discuss several genes that hold importance as therapeutic
targets (see Table 2).

ACSL4 is involved in the conversion of long-chain polyunsaturated fatty acids (PUFAs),
such as arachidonic acid and adrenic acid, to CoA-PUFAs [22,79].

LPCAT3, also known as Lysophospholipid Acyltransferase 5, regulates the incorpora-
tion of PUFAs into the cell membrane. It was identified through haploid genetics screening
as being active in ferroptosis induced by RSL3 and ML162 [11].

NOXs (NADPH oxidases) were implicated in the pioneering study of ferroptosis, which
reported that erastin-induced cell death was mediated by reactive oxygen species (ROS)
produced by NOX enzymes [1]. The paper reported that ferroptosis caused by erastin was
blocked in Calu-1 cells via inhibition of NOX enzymes. NOX1 is expressed more than
NOX4 in this type of cell.

Lambeth et al. suggested that NOX enzymes produce ROS in a highly controlled
manner [80].

Additionally, proteins like Rac1 and Rac2 are involved in the activation of NOX enzymes.
Lipoxygenases (LOXs) play a significant role in lipid peroxidation during ferroptosis.

LOXs are a class of iron-containing enzymes that catalyze the addition of two oxygen
atoms to polyunsaturated fatty acids in a stereospecific manner. Yang et al. reported that
LOXs coordinate ferroptosis induced by erastin by catalyzing the formation of fatty acid
hydroperoxides, which are further transformed into eicosanoids such as leukotrienes. The
involvement of LOXs in the peroxidation of PUFAs, leading to ferroptotic cell death, occurs
when cellular antioxidant resources, such as reduced glutathione (GSH), are depleted [81].

Inhibition of 12/15-LOX or siRNA-mediated suppression of LOXs prevents ferroptosis,
while overexpression of ALOX15 sensitizes cells to ferroptosis inducers [82]. ALOX15
regulates the peroxidation of arachidonic acid (ω-6), eicosapentaenoic acid (ω-3), and
docosahexaenoic acid (ω-3) [83].

Overexpression of 15-LOX-1 (ALOX15) reduced the LD50 from 6.8 µM to 0.5 µM in
RSL3-induced ferroptosis and from 6.6 µM to 1.7 µM in erastin-induced ferroptosis [84].

Furthermore, 15LOX was found to peroxidize PUFA-phospholipids exclusively in the
PEBP1/15LOX complex [24].

P450 oxidoreductase (POR) was identified as a proferroptotic factor in a CRISPR study.
Exhaustion of POR suppressed ferroptosis induced by erastin, FIN56, FINO2, and BSO [85].
POR provides electrons for the catalytic peroxidation of PUFA-phospholipids. The electron
acceptor in this reaction requires further investigation.

MS4A15 decreases luminal Ca2+ levels and inhibits ferroptosis by altering the lipid
composition, enriching monounsaturated fatty acid-phospholipids (MUFA-PLs) and MUFA
plasmalogen ether lipids while restricting polyunsaturated fatty acid (PUFA)-lipids [86].
Depletion of Ca2+ blocks lipid elongation and preserves the saturation of ether lipids,
making phospholipids more resistant to lipid peroxidation and, consequently, to ferroptosis.
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Zou et al. described lipid differences in cancer cell lines that are sensitive to ferrop-
tosis [87]. They identified the key role of HIF-2α in this sensitivity. In renal clear-cell
carcinomas (CCCs), HIF-2α selectively enhances PUFA-phospholipids, which are sensi-
tive to reactive oxygen species (ROS), by overexpressing hypoxia-inducible lipid droplet-
associated protein (HILPDA).

The enzyme HO-1 has a contradictory role in cancer. Initially, it increases cancer
progression by defending cells against ROS, but high levels of ROS influence HO-1 to
produce more iron (II) through heme destruction, leading to lipid peroxidation [88].

Knockdown of the CD71 (Transferrin receptor 1) gene, which encodes the transferrin
receptor, has been shown to increase resistance to ferroptosis induced by erastin [6]. The
3F3-FMA antibody, targeting the Trf1 antigen, has been used as a marker of sensitivity
to ferroptosis [89]. Trf1 is responsible for supplying iron for cellular metabolism. While
cancer cells require iron for their functions, the antibody targeting Trf1 has demonstrated
anti-cancer effects [90]. However, it is important to note that iron is also necessary for the
process of ferroptosis. In comparison to normal cells, cancer cells, particularly cancer stem
cells, exhibit a higher dependence on iron [91]. Thus, Trf1 is a possible vulnerability of
cancer cells.

Genetic inactivation of SCD1 in A549 cells has been shown to increase their sensi-
tivity to RSL3, while overexpression of SCD1 in H358 cells has been shown to suppress
RSL3-induced ferroptosis [92]. Inhibition of SCD1 in ovarian cancer stem cells leads to
ferroptosis [93,94].

HMG-CoA reductase (HMGCR) plays an important role in the synthesis of GPX4 [20]
and CoQ10 [16], both of which have a preventive effect on ferroptosis. Additionally,
HMGCR catalyzes the biosynthesis of cholesterol. Incorporating cholesterol into cell
membranes can serve as a biophysical barrier to the propagation of lipid ROS.

