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Abstract: Cell death is crucial for maintaining tissue balance and responding to diseases. However,
under pathological conditions, the surge in dying cells results in an overwhelming presence of
cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation
and hepatocellular cell death, which are key factors in various liver diseases caused by viruses,
toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm
that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is
characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher
risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis,
pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including
liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-
reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death
in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at
modulating cell death pathways.

Keywords: cell death; pyroptosis; apoptosis; ferroptosis; cancer; liver surgery; liver disease

1. Introduction

Regulated cell death (RCD) plays an essential role in balancing cell growth and cell
turnover within the liver. In the normal physiological state, cell death is non-immunogenic,
and even extensive cell death can trigger regenerative, health-restoring responses. In
pathogenic cell death, cells work to eliminate threats and initiate immune responses,
contributing to the maintenance of organ homeostasis. Nevertheless, a persistent overload
of cellular stressors to the liver can disrupt this balance, giving rise to hepatic inflammation
and hepatocellular cell death, which are key elements in various liver diseases. Both
hepatocytes, as primary liver cells, and non-parenchymal cells, such as Kupffer cells and
hepatic stellate cells (HSCs), can undergo different forms of RCD. Such forms include non-
lytic apoptosis, as well as lytic necroptosis, pyroptosis, and ferroptosis. Lytic mechanisms
can trigger robust inflammatory responses due to cell membrane permeabilization and the
release of cellular components. Consequently, immune cells are recruited, and quiescent
hepatic HSCs begin transforming into active myofibroblasts.

Hepatocellular death is present in nearly all types of human liver diseases, acting as a
highly sensitive and early marker in acute and chronic conditions. Contemporary evidence
demonstrates that the initiation of liver diseases is primarily driven by hepatocyte death,
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leading to inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) [1,2].
In acute liver diseases (e.g., drug-induced liver injury, ischemia-reperfusion injury, etc.),
fulminant cell death is a fundamental cause of liver failure, whereas chronic hepatocyte
death and the associated inflammation contribute to the progression of fibrosis. Ongoing
fibrosis can ultimately impair liver function and create a conducive environment for tumor
development. In liver tumors, RCD processes influence both pro-tumorigenic and anti-
tumorigenic responses within the tumor and its tumor microenvironment (TME). This
review summarizes recent advancements in our understanding of the role of cell death
in acute and chronic liver diseases. We highlight the molecular significance of cell death
in acute drug-induced liver injury (DILI), alcohol-associated and metabolic dysfunction-
associated steatotic liver disease (ALD and MASLD), liver cancer, tumor microenvironment,
and liver surgery/ischemia-reperfusion injury.

2. Types of Cell Death

In this chapter, we offer a general overview of the most significant forms of regulated
cell death. Additionally, we direct the reader to the summary provided by the Nomenclature
Committee on Cell Death (NCCD) published in 2018, which established the standard for
defining each type of cell death [3]. An updated version focusing on apoptosis is also
available [4].

2.1. Pyroptosis

Pyroptosis, as a form of lytic cell death, is observed in chronic liver diseases such
as ALD and MASLD/metabolic dysfunction-associated steatohepatitis (MASH) [5]. Py-
roptotic cell death leads to the release of proinflammatory cytokines and cellular lysis.
This process contributes to immune responses against pathogens but is also implicated
in tissue damage in inflammatory diseases [2]. The mechanism is mediated by inflam-
masomes, which are multiprotein complexes that sense danger signals and activate the
inflammatory protease caspase 1 (Figure 1A). Danger signals include pathogen-associated
molecular patterns (PAMPs) derived from bacteria, fungi, or viruses, as well as danger-
associated molecular patterns (DAMPs) from the host, including intracellular organelles,
proteins, DNA, and RNA. Pattern-recognition receptors (PRRs) on innate immune cells and
parenchymal cells recognize DAMPs and PAMPs, respectively. As a result, the transcription
of nuclear factor kappa B (NF-κB) target genes increases, leading to the upregulation of
expression of the NOD-like receptor family, pyrin domain-containing 3 (NLRP3), and the
pro-forms of interleukin-1β (IL-1β), and interleukin-18 (IL-18). However, the mechanism
by which NLRP3 senses these extracellular perturbations is incompletely understood. Ulti-
mately, downstream signaling leads to the canonical activation of NLRP3 and caspase 1,
triggering the cleavage of Gasdermin D (GSDMD). The non-canonical cleavage of GSDMD
is carried out by human caspase 4/5, or the murine homologue, caspase 11. These caspases
are activated by bacterial lipopolysaccharide (LPS) and do not require the assembly of
the NLRP3 inflammasome. After cleavage, the cytotoxic N-terminal fragments of GS-
DMD assemble to form cell membrane pores, initiating cell death. Additionally, active
caspase 1 cleaves immature pro-IL-1β and pro-IL-18, and both cytokines are released via
the pores. GSDMD-mediated pore formation is suppressed by the cell-surface protein
Ninjurin-1 (NINJ1) [6]. In specific circumstances and within certain cell types, the release
of pro-inflammatory cytokines and intracellular DAMPs occurs without triggering cell
death [7]. While pyroptosis involves the activation of inflammasomes and the release of
pro-inflammatory cytokines, the existence of overlapping pathways with other forms of
cell death indicates the presence of a highly intricate and complex control system [8,9].
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Figure 1. Pyroptosis, apoptosis and necroptosis (simplified graphic). (A) Pyroptosis: Pyroptosis
is activated via the detection of DAMPs/PAMPs by PRRs. The NLRP3 receptor assembles with
NEK7, ASC, and pro-caspase 1 to form the NLRP3 inflammasome, which induces pyroptotic cell
death via the cleavage of GSDMD. Alternatively, GSDMD is activated by murine caspase 11 (4/5
in humans). The N-terminal fragments of GSDMD form membrane pores that lead to the release
of cell organelles, electrolytes and the pyroptosis-specific cytokines IL-1β and IL-18. (B) Apoptosis
and necroptosis: Activation of extrinsic apoptotic cell death pathways in response to binding of TNF,
TRAIL, and FASL to their respective death receptor culminates in the activation of caspase 8. Cell fate
towards survival or cell death is mainly orchestrated through ubiquitylation events that influence the
assembly of different scaffolding platforms (e.g., complex IIa: TRADD/FADD/caspase 8). Whereas
active complex I (not shown) mainly mediates the activation of the pro-survival NF-κB pathway,
different subtypes of complex II mediate the apoptotic cell death when NF-κB is blocked or complex
I formation is inhibited. Caspase 8 assembles with TRADD and FADD to form complex IIa and
with RIPK1/RIPK3 to form the ripoptosome (complex IIb) which prevents necroptosis and leads to
apoptosis by activating caspase 3. When caspase 8 is inhibited, the necrosome (complex IIc) forms and
induces lytic necroptosis via MLKL. When MLKL is inhibited, RIPK3 can induce cell death via the
activation of pyroptosis. NIMA-related kinase 7 (NEK7), adaptor molecule apoptosis-associated speck-like
protein containing a CARD (ASC), lipopolysaccharide (LPS), apoptotic protease-activating factor 1 (APAF-1).