Table 2. Genes involved in ferroptosis.

Genes Regulate Ferroptosis Influence Metabolic and Lipidomic Changes Reference

GPX4 Suppressor Recovery of peroxidized lipids [10,20,95]

ACSL4 Sensitizer Activation of the long chain PUFAs by CoA before
incorporation into the lipid membrane structure [22]

LPCAT3 Sensitizer Incorporation of the long chain PUFAs into the
membrane phospholipids [11]

ALOX15 Sensitizer Peroxidation of the AA and AdA [84]

NOX Promoter Producing ROS and increasing of the membrane
PUFA-PLs peroxidation [1]

P450 Sensitizer Increasing the membrane PUFA-PLs peroxidation [85]

MS4A15 Suppressor Elevation MUFA-PL and plasmalogen ether PL,
limiting PUFA-PL [86]

HIF-2α Sensitizer Enhancement of PUFA-PL [87]

HO-1 Sensitizer Elevation of lipid peroxidation [88]

CD71(TfR1) Sensitizer Elevation of LIP [89]

FASN Suppressor Increasing SFAs and MUFAs in lipids, limiting PUFA-PL [61]

SCD1 Suppressor Increasing MUFA/SFA ratio in lipids, limiting PUFA-PL [70,94]

HMGCR Suppressor Elevation of the level of CoQ10 (antioxidant) and
production of IPP, which participate in the building of GPX4 [16,20,30]
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4. Lipidomic Changes at Ferroptosis: Keys to Increase Sensitivity to Ferroptosis

Membrane phosphatidylethanolamines (PEs) were initially discovered as the pri-
mary target of lipid peroxidation in RSL3-induced ferroptosis. Kagan et al. demon-
strated that arachidonate and adrenate phosphatidylethanolamines (PE-(C18:0/C20:4),
PE-(C18:0/C22:4)) undergo peroxidation, resulting in the following peroxidation products:

PE-(C18:0/C20:4+2[O])
PE-(C18:0/C20:4+3[O])
PE-(C18:0/C22:4+2[O])
PE-(C18:0/C22:4+3[O]) [27].

The study found that the highest levels of oxidized phosphatidylethanolamines
(oxyPE) and oxidized phosphatidylserines (oxyPS) were observed in ferroptosis com-
pared to apoptosis, necroptosis, non-canonical pyroptosis, and canonical pyroptosis. OxyPI
was more abundant in ferroptosis than apoptosis, but was not detected in other forms of
cell death. OxyPC, on the other hand, was present in all types of cell death [96].

In HT1080 cells, erastin-induced ferroptosis was associated with an increase in lysoPC
levels [10]. The lipidomics profile in erastin-induced ferroptosis differs from that of RSL3-
induced ferroptosis. It can be hypothesized that erastin partially activates phospholipase A2.

Numerous studies have suggested that differences in lipid composition play a crucial
role in susceptibility to ferroptosis, particularly the involvement of polyunsaturated fatty
acids (PUFAs). Lin et al. [97] analyzed the key lipid metabolism features associated with
ferroptosis sensitivity.

Peroxisomes and polyunsaturated ether phospholipids (PUFA-ePLs) have been found
to significantly influence ferroptosis sensitivity. The reduction of PUFA-ePLs levels pro-
motes a resistant state against ferroptosis and regression of cancer therapy in clear-cell
renal-cell carcinoma (ccRCC) [98].

Magtanong et al. observed that monounsaturated fatty acids (MUFAs) confer resis-
tance to ferroptosis by incorporating them into membrane phospholipids (PLs) through
the action of ACSL3. In addition, MUFAs help to collect SFAs [99]. Ether-MUFAs have
correspondingly been shown to inhibit ferroptosis by Xin and Schick (2022) [86], whereas
ether-PUFAs promote ferroptosis.

SFAs and SFA-PLs lack double bonds and, therefore, cannot participate in lipid per-
oxidation, rendering them resistant to ferroptosis. They act as mechanical (biophysical)
barriers against the propagation of lipid reactive oxygen species (ROS).

On the other hand, the presence of PUFAs in membrane PLs has been shown to
increase susceptibility to ferroptosis, while MUFAs and SFAs correspond to a resistant
state [100,101] (Figure 4).
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The scheme showing PUFAs participation in ferroptosis is presented in Figure 5.
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5. Chemical Modulators of Ferroptosis
5.1. Ferroptosis Inducers

Yang et al. concluded that ferroptosis inducers can be classified into two categories.
The first class inhibits GPX4 through GSH depletion, as in the case of erastin. The second
class inhibits GPX4 by binding directly to it, such as in RSL3 [10].

Erastin was discovered to selectively induce non-apoptotic cell death in cells express-
ing the small T oncoprotein and oncogenic Ras [4].

Similar to glutamate, erastin blocks the transport of cysteine into the cell by inhibiting
the cystine/glutamate antiporter (System xc-). This leads to depletion of antioxidants,
resulting in oxidative, iron-dependent cell death [1].

Erastin significantly depletes both reduced glutathione (GSH) and oxidized glu-
tathione (GSSG) [10].

RSL3, on the other hand, does not affect GSH levels but covalently binds to and
inhibits GPX4 directly [10].

BSO is another compound that reduces GSH levels [10].
Lippmann et al. proposed a new treatment approach for hepatocellular carcinoma,

involving the combination of auranofin and BSO or erastin and BSO to induce ferroptosis.
This approach utilizes both canonical (GPX4 suppression) and non-canonical pathways
(expression of Nrf2 and enhancement of HO-1) [102].

Sulfasalazine and sorafenib are clinically proven drugs that have been approved by
the FDA. These drugs inhibit system xc- and induce ferroptosis [103].

Sulfasalazine was originally used as an anti-inflammatory agent, while sorafenib is
an anticancer drug. Since these drugs are already approved for medical use, they have
the potential to be immediately tested and utilized for ferroptosis-based cancer treatment,
following the new strategies proposed in the current review with sensitizers. This provides
an accelerated way to clinical implementation.

Several natural compounds have been associated with the induction of ferropto-
sis [104]. The mechanism of artemisinin helps produce reactive oxygen species (ROS)
through iron metabolism. Artesunate increases the labile iron pool through ferritinophagy
in lysosomes. Dihydroartemisinin leads to a decrease in reduced glutathione (GSH) levels
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and an increase in lipid ROS. Gallic acid inhibits GPX4. Erianin and salinomycin elevate
the intracellular iron pool.

A chemoinformatic analysis of different ferroptosis modulators is presented in the
review [105]. Natural phenolic compounds, such as typhaneoside, robustaflavone A,
amentoflavone, and erianin (at µM levels), have demonstrated antitumor properties by in-
ducing ferroptosis in vitro and in vivo. However, some compounds like apigenin, baicalin,
resveratrol, and curcumin may have a dual effect depending on the cell type or composition
of the formulation.

N6F11 is a novel selective ferroptosis inducer that does not suppress immune cells. It
activates TRIM25, leading to the degradation of GPX4 [30–32].

The active compounds that induce ferroptosis are listed in Table 3.

Table 3. Substances as ferroptosis inducers.

Small Molecules Origin Mechanism Reference

erastin synthetic blocks cystine uptake which leads to
depletion of glutathione [1,4,5]

RSL3 synthetic binds GPX4 and inhibits it [6]

BSO synthetic depletes glutathione [10]

sulfasalazine synthetic inhibits system xc- [103]

sorafenib synthetic inhibits system xc- [103]

artesunate natural elevates labile iron pool [104]

dehydroartemisisnin natural decreases GSH level [104]

withaferin A natural medium dose NRF2 activator;
high dose GPX4 inhibitor [106]

N6F11 synthetic TRIM25 agonist, leads to
degradation of GPX4 [30]

5.2. Ferroptosis Inhibitors

Ferrostatin-1 has been found to inhibit lipid peroxidation without decreasing mito-
chondrial reactive oxygen species or lysosomal membrane permeability [8].

It functions as a scavenger of free radicals [107]. The proposed mechanism of ferrostatin-
1 is primarily as a radical-trapping antioxidant rather than as an inhibitor of lipoxyge-
nases [108]. However, there is evidence suggesting that it blocks HpETE-PE formation by
the 15LOX/PEBP1 enzymatic couple [109]. This suggests that the ultimate executioners of
ferroptosis have not yet been identified.

Several natural compounds exhibit anti-ferroptotic effects through ROS scavenging,
iron chelation, or the expression of GPX4 and NRF2 [105]. Many polyphenols, such as galan-
gin, kaempferol, naringenin, quercetin, green tea catechins, and fisetin, act as ferroptosis
defenders at micromolar concentrations, thereby exerting a neuroprotective effect.

PUFA-PLs are the main participant in peroxidation in ferroptosis; however, omega-3
PUFAs support transcription factors which enhance antioxidant systems and reduce lipid
peroxidation via ferroptosis [110]. Therefore, they have potential as ferroptosis inhibitors.

NADPH and niacin (Vitamin B3) are relevant in this context. Niacin, including nico-
tinic acid and nicotinamide, serves as a precursor of NADPH. Niacin deficiency activates
NADPH oxidase and increases ROS in HaCaT keratinocytes [111].

Therefore, it is logical to test niacin (nicotinic acid, nicotinamide, and NADPH) as a
potential anti-ferroptotic agent and a prospective mitigator of side effects associated with
ferroptotic anticancer therapy.

6. Therapeutic Strategies Based on the Metabolome and Lipidome Reprogramming

Ferroptosis is a promising alternative for the treatment of cancers that are resistant to
chemotherapy [112].
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Several cell lines have been found to be susceptible to ferroptosis, including A-673 (hu-
man muscle sarcoma) cells, SK-BR-3 (human breast cancer) cells, Huh-7 (hepatocyte-derived
carcinoma) cells, and SK-LMS-1 (human leiomyosarcoma) cells [89]. Overexpression of
Trf1 serves as a marker of sensitivity to ferroptosis, as it leads to increased iron uptake
by cells. ACSL4 is overexpressed in HepG2 and HL60 cell lines, which are sensitive to
ferroptosis [17]. On the other hand, ferroptosis-resistant cell lines such as LNCaP and
K562 exhibit low expression of ACSL4. Increased de novo lipogenesis has been associated
with greater resistance to lipid peroxidation [113], with cells like LNCaP and HCT116 cells
showing the highest resistance.