2.2. Apoptosis

Apoptosis, a regulated (non-lytic) form of cell death, plays a vital role in maintaining
tissue homeostasis and is heavily involved in the pathologic processes of chronic liver
diseases (Figure 1B) [10]. Two well-described pathways regulate the activation of effector
caspases 3 and 7, leading to chromatin condensation, proteolysis, and nuclear fragmenta-
tion [3]. The extrinsic apoptotic pathway is initiated by extracellular perturbations that are
sensed by death receptors (DRs), namely tumor necrosis factor receptor (TNFR), FAS (also
known as CD95 or APO-1), or TNF-related, apoptosis-inducing ligand receptor (TRAIL,
also known as APO-2). Activation of these receptors leads to the assembly of a scaffold
protein called Death-inducing signaling complex (DISC) or complex I, which usually pro-
motes survival. Complex I serves as a scaffold for receptor-interacting protein kinase-1
(RIPK1), a cellular inhibitor of apoptosis 1 and 2 (cIAP1 and 2), TNF receptor-associated
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factors 2 or 5 (TRAF2 or TRAF5), and the adaptor TNFR-associated death domain (TRADD).
After assembling, post-translational modifications, such as ubiquitination, either promote
survival or cell death. For instance, deubiquitinated RIPK1 is released from complex I and
forms complex IIa with FAS-associated protein with death domain (FADD) and caspase 8 to
induce apoptosis in type I cells (where extrinsic apoptosis is independent of mitochondria)
and lymphocytes. In type II cells such as hepatocytes, the formation of complex IIa can
be blocked by x-linked inhibitor of apoptosis (XIAP). In contrast, when RIPK1 is polyu-
biquitinated, complex I activates the NFκB pathway, which leads to the transcription of
pro-survival genes that prevent cell death. In some cell types (type II cells), including hepa-
tocytes, the extrinsic pathway requires the additional cleavage of BH3-interacting domain
death agonist (Bid), a pro-apoptotic member of the B-cell lymphoma 2 (BCL-2) protein
family, into tBid by caspase 8 for cell death execution (see Figure 1A). In this scenario, tBid
translocates into mitochondria and facilitates the release of cytochrome c. Following the
release of cytochrome c, a supramolecular complex known as the apoptosome becomes
activated and enhances the activation of protease caspase 9 and effector proteases caspase 3
and 7. The intrinsic apoptotic pathway is commonly activated by intracellular injury such
as DNA damage or oxidative stress, which triggers apoptosis via pro-apoptotic members
of the BCL-2 family, namely BCL2-associated X, apoptosis regulator (BAX) and/or BCL2
antagonist/killer (BAK) [3]. BAX/BAK facilitates mitochondrial outer membrane perme-
abilization (MOMP), leading to the release of cytochrome c, followed by the activation of
caspase 3 and 7. While apoptosis is vital for maintaining cell homeostasis, it serves as the
predominant mode of cell death in many liver diseases. Under pathological circumstances,
the presence of cellular leakage and inflammation around apoptotic cells can be attributed
to inadequate phagocytosis and efferocytosis of cell debris [11]. Furthermore, it is possible
that other forms of cell death may co-exist during the development of chronic liver dis-
eases. In some measure, the inflammatory signals emanating from apoptotic cells may be
considered advantageous, as they facilitate hepatocyte regeneration and the restoration of
liver function following the loss of hepatocytes through apoptosis [11]. The involvement of
apoptosis as a primary mode of cell death is described across the entire spectrum of acute
and chronic liver diseases and is also extensively described in earlier reviews [1,10].

2.3. Necroptosis

Necroptosis is an alternative form of RCD that exhibits characteristics of both apopto-
sis and necrosis; in particular, it is activated upon stimulation of TNFR by tumor necrosis
factor alpha (TNF-α) in the presence of caspase inhibition [12]. Apoptosis and necroptosis
share overlapping intracellular cascades, and the transition from apoptosis to necroptosis is
contingent upon reduced caspase 8 activity (Figure 1B) [13,14]. Caspase 8 activation within
complex IIb (ripoptosome), composed of RIPK1, FADD, caspase 8, and RIPK3, inhibits
necroptosis by preventing the activation of RIPK1 and RIPK3, thereby suppressing necrop-
tosis induction [15]. An imbalance between caspase 8 and RIPK3 activities, precipitated by
either the inhibition of caspase 8 or the overexpression of RIPK3, promotes the transition
of complex IIb (ripoptosome) into complex IIc (necrosome) [16]. This complex promotes
the phosphorylation and oligomerization of mixed lineage kinase domain-like (MLKL)
protein [17]. Subsequently, MLKL translocates to the inner leaflet of the plasma membrane,
thereby promoting membrane permeabilization and inducing cell death [18]. Caspase
8-mediated cleavage of RIPK1 and RIPK3 serves as a checkpoint of necroptotic cell death.
In the presence of caspase 8, cells undergoing cell death default to apoptosis. Therefore,
inhibiting caspase 8 becomes crucial for inducing necroptosis, and the potential lethality
associated with necroptotic signaling underscores its predominant role as a backup cellular
defense mechanism triggered when apoptosis is impeded. Nevertheless, this phenomenon
raises the question of how necroptosis contributes to the pathogenesis of human diseases
in the presence of fully functional caspases. Necroptotic cell death is immunogenic and
can trigger excessive inflammation and cell death by activating innate immune cells or
promoting other types of cell death, such as pyroptosis [19].