6.1. De Novo Lipogenesis Pathway as Targets for Sensitization to Ferroptosis

Increased de novo lipid biosynthesis is considered one of the important characteristics
of cancer cells [62,114].

Normally, all lipids (saturated and unsaturated) in mammalians are present in the
body due to food intake.

Saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) can be synthe-
sized through de novo lipogenesis (DNL) from carbohydrates, which is a metabolic feature
observed in many cancer cells. Under normal conditions, DNL is balanced between the
liver and adipose tissue. However, in pathologies such as obesity and insulin resistance,
this balance is disrupted, and DNL is primarily shifted towards the liver [115]. De novo
lipogenesis is also observed in various other tissues in malignancy [62] (Figure 6). Therefore,
enzymes involved in de novo lipogenesis represent selective targets against cancer cells
because they are typically active in only a few normal cell types.
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PUFAs (polyunsaturated fatty acids) are essential components of food and cannot
typically be synthesized in mammals [116].

In vivo and in vitro studies have shown that reducing de novo lipogenesis leads to
increased assimilation of nutritious PUFAs [117]. Interruption of de novo lipogenesis can
impact the exploitation of PUFAs from the diet.

Tumors with high aggressiveness often exhibit high rates of de novo lipid biosynthesis.
Rysman et al., based on mass spectrometry analysis, demonstrated that clinical tumor
tissues with high lipogenesis have increased lipid saturation compared to non-lipogenic
tumors. This increased saturation makes them more resistant to lipid peroxidation. These
changes in membrane lipid saturation were observed in prostate cancer cell lines (LNCaP,
2Rv1, PC-3, and Du145), breast cancer (BT474), and colorectal cancer (HCT116). The most
significant elevation in saturation was observed in LNCaP and HCT116 cells [113].
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Ferroptosis-resistant cell lines pose a significant challenge. This resistance can be
attributed to the increased saturation of cell membrane lipids, as observed in LNCaP and
HCT116 cells.

One paper [113] described how the lipogenesis inhibitor soraphen A, or targeting
lipogenic enzymes with siRNA, leads to lower levels of saturated and monounsaturated
phospholipids and an increase in polyunsaturated lipids. Soraphen A specifically inhibits
ACC1, and authors [118] have proposed ACC1 as a potential biomarker and target in non-
small-cell lung cancer (NSCLC). New ACC1 inhibitors, such as ND-646 and its derivatives,
have been discovered and studied in A549 cells, showing inhibition of cancer growth with
an IC50 of 9–17 nM.

Other known ACC inhibitors include CP-640186, haloxyfop, sethoxydim, and moiramide
B [63].

Inhibition of FASN (fatty acid synthase) reduces (SFAs) and (MUFAs), regulating the
process of including PUFAs into phospholipids (PLs) of mutant KRAS lung cancer cells,
and increasing their sensitivity to ferroptosis [89].

Overexpression of FASN elevates SFAs and MUFAs lipid levels and reduces PUFA
lipids in cancer cells, in opposition to normal cells [113]. It supports cancer cell resistance
to ROS. Inhibition of FASN can have a significant impact.

FASN inhibitors selectively induce programmed cell death in different tumor cells
while sparing normal cells since only a small number of normal cells depend on FASN [119].
GSK2194069 was proposed as a FASN inhibitor (IC50 7.7 nM).

Several FASN inhibitors have been discovered [120], including C75, orlistat, the
polyphenol epigallocatechin-3-gallate from green tea, and flavonoids such as luteolin,
quercetin, and kaempferol. C75 is a synthetic analog of orlistat. FASN inhibitors are of in-
terest in studying the reprogramming of the lipidome to enhance ferroptosis susceptibility,
particularly in combination with ferroptosis inducers.

FASN inhibitors are of interest in the reprogramming of the lipidome to elucidate
ferroptosis susceptibility, for further combination with ferroptosis inducers.

Authors [94] have proposed a complex therapy strategy involving the simultaneous
application of SCD1 suppressors and ferroptosis inducers.

New inhibitors of SCD1 (SSI-1, SSI-2, SSI-3, and SSI-4) have been discovered using
advanced chemoinformatic drug development [121].

Pharmacological inactivation of SCD1 with CVT11127 in STK11/KEAP1 double knock-
out lung adenocarcinoma cells has been shown to reverse resistance and make these cells
sensitive to ferroptosis induced by erastin [92]. SSI-4 and icomidocholic acid (aramchol)
are inhibitors of SCD1 which have successfully finished clinical trials.

SSI-4 and icomidocholic acid (aramchol) are inhibitors of SCD1 that have successfully
completed clinical trials. Inhibition of SCD1 leads to a decrease in the ratio of MUFAs
to SFAs, an increase in PUFAs, and a promotion of a less aggressive survival pheno-
type. SCD1 upregulates the MUFAs/SFAs ratio in lipids, while PUFAs are significantly
downregulated [122]. Inhibition of SCD1 can lead to different types of programmed cell
death [70,123].

Several thorough reviews have also focused on the inhibition of de novo fatty acid
biosynthesis as an anti-cancer therapy [57,67,124,125].

6.2. Ketolysis Pathway as a Target for Ferroptosis Sensitisation

It was noted earlier that the primary substrate for de novo lipogenesis in cancer
cells, which is ultimately produced by ketolysis, is acetyl-CoA [75,76]. There are three
more sources of acetyl-CoA. The first is derived from glucose through pyruvate. Pyruvate
forms acetyl-CoA (via catalysis by the pyruvate dehydrogenase complex (PDH)). In tumor
cells, it is deactivated. The second source is from β-oxidation of FA (inhibited in cancer).
The final source is from exogenous acetate (catalyzed by acetyl-CoA synthase (ACS)).
Authors [126] have proposed to inactivate the latter pathway using allicine or orotate. In
contrast to normal cells, in cancer cells, all three of these sources are unavailable, and only
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ketolysis is a viable pathway for acetyl-CoA production. Pharmacological intervention
could possibly ultimately shut this door. Depletion of acetyl-CoA disrupts many metabolic
pathways, including fatty acid and cholesterol metabolism; thus, normal cells will have
better opportunity for survival.

Genes that support the production of acetyl-CoA through ketolysis are important
targets for cancer treatment. One of the main enzymes involved in ketolysis is SCOT
(succinyl-CoA: 3-oxoacid-CoA transferase). Abolhassani et al. suggested that inhibiting
SCOT and ketolysis can suppress tumor growth [127]. The authors studied several com-
pounds, including lithostat, 2-epigallocatechin, 3-alpha R lipoic acid, hydroxycitrate (from
Garcinia Cambogia), and allicin, and demonstrated tumor inhibition comparable to 70%
cisplatin treatment.

M. Israel et al. provided an in-depth explanation of the role of ketolysis in cancer
progression and the anticancer mechanisms of ketolysis inhibitors [126].

If ketolysis is inhibited, acetyl-CoA will be depleted, so antiferroptotic de novo lipoge-
nesis will be blocked, and production of SFAs and MUFAs will be depleted. Furthermore,
its level in membrane PL will be reduced. The antiferroptotic mevalonate pathway will
also be blocked, isopentyl pyrophosphate (IPP) will be depleted, GPX4 will crash, and
cholesterol will also be decreased.

For incorporation of exogenous proferroptotic PUFAs into cell membrane PL, there is
no need for acetyl-CoA. ACSL4 (acyl-CoA synthetase long chain family member 4) uses
only CoA-SH, which is synthesized from pantothenate, for activation of PUFAS before
integration into membrane PLs; for PUFAs, the door is open.

Therefore, reprogramming tumor cells by inhibition of ketolysis will make more
sensitive to ferroptosis state is key.

Dependence of ferroptosis sensitivity on ketolysis inhibition has not been shown in
the literature as yet.

One can consider ketolysis inhibitors as ferroptosis sensitizers. Thus, the combination
of inhibitors of ketolysis and ferroptosis inducers promises to have a synergetic effect.

Compounds-inhibitors of de novo lipogenesis and ketolysis are presented in Table 4.

Table 4. Substances-inhibitors of de novo lipogenesis and ketolysis, prospective sensitizers to ferroptosis.

Target Protein
or Pathway Small Molecules Origin Perspective Reference

ACC1 (i) * soraphen A natural potential [113]

ACC1 (i) ND-646 synthetic potential [118]

FASN (i) C75 synthetic potential [120]

FASN (i) orlistat natural potential [120]

FASN (i) epigallocatechin-3-gallate natural potential [120]

SCD1 (i) CVT11127 synthetic tested [92]

SCD1 (i) SSI-4 synthetic potential [121]

SCD1 (i) aramchol
(icomidocholic acid) natural potential [70]

SCOT (i) lithostat synthetic potential [126,127]

SCOT-ACAT1 (i) 3- alpha R lipoic acid natural potential [126,127]

SCOT-ACAT1 (i) hydroxycitrate (from
Garcinia Cambogia); natural potential [126,127]

SCOT-ACAT1 (i)
ACS (i) allicin natural potential [126,127]

* (i) inhibitor.
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6.3. Ferroptosis Sensitizers Which Target Genes Involved to PUFA-PLs Biosynthesis and Metabolism

The PPARδ (peroxisome proliferator-activated receptor delta) activator, L-165041, has
been shown to increase the expression of ACSL4 in vivo, specifically in hamster liver, as
well as in primary human, hamster, and mouse hepatocytes [128]. Activation of ACSL4 can
lead to the formation of a ferroptosis-sensitive lipidome.

Activation of LXR (liver X receptor) cause overexpression of LPCAT3 [129]. Therefore,
LXR activators, such as saikosaponin A [130] and 24-hydroxycholesterol [131], are prospects
for sensitization to ferroptosis.