Biomedicines 2024, 12, 559 5 of 34

2.4. Ferroptosis

Ferroptosis is a novel form of iron-dependent cell death that is morphologically, ge-
netically, and biochemically distinct from other well-known types of cell death [20]. Lipid
peroxidation, driven by ferrous iron (Fe2+) and free radicals via the Fenton reaction, is
a defining feature of ferroptosis (Figure 2A). This process involves the peroxidation of
polyunsaturated fatty acids (PUFA) in phospholipids, leading to the generation of PUFA
phospholipid hydroperoxides (PUFA-PL-OOH), which can accumulate and potentially
cause rapid and irreparable membrane damage [21]. Acyl-CoA synthetase long-chain
family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase-3 (LPCAT3) are
the pivotal enzymes in the regulation of PUFA biosynthesis and remodeling [22,23]. These
enzymes catalyze the conversion of arachidonic acid to PUFA-PL-OOH, which serve as
both biomarkers and crucial mediators of ferroptosis [22,23]. When PUFA-PL-OOH cannot
be degraded promptly by the glutathione (GSH)-dependent enzyme GPX4, redundant
lipid peroxides result in ferroptosis [20,24]. Thus, the inactivation of GPX4 leads to the
accumulation of reactive oxygen species (ROS) through lipid peroxidation or through the
Fenton reaction via excess iron [24]. Although GPX4 is a major inhibitor of ferroptosis,
several GPX4-independent systems, including ferroptosis suppressor protein 1/CoQ10,
dihydroorotate dehydrogenase, and GTP cyclohydrolase 1/tetrahydrobiopterin have been
recently identified that suppress ferroptosis [25–27]. Ferroptosis is also governed by the
autophagy-related genes 5 and 7 pathway, along with the nuclear receptor coactivator 4
pathway and the p62/Kelch-like epichlorohydrin-associated protein-1 (KEAP1)/nuclear
factor erythroid 2-related factor 2 (NRF2) pathway [28,29]. A significant body of research
involving experimental manipulation of ferroptotic processes using specific activators (e.g.,
RSL3 and erastin) and inhibitors (e.g., ferrostatins) has shed light on the underlying molec-
ular mechanisms of ferroptosis [30]. Ferroptosis has been implicated in the pathogenesis of
a diverse range of diseases, including tumors, ischemia-reperfusion injury, neurodegenera-
tive disorders, autoimmune diseases, and hepatic pathologies [31]. Ferroptosis, capable
of inducing cell death and impeding tumor progression, can also create an immunosup-
pressive microenvironment that hampers T-cell activity, ultimately promoting immune
evasion by tumor cells [32,33]. Emerging evidence demonstrates intricate crosstalk between
tumor cells and immune cells in the context of ferroptosis [34]. Moreover, in the context
of liver-related research, the liver is particularly susceptible to oxidative damage, and
excessive iron accumulation is a prominent feature in most major liver diseases; therefore,
ferroptosis has gained the attention of researchers working in the field of liver disease.

2.5. Autophagy/Autophagy-Induced Cell Death

In mammalian cells, three primary forms of autophagy can be distinguished: macroau-
tophagy, microautophagy, and chaperone-mediated autophagy. The complex signaling
cascades governing the processes of autophagy are described in detail here [35]. Briefly,
the multi-step process is controlled by different kinase complexes, culminating in the
degradation and recycling of cellular components in the autophagolysosome [36]. After
initiation and elongation, the completion and closure of the autophagosome are mediated
by the microtubule-associated protein 1A/1B light chain 3 (MAP1LC3A or LC3) and the
endosomal sorting complex required for transport III (ESCRT-III) [37]. Finally, fusion with a
lysosome activates the hydrolases and lipases necessary for the degradation of the cellular
components. LAMP-1 and LAMP-2, both lysosomal membrane proteins, are required for
the fusion process [38]. The concept of autophagy and autophagy-dependent cell death is
complex. It is important to differentiate between autophagy, which eliminates damaged or-
ganelles to ensure cell survival and three different types of cell death related to autophagy:
(1) Autophagy-associated cell death: The induction of autophagy coincides with another
form of cell death but does not play an active role; (2) Autophagy-mediated cell death:
Autophagy triggers another form of cell death; (3) Autophagy-dependent cell death (also
known as ‘autosis’): A form of cell death that depends on the autophagic machinery, in-
volves at least two different autophagy-related proteins, and can be prevented by specific
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autophagy inhibitors [3]. The multiple features that can induce autophagy-dependent
cell death are summarized in Figure 2B. Given the complexity and somewhat artificial
boundaries of autophagy and different forms of autophagy-mediated cell death, we will
discuss the available data together in the same chapter. The liver, as the main organ regu-
lating the metabolism in the organism, responds to fasting and feeding with basal hepatic
autophagy. Thus, autophagy is critical for maintaining the homeostasis and quality control
of proteins and organelles in hepatocytes. Autophagy and autophagy-dependent cell death
have been described to play a role in metabolic liver diseases such as MASLD/MASH,
alcohol-associated liver disease, and drug-induced liver disease, as well as in hepatic
tumorigenesis [39].

Autophagy-induced cell death
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Figure 2. Ferroptosis and autophagy-induced cell death (simplified graphic). (A) Ferroptosis:
Excessive accumulation of intracellular lipid ROS, coupled with lipid peroxidation, resulting from
a reduction in intracellular glutathione (GSH) levels and impaired GPX4 activity, leads to a form
of RCD called ferroptosis. (B) Autophagy-induced cell death: Autosis, also known as autophagy-
dependent cell death, represents a distinct mode of cell demise characterized by specific features
arising from imbalanced autophagy or the failure to mitigate cellular stress through regulated
autophagy. One notable characteristic of autosis is its susceptibility to inhibition by Na+/K+-ATPase
blockers. Additionally, autophagic cells undergoing autosis can be distinguished by the presence
of endoplasmic reticulum (ER) debris. External stressors such as hypoxia or starvation induce the
upregulation of autophagy-specific transcription factors and can exacerbate ER stress, triggering
the unfolded protein response (UPR) and ultimately leading to ER fragmentation. The ER, acting
as a primary reservoir of calcium ions (Ca2+), releases Ca2+, which in turn activates AMP-activated
protein kinase (AMPK). AMPK inhibits the mammalian target of rapamycin complex 1 (mTORC1),
a suppressor of autophagy, resulting in the accumulation of autophagosomes and autolysosomes.
Furthermore, heightened ER fragmentation fosters lipid accumulation within lysosomes. This lipid
buildup culminates in lysosomal membrane permeabilization (LMP), contributing to the generation
of lipid-derived reactive oxygen species (ROS). Despite significant progress, the precise processes
underlying autosis remain intricate and not yet fully elucidated. Activating transcription factor 4
(ATF4), transcription factor EB (TFEB), transcription factor E3 (TFE3), solute carrier family 7 member 11
(SLC7A11), solute carrier family 3 member 2 (SLC3A2).
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3. Cell Death Responses

Efficiently eliminating apoptotic or necrotic cells is crucial for the maintenance of
tissue homeostasis and the prevention of inflammation. This process is intricately governed
by several key signals: ‘find me’ signals facilitate phagocyte recruitment; ‘eat me’ signals
govern the recognition of dead cells; the absence of ‘don’t eat me’ signals, also known as
‘keep me’ signal in healthy cells, are critical in preventing the inadvertent efferocytosis of
viable cells [40]. Collectively, these signals serve as a safeguard, preventing the release
of intracellular contents into the surrounding tissues and orchestrating the absorption
and degradation of dying cells, thereby playing a pivotal role in maintaining cellular and
tissue homeostasis. This significance is underscored by mounting evidence suggesting a
correlation between the onset of liver disease and inefficiency in the phagocytic removal of
dying cells [41].