ML329, an inhibitor of breast cancer stem cells, has been discussed as an activator of
FADS2, which can increase the levels of PUFA-PLs (phospholipids containing polyunsat-
urated fatty acids) in cancer cells, thereby increasing their unsaturation [25]. This could
potentially increase the sensitivity of cells to ferroptosis.

Darapladib, an Lp-PLA2 inhibitor, can protect PUFA-PLs from hydrolysis using phos-
pholipase, making cells more susceptible to ferroptosis by elevating the levels of phos-
phatidylethanolamine at the expense of lysophosphatidylethanolamines [132]. Genetic
suppression of PLA2G7, which encodes Lp-PLA2, has shown similar results.

Etomoxir is an irreversible inhibitor of carnitine palmitoyltransferase 1a (CPT1a), a
suppressor of PUFA β-oxidation [133]. Etomoxir has been shown to enhance the ability of
RSL3 to induce ferroptosis [27].

One possible explanation for the sensitization to ferroptosis caused by etomoxir is its
inhibition of β-oxidation, which blocks the production of acetyl-CoA, a precursor of de
novo lipogenesis.

Malonyl-CoA has been described as an inhibitor of CPT1 [134,135].
Therefore, a further “hack” would be to employ malonyl-CoA as a non-toxic ferroptosis

sensitizer that reversibly inhibits CPT1.

6.4. Ferroptosis Sensitizers Acting on Different Lipid Metabolism Pathways Reprogramming

Hemin, an iron-containing compound, has been shown to boost ferroptosis in platelets [136].
In lung cancer cells, hemin induces ferroptosis by increasing the effectiveness of reactive
oxygen species (ROS) in lipid peroxidation [137]. The induction of ferroptosis by erastin, an-
other ferroptosis inducer, is enhanced by hemin and CO-releasing molecules (CORM) [13].

Hemoglobin, under oxidative stress, releases the heme prosthetic group, which has
been shown to be cytotoxic due to its ability to catalyze ROS formation. Heme can activate
ferroptosis in human platelets [138].

Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor,
suppresses the protective properties of the Nrf2/HO-1 pathway in KRAS mutant colorectal
cancer. As a result, it supports RSL3-induced ferroptotic cell death [139].

A study demonstrated a synergistic effect between multiple inhibitors of HMGCR
(hydroxymethylglutaryl-coenzyme A reductase), such as statins and RSL3 [25].

The histone deacetylase inhibitor (HDACi) romidepsin increases the sensitivity of
SW13 cancer cells to erastin-induced ferroptosis by activating epithelial-mesenchymal
transition (EMT) and downregulating ferroportin, thereby increasing iron levels and ROS
production [140].

Table 5 is devoted to the compounds which are prospects for rendering cells ferroptosis-
sensitive.

Table 5. Prospective sensitizers to ferroptosis.

Target Protein Small Molecules Origin Perspective Reference

PPARδ (a) */ACSL4 L-165041 synthetic potential [128]

LXR (a)/LPCAT3 saikosaponin A natural potential [130]

LXR (a)/LPCAT3 24-hydroxycholesterol natural potential [131]

CPT1a (i) ** etomoxir synthetic tested [27]
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Table 5. Cont.

Target Protein Small Molecules Origin Perspective Reference

CPT1 (i) malonyl-CoA synthetic potential [134,135]

HO-1 (a) heme synthetic tested [138]

HMGCR (i) statins synthetic tested [25]

HDAC (i)/Ferroportin romidepsin natural tested [140]
* (a) activator; ** (i) inhibitor.

6.5. Redox Balance Reprogramming for Ferroptosis Sensitization

Reprogramming the redox equilibrium is a promising approach for inducing or pre-
venting ferroptosis. Cells have enzymatic and non-enzymatic mechanisms for the peroxi-
dation of free fatty acids (FAs) and polyunsaturated fatty acid-containing phospholipids
(PUFA-PLs), but this process is balanced by antioxidant systems such as glutathione (GSH),
CoQ10, and tetrhydrobiopterin (BH4).

6.5.1. Activation of Enzymes Involved in Peroxidation

NOX (NADPH oxidase) activation.
Arachidonic acid (AA) can initiate NOX [141].
Phospholipids, particularly phosphatidic acids (PA), can activate NOX through protein

kinase in cell-free experiments [142]. Dicapryl-sn-glycerol-3-phosphate (10:0) works at a
concentration of 10 µM, and PA in combination with diacylglycerol has a synergistic effect.

Arachidonic acid and the phosphorylation of p47phox by protein kinase C work
together to activate NOX at a concentration of AA ranging from 1 to 5 µM under cell-free
conditions [141]. Activation with a single AA was observed at higher concentrations of
50–100 µM. The anionic amphiphile SDS (sodium dodecyl sulfate), at levels ranging from
50 to 150 µM, can also initiate NOX activity in vitro. Additionally, 8,11,14-eicosatrienoic
acid has a slight activation effect.

NADPH is depleted during CD38 activation [143]. The analog of calcitriol, 1alpha,25-
dihydroxyvitamin D3, stimulates CD38 expression [144]. Inecalcitol, an analog of calcitriol,
can also induce CD38 overexpression.