3.1. ‘Find Me’ Signals

When cells undergo apoptosis, they release ‘find me’ signals to recruit macrophages
and expose ‘eat me’ signals on their surface (Figure 3A,B). To distinguish themselves
from healthy cells and attract phagocytes to areas of death, apoptotic cells release ‘find
me’ signals such as sphingosine-1-phosphate (S1P), lysophosphatidylcholine (LPC), C-X-
C motif chemokine ligand (CXCL) 1 and nucleotides like adenosine triphosphate (ATP)
and uridine diphosphate [42]. S1P and LPC are ‘find me’ signals specifically involved in
apoptosis. This process involves the upregulation of S1P mitogen-activated protein kinases
SPK1 and SPK2 in apoptotic cells, facilitating S1P production from sphingosine and the
activation of calcium-independent phospholipase A2 by caspase 3, leading to LPC synthesis
from phosphatidylcholine [43,44].

APOPTOTIC CELL
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MerTK
CR1, CR3
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Figure 3. Intercellular regulation of cell death signals (simplified graphic). (A) Apoptotic cells release
‘find me’ signals such as sphingosine-1-phosphate (S1P), lysophosphatidylcholine (LPC), C-X-C motif
chemokine ligand (CXCL) 1, and nucleotides such as adenosine triphosphate (ATP). S1P and LPC are
‘find me’ signals specifically associated with apoptosis. Phagocytes infiltrate the tissue and remove
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cell debris. When all debris is phagocytosed, no inflammatory reaction occurs. However, insufficient
removal of debris can lead to inflammation and activation of the immune system. Lytic forms of cell
death such as pyroptosis, necroptosis, or ferroptosis release pro-inflammatory cytokines as well as
DAMPs, which attract various immune cells. (B) Phosphatidylserine is the most potent ‘eat-me’ signal
of apoptotic cells, which is recognized by macrophage receptors such as CD300b (blue), BAI1 (red),
TIM1/2/4 (orange), and Stabilin-1/2 (yellow). The TAM family of receptor kinases Tyro3, Axl, and
Mer (gene name Mertk) bind PS indirectly via Gas6 and Protein S. Proteins of the complement cascade,
notably C1q and C3b, are expressed by late apoptotic cells and can be recognized by phagocytes. Next
to ‘eat me’ signals, cells express also ‘don’t eat me’ signals to negatively regulate phagocytosis. Among
these are CD31 and CD47, which binds to signal regulatory protein alpha (SIRPα) on macrophages.
Heat shock protein (HSP), high-mobility group protein B1 (HMGB1), brain-specific angiogenesis inhibitor 1
(BAI1), T-cell immunoglobulin- and mucin-domain-containing molecule (TIM).

For cells undergoing necroptosis and pyroptosis, the molecular pathway governing ef-
ferocytosis is less elucidated compared to apoptosis. However, it is recognized that DAMPs,
including nuclear protein high mobility group box-1 (HMGB1), heat shock proteins, purine
metabolites like ATP and uric acid, calcium-binding S100 proteins, and inflammatory cy-
tokines IL-1β and IL-18, are produced by necrotic cells [45–48]. Formyl peptide and CXC
chemokines are potent chemoattractants that function as the initial signaling molecules
directing neutrophils to areas of focal necrosis in the liver [49,50].

In the context of drug-induced liver injury, CXCL1/CXCL2 signaling through CXCR1/
CXCR2 receptors collaborates with formyl peptides to guide neutrophils to necrotic ar-
eas [51]. Additionally, CC chemokines such as CCL2 and CCL3 significantly increase in the
necrotic liver, and CC chemokine receptor-expressing cells, especially CCR2+ monocytes,
migrate to the edge of the necrotic area after the initial wave of neutrophil recruitment.
This migration, contingent on CCR2 expression, is essential for optimal repair [51,52].

3.2. ‘Eat Me’ Signals

Phagocytes, in response to ‘find me’ signals, effectively distinguish and engulf dy-
ing cells, displaying ‘eat me’ signals from healthy cells marked by ‘don’t eat me’ signals
(Figure 3B). Among the extensively studied ‘eat me’ signals is phosphatidylserine (PS), pre-
dominantly located in the inner membrane of healthy cells [53]. ATP11, an ATP-dependent
flipase, maintains membrane lipid asymmetry by keeping PS restricted to the inner plasma
membrane leaflet. However, the inactivation of ATP11 by caspase 3 during apoptosis
facilitates the exposure of PS on the cell surface [54]. PS exposure can also occur in other
forms of cell death, though its underlying mechanism remains unclear. Loss of phospho-
lipid asymmetry can result from MLKL activation during necroptosis, intracellular ATP
depletion during ferroptosis, or gasdermin-induced pyroptosis [55–57].

PS can directly bind to macrophage receptors such as brain-specific angiogenesis
inhibitors (BAI), T-cell immunoglobulin- and mucin-domain-containing molecule (TIM)
1/2/4, stabilin-1/ 2, CD300b, and triggering receptor expressed on myeloid cells (TREM)
2 [58]. Alternatively, the interaction between phagocyte surface receptors like MerTK and
phosphatidylserine on apoptotic cells is facilitated indirectly through soluble bridging
proteins. This interaction is mediated by Protein S and growth arrest-specific 6 (GAS6)
dimers, which serve as a bridge between the two entities [59]. Given the pivotal role of dead
cell clearance in modulating hepatic inflammation, TIM4 and GAS6 have emerged as crucial
elements in the resolution of hepatic-ischemic reperfusion injury [60–62]. Furthermore,
in chronic liver disease, macrophages expressing stabilin-1, a scavenger receptor, play a
role in protecting against liver fibrosis by facilitating the removal of fibrogenic products
resulting from lipid peroxidation [63]. An additional distinctive ‘eat me’ signal involves
mannose-binding lectin, C1q, C3b, and C4, as well as opsonization by IgG/IgM, resulting
in binding to cells expressing integrin CD91/calreticulin, CD11b/CD18, and Fc-gamma
receptors [58].
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3.3. ‘Don’t Eat Me’ Signals

Effective engulfment of dead cells necessitates both the exposure of ‘eat me’ deter-
minants and a concomitant reduction in ‘don’t eat me’ signals on the surface, which are
essentially ‘keep me’ signals emitted by healthy cells to inhibit efferocytosis (Figure 3B) [64].
Viable cells express ‘don’t eat me’ signals, including CD31, CD47, CD46, and CD61 [65–67].
The downregulation of ‘don’t eat me’ signals, such as CD47 and its binding partner sig-
nal regulatory protein α (SIRPα), contributes to the internalization of apoptotic bodies,
suggesting a coordinated effort between the dying cell and the phagocyte [65]. In fibrotic
diseases like autoimmune fibrosis, the accumulation of CD47 in fibrogenic cells impedes
the elimination of diseased fibroblasts [68]. Both human and mouse MASH livers show
the accumulation of necroptotic hepatocytes associated with an upregulation of CD47.
Treatment with an anti-CD47 antibody not only enhances the uptake of these cells by liver
macrophages but also inhibits fibrosis [69]. Plasminogen activator inhibitor-1 (PAI-1) in
both plasma and tissues serves as another known ‘don’t eat me’ signal in both viable
and apoptotic neutrophils. PAI-1 can inhibit the engulfment of apoptotic neutrophils by
macrophages [70].