It is possible to test 1alpha,25-dihydroxyvitamin D3 (calcitriol), or its analog inecalcitol,
as ferroptosis sensitizers. They reduce NADPH levels, thereby increasing NOX activity
and sensitivity to ferroptosis. Calcitriol is used as an anticancer agent, but can cause
hypercalcemia as a side effect. Inecalcitol has a lower incidence of side effects. Combining
them with ferroptosis inducers may reduce the effective dose (ED50) required, and thus the
corresponding toxic effects.

MnTE-2-PyP has been combined with radiation for the treatment of prostate cancer. It
suppresses enzymes in the pentose phosphate pathway, depleting NADPH and decreasing
GSH/GSSG ratios [145]. Depletion of glutathione is evidence of increased ferroptosis
sensitivity. MnTE-2-PyP can be tested as a ferroptosis sensitizer.

LOX (lipoxygenase) activation:
(E)-1-(7-benzylidene-3-phenyl-3,3a,4,5,6,7-hexahydroindazol-2-yl)-2-(4-methylpiperazin-1-

yl)ethanone (PKUMDL_MH_1001) has been proposed as an activator of ALOX15. The
authors claim that ferroptosis is related to the cell membrane-localized enzyme. They have
shown that the LOX activator sensitizes cells to ferroptosis at low doses of erastin and
RSL3 [80].

An additional study found a synergistic stimulation of ferroptosis with locostatin [24].
Locostatin releases (activates) PEBP1 for interaction with 15LOX.

Table 6 presents genes that regulate lipid peroxidation and corresponding agonists.
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Table 6. Reprogramming compounds focused on the activation of the proteins responsible for peroxidation.

Target Protein Small Molecules Origin Perspective Reference

NOX (a) * Arachidonic acid (AA) natural potential [141,146]

NOX (a) Phosphatidic acids (PA) natural potential [142]

NOX (a) 8,11,14-eicosatrienoic acid natural potential [141]

ALOX15 (a) PKUMDL_MH_1001 synthetic tested [80]

PEBP1 (a)/15LOX locostatin synthetic tested [24]
* (a) activator.

6.5.2. “Relaxing” Oxidative Stress: Lipidome Reprogramming as New Alternative
Paradoxal Key to Ferroptosis Sensitization

Supplementation of polyunsaturated fatty acids (PUFAs) prior to ferroptosis-inducing
treatment has been shown to sensitize cells. Omega-6 PUFAs are more prone to peroxidation
than omega-3 PUFAs, making them more likely to contribute to ferroptosis and enhance its
effects [110].

Ascorbic acid (vitamin C) has been used for sensitization to erastin-induced ferropto-
sis [147].

The authors described that the application of a gradual increase in the concentration
of RSL3 led to the reprogramming of BT474 cells into an RSL3-resistant state [148]. This
suggests that antioxidant treatment may have the potential to make cells more sensitive
to ferroptosis.

Ferrostatin-1 and new generations of ferrostatins (such as SRS16-86 and SRS11-92) as
well as natural antioxidants like eugenol, sulforaphane, and erucin are potential reprogram-
mers of tumor cells towards a ferroptosis-sensitive phenotype.

Thiothriazoline [149], thiometrizole (discovered at Zaporizhzia State Medical and
Pharmaceutical University in Ukraine), and other thio-1,2,4-triazoles [150–155] have been
identified as highly effective antioxidants and need to be tested as potential agents for
relaxing oxidative stress and reprogramming the lipidome towards elevated PUFA levels.

Thiothriazoline and thiometrizole act as antioxidants and scavengers of reactive oxy-
gen species (ROS). Thiothriazoline has shown properties that seem to oppose the Warburg
effect. The substance activates lactate dehydrogenase (LDH) and promotes the conversion
of lactate to pyruvate, thereby reducing lactate acidosis and stimulating the Krebs cycle.
Other thio-1,2,4-triazoles should be tested in a similar manner. Investigation into the influ-
ence of such opposing Warburg effects on cancer cells, particularly in terms of lipidome
and phenotype, will be promising in cancer study and treatment.

Yousefian [156] et al. suggested that polyphenols such as berberine, thymoquinone,
catechin, celastrol, apocynin, resveratrol, curcumin, hesperidin, G-hesperidin, and quercetin
possess antioxidant properties as free radical scavengers and can inhibit the activity of
NADPH oxidases.

6.6. General Strategies to “Hack” the Lipidome for Cancer Treatment by Ferroptosis

Each cancer type has both common and specific characteristics in terms of resistances
and vulnerabilities of the cancer cell lipidome and metabolome to ferroptosis.

Monitoring the elevation of PUFA levels during ferroptosis sensitization treatment
can serve as a sign that the cells are ready for switching to ferroptosis-inducers therapy.

Reprogramming cancer cells to increase the levels of PUFAs in cell membrane phos-
pholipids while decreasing saturated fatty acids (SFAs) and monounsaturated fatty acids
(MUFAs) is necessary to enhance sensitivity to ferroptosis.