4. Cell Death in Liver Disease
4.1. Acetaminophen-Induced Liver Injury

Drug-induced liver injury or DILI is a significant cause of acute liver injury (ALI)
that can ultimately progress to acute liver failure (ALF) [71]. The most common cause
of intrinsic or direct DILI is acetaminophen (APAP, also known as paracetamol) toxicity,
which induces direct, dose-dependent cell death of hepatocytes through mitochondrial
damage. APAP-induced hepatocyte death primarily starts in the centrilobular region
(zone III) of the liver. Around 50% of ALF cases in the US and Europe can be attributed
to APAP overdose [71–73]. Direct DILI increases ROS levels, mitochondrial dysfunction,
and endoplasmic reticulum (ER) stress, which can eventually lead to cell death [74,75].
APAP is metabolized by the cytochrome P450 enzymes to a reactive metabolite known as
N-acetyl-p-benzoquinone imine (NAPQI), which is detoxified by glutathione (GSH). Once
GSH is depleted, NAPQI can bind to cellular proteins, causing mitochondrial damage and
ROS production, eventually leading to many types of cell death discussed below [76].

4.1.1. Pyroptosis

The role of pyroptosis in APAP-induced ALI is controversial. In a carbon tetrachlo-
ride (CCl4)-induced ALI model, the treatment with the NLRP3-specific inhibitor MCC950
mitigated tissue damage by enhancing M2 macrophage polarization and myeloid-derived
suppressor cell function at various time points of ALI [77]. However, Gsdmd and Gsdme
knockout (KO) mice did not exhibit any improvement of liver injury in the APAP or
thioacetamide (TAA) model at a 24-h time point [78]. In another study, Gsdmd−/− mice
had significantly increased liver damage at 6 h after APAP compared to wild-type (WT)
mice [79]. The authors attributed the escalation in injury, resulting from the inhibition
of GSDMD-mediated pyroptosis, to increased levels of apoptosis and necroptosis. Nev-
ertheless, the absence or inhibition of caspase and MLKL, respectively, does not exhibit
any impact on cell death induced by APAP. One plausible explanation for the differing
study results could be related to the use of a different substrain of WT control mice, as
discussed in a review by Shojaie et al. [10]. In summary, inhibiting pyroptosis and deleting
GSDMD/GSDME do not appear to prevent APAP-induced liver cell death and might even
accelerate it. However, the intricate mechanisms involved in DILI underscore the need for
more studies, especially with time-course relevant experiments, to delineate the impact of
cell death on disease progression and resolution.

4.1.2. Apoptosis

The reactive metabolite NAPQI leads to mitochondrial dysfunction and nuclear DNA
fragmentation, all key features of apoptotic cells. However, current evidence suggests
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that apoptosis might play a very limited role. For instance, caspase 3 activity and cleaved
caspase 3 were not detectable in the plasma of overdosed patients or mice but were elevated
after TNF-induced apoptosis, indicating that APAP-hepatotoxicity does not substantially
contribute to apoptosis [80]. Similar results were obtained from an in vitro study using
an immortalized human hepatocyte cell line, where APAP treatment did not increase
caspase activation and treatment with a pan-caspase inhibitor did not protect against
APAP-induced cell death. In contrast, TNF-induced apoptosis increased the caspase activity
in these cells [81]. However, data from another study suggest that caspase activation
and apoptosis are involved in the case of APAP-overdosed patients with spontaneous
recovery, whereas caspase-independent cell death might be more relevant in irreversible
forms of liver failure [82]. In human hepatocytes, treatment with APAP leads to GSH
depletion, the creation of protein adducts, and mitochondrial dysfunction resembling
APAP overdose in vivo. Furthermore, APAP treatment results in time-dependent c-Jun
N-terminal kinase (JNK) activation in the cytosol, a pathway known to be involved in
apoptotic cell death [83,84]. In summary, under certain experimental conditions, features of
apoptosis might be detectable in the setting of APAP. However, considering the absence of
caspase activity and the ineffectiveness of caspase inhibition in preventing APAP-induced
damage, it appears that the contribution of apoptosis to APAP toxicity may be insignificant.

4.1.3. Necroptosis

According to available data, APAP-related liver injury is not substantially impacted
by the necroptosis signaling pathway, where the necrosome (RIPK1-RIPK3-MLKL) acts as
the key mediator of necroptotic cell death [75]. Moreover, independently of necroptosis,
RIPK1 has been shown to signal by means of c-Jun NH2-terminal kinase, contributing to the
execution of necrotic cell death. Nevertheless, the role of RIPK1 remains a subject of contro-
versy, as an antisense oligonucleotide approach against RIPK1 demonstrated amelioration
of acetaminophen-induced cell death [75], while both full-body and hepatocyte-specific
Ripk1−/− mice showed either harmful or negligible effects [85,86]. In a separate study,
it was shown that the knockdown of RIPK3 and MLKL did not impact the outcome of
ALI [78]. However, the chemical inhibition of RIPK1 with necrostatin-1 showed a protective
effect against cell death in ALI. The authors concluded that the tumor necrosis factor-like
weak inducer of apoptosis (TWEAK)/Tnfrsf12a axis induces excessive apoptosis with
RIPK1. In summary, additional data is required to comprehensively understand the role of
necroptosis in APAP-induced ALI.

4.1.4. Ferroptosis

Ferroptosis can occur either through direct inhibition of GPX4 or indirectly via the
depletion of GSH. This results in the excessive accumulation of lipid peroxides catalyzed
by intracellular bioactive iron. In ferroptosis, dysfunction of GPX4 leads to an increase
in lipid peroxides derived from polyunsaturated fatty acid-containing phospholipids.
Treatment of mice with ferrostatin-1, a specific inhibitor of ferroptosis, reduced the necrotic
centrilobular areas and liver enzyme levels, and improved survival. These findings were
validated in ACSL4–/Y mice lacking expression of ACSL4, a key enzyme in ferroptosis,
and by CRISPR/Cas9-mediated ACSL4 deletion in the liver [87]. Since the depletion of
GSH in the setting of APAP-induced liver injury is well known, it appears likely that
ferroptosis is indirectly activated via GSH depletion. Primary mouse hepatocytes that
were treated with acetaminophen showed improved viability when ferrostatin-1 was
added to the media [88]. Targeting ferroptosis via biocompatible poly(acrylic) acid-coated
Mn3O4 nanoparticles reduced ROS production and ferroptotic cell death in an APAP-mouse
model [89]. Ferroptosis may be relevant in murine APAP-induced liver injury, but there is
limited information available regarding its relevance in humans.
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4.1.5. Autophagy/Autophagy-Induced Cell Death

Autophagy serves as a selective mechanism for removing damaged organelles, such
as mitochondria, playing a crucial role in safeguarding cells against cell death induced by
mitochondrial damage. Hence, autophagy can act as a protective mechanism in APAP over-
dose. Indeed, APAP treatment induces autophagy both in the mouse liver and in cultured
primary hepatocytes. Blocking autophagy with chloroquine intensified the hepatotoxic
effects triggered by APAP, while stimulation of autophagy with rapamycin suppressed
APAP-induced liver damage [90]. Upon exposure to potential stressors such as APAP, the
ER initiates the unfolded protein response (UPR) to restore homeostasis [91]. ER stress
is associated with APAP overdose, and upregulation of UPR-related pathways is seen in
patients who were liver transplanted because of drug-induced ALF. Among the sensor
protein-transcription factors of UPR is X-box binding protein 1, which is upregulated in
APAP-overdosed human livers [92]. Recent studies showed how ER stress in APAP-induced
liver injury is linked to the upregulation of autophagy to prevent excessive cell stress and
death. Therefore, autophagy may have a protective role in APAP-induced liver injury.

4.2. Alcohol-Associated Liver Disease

Alcohol-associated liver disease (ALD) encompasses a spectrum from mild to ad-
vanced conditions, posing a significant global health concern with outcomes ranging from
alcohol-associated hepatitis to cirrhosis. The disease progression is marked by steatosis,
alcohol-associated hepatitis, and fibrosis [93]. Accumulating evidence indicates that vari-
ous programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, and
ferroptosis, are critical for the progression of ALD, where intricate interactions between
hepatocytes and immune cells play a pivotal role [94].

4.2.1. Pyroptosis

Existing evidence strongly supports a key role of pyroptosis in the pathogenesis
of ALD, both in human subjects and animal models [95]. The NLRP3 inflammasome
pathway in hepatocytes is activated in response to alcohol, and a deficiency in Nlrp3
mitigates liver steatosis and injury caused by chronic ethanol exposure [96]. The sterile
danger signals, uric acid and ATP, released by damaged hepatocytes, initiate the release
of IL-1β in immune cells. Uric acid and ATP serve as secondary DAMPs in the inflam-
masomal and pyroptotic activation in ALD [97]. Ethanol triggers pyroptosis through the
downregulation of microRNA-148a, leading to thioredoxin-interacting protein (TXNIP)
overexpression and subsequent NLRP3 inflammasome activation [98]. Additionally, gut-
derived PAMPs or metabolic-derived DAMPs induce pyroptosis, resulting in the release
of inflammasome-dependent cytokines by immune cells [99,100]. Intriguingly, pyroptosis,
mediated through non-canonical caspase-11-dependent cleavage of GSDMD, has been
identified as a crucial mechanism in the transition from chronic ALD to alcoholic hep-
atitis [95]. Pyroptosis activation in both hepatocytes and liver immune cells exacerbates
liver inflammation through intercellular crosstalk. A recent study revealed that alcohol
consumption induces pyroptosis in Kupffer cells, which release more IL-1β through active
m6A enzyme methyltransferase-like 3 [101].

4.2.2. Apoptosis

The metabolic process of ethanol oxidation, involving alcohol dehydrogenase, ac-
etaldehyde dehydrogenase, catalase, and cytochrome P450 2E1, leads to the generation of
ROS [102]. This heightened oxygen consumption induces a hypoxic state in hepatocytes,
further amplifying ROS production [103]. Chronic alcohol intake triggers excessive ROS
production, oxidative stress, and protein adduct formation, disrupting ER protein folding
and triggering both intrinsic and extrinsic apoptotic pathways [104]. ROS generation leads
to mitochondrial dysfunction and triggers the onset of mitochondrial outer membrane
permeability, leading to the release of cytochrome c, which in turn promotes the activation
of caspase 9 and caspase 3 [105]. Accumulating evidence indicates that Kupffer cells play a
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pivotal role in the pathogenesis of both chronic and acute ALD [106]. Moreover, alcohol
exposure facilitates the hepatic translocation of gut-derived endotoxin/lipopolysaccharide,
a potent inducer of M1 polarization in Kupffer cells [107,108]. Consequently, these ac-
tivated Kupffer cells produce significant amounts of ROS, pro-inflammatory cytokines,
and chemokines, which not only lead to liver injury but also stimulate the production
of extracellular matrix proteins, thereby inducing characteristic fibrosis [109]. Increased
intestinal permeability to macromolecules and endotoxemia has been validated in patients
at various stages of ALD characterized by chronic alcohol abuse [110].

4.2.3. Necroptosis

Since inhibiting apoptosis does not prevent ethanol-induced steatosis and inflamma-
tion, non-apoptotic cell death pathways, such as necroptosis, gain significance [111,112].
Several investigations have indicated that necroptosis of hepatocytes plays a pivotal role
in exacerbating inflammation in ALD. Increased RIPK3 expression in the liver correlates
with a poor prognosis post-diagnosis, observed both in murine models and in patients
with ALD [113]. Moreover, levels of RIPK1 and RIPK3 in plasma, rather than MLKL, have
been identified as potential biomarkers for differentiating alcohol-associated hepatitis from
non-alcohol-associated hepatitis. Similarly, Ripk3−/− mice exhibit reduced ethanol-induced
liver injury, although recent studies question the protective role of MLKL deletion [112].
Notably, myeloid MLKL may perform a non-necroptotic role, modulating macrophage
phagocytosis and mitigating ethanol-induced liver inflammation and injury [114]. The
exact mechanisms by which necroptosis exacerbates ALD remain under investigation and
it is poorly understood how necroptosis in different cell types affects the disease course.