Figure 7 presents the most important tested and potential targets for ferroptosis
sensitization.
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Figure 7. Ferroptosis sensitization pathways (developed based on KEGG hsa04216 Ferroptosis [157]).
Red represents ferroptosis inducers. Green represents tested ferroptosis sensitizers. Violet represents
potential ferroptosis sensitizers.

The following strategies can be employed:

- Assess all enzymes involved in lipid metabolism which promote the incorporation of
MUFAs and SFAs into cell membrane phospholipids and inhibit these enzymes.

- Assess all enzymes involved in lipid metabolism which promote the incorporation of
more PUFAs into cell membrane phospholipids and activate these enzymes.

- Block de novo lipogenesis by inhibiting the responsible enzymes.
- Block the production of Acetyl-CoA, which is the primary substrate for de novo

lipogenesis, by inhibiting ketolysis.
- Activate enzymes that generate lipid ROS (such as NOX, LOX, COX, and POR) for

synergistic use with ferroptosis inducers.
- Increase PUFA assimilation with nutrients.
- Preserve PUFAs (“relax” ROS) and accumulate them using antioxidants (ferrostatin,

sulforaphane, erucin, etc.) or through reversible inhibition of NOX, LOX, COX, POR
(for example, using niacin to decrease NOX activity).

The algorithm for scouting ferroptosis sensitizers for new drug development and
therapeutic strategies involves the following steps:

- Screen substances that correspond to target genes.
- Assess changes in lipidomics after cell culture treatment (changes in PUFA-PL/MUFA-

PL/SFA-PL).
- Determine the order of treatment (pre- or co-treatment).
- Check cell viability after ferroptosis induction.
- Conduct toxicology studies and use xenograft models.
- Proceed with clinical development.

Combinations of active pharmaceutical ingredients, whether used simultaneously
or sequentially, can have more potent and targeted effects. Simultaneous combination
therapy can lead to synergistic effects and help lower therapeutic concentrations. Sequential
combination therapy may be used when one component reprograms the lipidome and
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metabolome to a more sensitive state, and another component induces ferroptosis. This
approach can be an effective method to overcome drug resistance. Different classes of
ferroptosis inducers can be combined, and sensitizers can be used together with inducers.

Given the need for personalized medical care, it is useful to conduct individual studies
of lipid composition for each specific patient and their disease in order to select the optimal
ferroptosis sensitizers.

7. Conclusions and Future Perspectives

Cancer cells have several vulnerabilities that make them more susceptible to ferroptosis-
inducing therapy as compared to normal cells. These vulnerabilities can be targeted to
selectively induce ferroptosis in cancer cells.

One specific vulnerability of cancer cells is their high reliance on de novo lipogenesis,
a metabolic pathway involved in the synthesis of fatty acids. De novo lipogenesis is highly
active in cancer cells, but almost entirely inactive in normal cells, except for liver cells and
adipocytes [33,115]. Inhibiting de novo lipogenesis selectively targets cancer cells.

In addition, cancer cells have limited alternative sources of acetyl-CoA, a primary
metabolite in de novo lipogenesis.

Inhibition of acetyl-CoA production through the inactivation of ketolysis, which is
responsible for generating acetyl-CoA, is specific to cancer cells. This is because other
sources of acetyl-CoA, such as the Krebs cycle and fatty acid β-oxidation, are inhibited
in cancer cells. Normal cells are safe during the inhibition of ketolysis because they have
alternative open sources of acetyl-CoA [75,76,126,127].

These pathways generate antiferroptotic saturated fatty acids (SFAs) and monounsatu-
rated fatty acids (MUFAs) that contribute to the composition of membrane phospholipids,
making the membranes more resistant to ferroptosis. Acetyl-CoA is a precursor of the
antiferroptotic mevalonate pathway, which builds CoQ10, GPX4, and cholesterol. All of
this data serves as evidence that ketolysis is also an antiferroptotic pathway.

This proves that targeting ketolysis can help “hack” cancer cell resistance to ferroptosis
through shutting down de novo lipogenesis and the HMGCR pathway.

SFAs, SFA-containing phospholipids (SFA-PLs), and cholesterol act as mechanical
barriers for the propagation of lipid ROS, contributing to ferroptosis resistance. Inhibitors
of enzymes involved in ketolysis and de novo lipogenesis, such as SCOT, ACC1, FASN, and
SCD1, can reprogram the lipidome to make cancer cells more sensitive to ROS. Therefore, it
is a promising approach to investigate the application of ferroptosis inducers in combination
with inhibitors of de novo lipogenesis and ketolysis, especially for ferroptosis-resistant
cancer types. The potential dependence of ferroptosis sensitivity on ketolysis inhibition has
been demonstrated in this review for the first time.

In general, increasing sensitivity to ferroptosis involves suppressing ketolysis and de
novo lipogenesis, increasing the supply of PUFAs through nutrition, and promoting the
accumulation of PUFAs in membrane phospholipids. Any metabolic reprogramming that
decreases SFAs and MUFAs while increasing PUFAs in phospholipids holds promise for
sensitizing cancer cells to ferroptosis. Combining activators of specific enzymes, such as
phosphatidic acids for NOX activation, with ferroptosis inducers is also a possible strategy.
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