4.2.4. Ferroptosis

Targeting ferroptosis emerges as a potential treatment strategy for ALD. Recent stud-
ies have shown that alcohol exposure leads to the accumulation of lipid peroxides and
increased mRNA expression of cyclooxygenase-2 while decreasing the protein levels of
xCT/SLC7A11 and GPX4 [115]. Ferrostatin-1 was found to markedly mitigate liver dam-
age induced by excessive alcohol consumption in both in vitro and in vivo models [115].
Dimethyl fumarate exhibits a protective effect on ethanol-induced liver injury by activating
the NRF2 pathway and inhibiting ROS-induced lipid peroxidation and ferroptosis [116].
Ablation of intestinal sirtuins, a family of signaling proteins involved in metabolic regula-
tion, protects against ethanol-induced liver injury by increasing hepatic GSH levels and
regulating iron metabolism and lipid peroxidation [117]. In contrast, adipose-specific over-
expression of lipin-1, a Mg2+-dependent phosphatidic acid phosphohydrolase, exacerbates
alcoholic steatohepatitis, hepatobiliary damage, and fibrogenic reactions by facilitating the
onset of hepatic ferroptosis independently of GPX4 [118].

4.2.5. Autophagy/Autophagy-Induced Cell Death

Upon ethanol exposure, autophagy protects the liver in both hepatocytes and Kupffer
cells by eliminating misfolded proteins and reducing lipid accumulation [119]. Hence,
impairments in lysosomal function and autophagy are key factors in the development
of ALD. Chronic alcohol exposure attenuates autophagy through several pathways, in-
cluding the suppression of AMPK activity and disruption of vesicular movement within
hepatocytes [120]. The decline of autophagy leads to the accumulation of damaged or-
ganelles in hepatocytes. Studies have demonstrated that acute ethanol intake increases
nuclear transcription factor EB (TFEB) levels, a master regulator of lysosomal biogenesis
and autophagy, whereas chronic exposure results in reduced nuclear TFEB in both ani-
mals and humans [121,122]. The dysfunction of autophagic processes is associated with
the pathological effects of alcohol consumption, including protein aggregate formation
and mitochondrial damage. Furthermore, the inability to eliminate damaged mitochon-
dria through autophagy can lead to the disruption of oxidative phosphorylation and cell
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death, highlighting the crucial role of autophagy in preserving liver cell viability against
alcohol-induced harm.

4.3. Metabolic Dysfunction-Associated Steatotic Liver Disease

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent
liver disorder globally, affecting 25% of the population [100]. Within this context, studies
indicate that 20% of MASLD patients progress to metabolic dysfunction-associated steato-
hepatitis (MASH), marked by steatosis accompanied by ballooning hepatocytes, the pres-
ence of Mallory bodies, and inflammatory processes that culminate in fibrosis [123]. There
is strong evidence that multiple forms of hepatocyte cell death drive MASH-associated
inflammation and fibrosis, as discussed below.

4.3.1. Pyroptosis

The detection of mitochondria-released DAMPs, including mitochondrial DNA, mito-
chondrial ROS, and ATP, can directly or indirectly promote NLRP3 inflammasome activa-
tion. Pro-inflammatory cytokines released from pyroptotic hepatocytes and macrophages
serve as key molecules in the development and progression of MASLD [124,125]. Gaul
et al. demonstrated that hepatocytes undergoing NLRP3-mediated pyroptosis amplify
inflammasome-driven hepatic fibrogenesis through the engulfment of extracellular NLRP3
inflammasome particles by HSCs [126]. GSDMD, serving as the executor of pyroptosis
through its role in forming pores in the cell membrane, plays a fundamental role in trig-
gering the release of pro-inflammatory cytokines. This leads to the involvement of the
NF-κB signaling pathway and subsequent recruitment of macrophages in MASH [127].
Moreover, a recent study focusing on the cell-dependent effects of pyroptosis has high-
lighted pyroptotic interactions between myeloid and hepatic stellate cells. Deletion of
Nlrp3 in myeloid-derived cells resulted in reduced activation of HSCs and liver fibrosis,
whereas deletion of Nlrp3 in HSCs or hepatocytes did not confer protection [128]. Taken
together, pyroptosis is identified as a key cell death pathway in MASLD and can drive
disease progression to MASH.

4.3.2. Apoptosis

Accumulating evidence suggests that both the intrinsic and extrinsic apoptosis path-
ways are the prevailing mode of cell death in MASLD [129]. Excessive accumulation of
saturated fatty acids in the liver triggers apoptosis, primarily through oxidative and ER
stress mechanisms. This accumulation amplifies oxidative stress, perpetuating a harmful
cycle that amplifies apoptosis, inflammation, and fibrosis. Caspase 2 and 3 activation, along
with increased DNA fragmentation, were markedly upregulated in both patient and animal
models of MASLD [130,131]. Consequently, targeted deletion of caspase 2 or 3 has been
shown to markedly reduce apoptosis and fibrotic pathways, thereby decelerating disease
progression [132,133]. Furthermore, several mediators such as C/EBP homologous protein,
protein phosphatase 1 activator, c-Jun N-terminal kinase, and apoptosis signal-regulating
kinase 1 have been identified as key contributors to inflammation and fibrosis in the pro-
gression of MASLD [1]. A recent study proposed the AMPK-caspase 6 axis as an important
target in chronic inflammatory pathogenic processes, including MASH [134]. However,
a recent clinical trial reported that the pan-caspase inhibitor emricasan did not improve
liver histology in patients with MASH fibrosis and might have contributed to exacerbation
of ballooning and fibrosis, suggesting a potential shift from apoptotic cell death to more
inflammatory forms such as necroptosis [135]. This example shows the complex balance
between different cell death modes and it highlights the necessity to further investigate
compensatory cell death mechanisms in preclinical models.

4.3.3. Necroptosis

In MASLD, necroptosis can be triggered by various factors such as TNF-α [136]. The
levels of RIPK3 in the liver increase in patients with MASLD, showing a correlation between
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hepatic inflammation and fibrosis [137]. Knockdown of RIPK3 in mice led to significant
alleviation of obesity, insulin resistance, hepatic steatosis, and oxidative stress, primarily
through modulation of lipogenesis-related gene expression and the suppression of the
TLR4/NF-κB and NRF2/HO-1 signaling pathways [138]. Inhibiting proteins involved in
necroptosis, such as RIPK1 and MLKL, has also shown potential in improving liver steatosis
and insulin resistance, critical aspects of MASLD [139]. Moreover, a recent study investigat-
ing MASH has defined a canonical role for MLKL as the executor of necroptosis [140]. In a
high-fat diet-induced model of MASLD and MASH, liver injury was demonstrated to be
dependent on MLKL rather than RIPK3, with MLKL independently attenuating autophagic
flux by inhibiting lysosome-autophagosome fusion [140].

4.3.4. Ferroptosis

Iron overload is common among MASLD patients, and it is widely recognized that iron-
induced lipid peroxidation serves as both a trigger and a contributor to MASLD [141,142].
Lipid peroxidation products, widely regarded as markers of oxidative stress, including
malondialdehyde and 4-hydroxy-2-nonenal (4-HNE), have been significantly elevated in
patients with MASLD [143]. Considering the role of ACSL4 in the generation of lipid
peroxidases from PUFAs, its expression was notably increased in an animal model of
MASH [144]. Further, inhibition of ferroptosis significantly reduced liver inflammation
and hepatocyte cell death in early-stage MASH, improving liver function [145]. Enhancing
NRF2 expression can prevent MASLD by reducing lipid accumulation and modulating
antioxidant responses, highlighting the involvement of ferroptosis in MASLD and the
potential of targeting oxidative stress and iron metabolism in treatment strategies. Drugs
targeting ferroptosis, such as ferrostatin-1, have been extensively documented, suggesting
the potential significance of ferroptosis as a crucial target for MASLD treatment [146].
Despite significant efforts to delineate the characteristics of ferroptosis in MASLD, further
research is imperative to clarify its precise and detailed regulatory mechanisms.

4.3.5. Autophagy/Autophagy-Induced Cell Death

Impaired autophagic flux is a hallmark of MASLD [147]. Recent findings elucidate the
role of autophagy in regulating hepatocyte lipid metabolism, highlighting its contribution
beyond the actions of cytosolic lipases through a process termed macrolipophagy. This
mechanism involves the sequestration of lipid droplets within autophagosome vesicles,
which are then transported to lysosomes for degradation into fatty acids. The activity of
macrolipophagy is closely tied to nutritional status, with an increase in autophagic activity
following short-term fat consumption, which can mitigate lipotoxicity. However, prolonged
intake of a high-fat diet impedes the fusion of autophagosomes and lysosomes, thereby
elevating the risk of MASLD [148]. Indeed, chronic obesity and insulin resistance, as seen in
ob/ob mice and high-fat diet models, are associated with the downregulation of autophagy.
Impaired autophagy can also contribute to ER stress in lean mice, as the restoration of
autophagy ameliorates obesity-induced liver ER stress and improves insulin resistance
in vivo, indicating that autophagy facilitates the elimination of damaged organelles and
assists in their adaptive response to restore metabolic homeostasis [149].

4.4. Hepatocellular Carcinoma

The development of HCC is the final, irreversible step in chronic liver diseases and
the most common cause of death in patients with liver cirrhosis [93]. Hepatocarcinogenesis
is a multifactorial process wherein cell death plays a fundamental role. The majority of
HCCs develop in fibrotic or cirrhotic livers, which arise in the context of chronic hepa-
tocellular death. It is important to differentiate between cell death occurring in benign
hepatocytes and cell death occurring in malignant hepatocytes because they may have
opposite consequences. Cell death in non-transformed hepatocytes represents a tumor-
promoting mechanism, leading to increased compensatory regeneration, fibrogenesis, and
inflammation. These compensatory mechanisms contribute to oncogenic transformation,
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and elevated serum levels of aminotransferases, used as markers for hepatocyte death, are
highly predictive of HCC development [150].

4.4.1. Pyroptosis

In general, pyroptosis, inflammasomes, and the gasdermin family contribute to tumori-
genesis and cancer progression [151–153]. Regarding the liver, several RNA sequencing
studies suggest that ‘pyroptosis-related genes’-based risk scores may be useful in predicting
the prognosis in HCC patients [154,155]. However, very few studies have investigated the
tumor-intrinsic properties of the inflammasome and pyroptosis in HCC. It is described that
caspase 1 is downregulated in human HCC tissue; however, no association with prognosis
was reported in this study [156]. Similarly, mRNA and protein expression levels of NLRP3,
ASC, caspase 1, and IL-1β were decreased in cancerous vs. non-cancerous specimens from
healthy and cirrhotic livers [157]. Interestingly, the expression levels were the highest in
the cirrhotic, non-cancerous tissue compared to healthy livers and peritumoral hepatitis
tissue. In contrast, GSDMD expression was upregulated in fresh frozen samples of tumor
vs. non-cancerous tissue from a different patient cohort [158]. In liver cancer cells, the
upregulation of pyroptosis-related genes leads to reduced cell migration towards immortal-
ized hepatic stellate cells, indicating that pyroptotic cell death in cancer cells reduces their
malignant potential [158]. Pyroptosis in cancer cells might impair their malignant potential,
whereas pyroptosis in tumor-adjacent tissue is abundantly present. Cell-specific KOs of
inflammasome components are eventually needed to elucidate the underlying signaling
pathways of pyroptosis in cancerous and non-cancerous (peritumoral) tissue.

4.4.2. Apoptosis

Under physiological circumstances, hepatocytes rarely turnover, with almost no cell
death or proliferation. However, an increased rate of hepatocytes undergoing apoptosis
can result in chronic liver injury, eventually leading to tumorigenesis. For instance, mice
lacking the anti-apoptotic BCL-2 family member myeloid cell leukemia-1 (MCL-1) in hep-
atocytes, experience severe liver damage and spontaneously develop liver tumors after
several months [159]. Likewise, hepatocyte-specific KO of anti-apoptotic B-cell lymphoma-
extra-large (BCL-xL), also a member of the BCL-2 family, increases the hepatic TNF-α
production, oxidative stress, and tumor incidence. Deletion of pro-apoptotic apoptosis
regulator Bax reverses these effects and reduces the incidence of liver cancer [160]. Defects
in downstream regulators of the apoptotic pathways are critical steps in the malignant
transformation of tumor cells, as apoptosis plays a crucial role in safeguarding genomic
integrity [4]. For instance, dual deletion of Ripk1 and Traf2, both involved in survival or cell
death-promoting pathways, leads to increased apoptosis and compensatory proliferation,
promoting spontaneous hepatocarcinogenesis [161]. In patients with HCC undergoing
resection or liver transplantation, low expression of RIPK1 and TRAF2 in the tumor was
predictive of a poor prognosis [161]. However, considering the intertwined cell death path-
ways of apoptosis and necroptosis, the notion that RIPK1 solely possesses anti-tumorigenic
capabilities is not entirely accurate. In a mouse model with hepatocyte-specific deletion of
transforming growth factor β-activated kinase 1 (TAK1), spontaneous liver fibrosis and tumor
development evolved. These processes were abrogated after the deletion of Ripk1, indicat-
ing a pro-tumorigenic role in this setting [162]. Of note, in this study, apoptosis strongly
promoted cell death responses such as inflammation, compensatory hepatocyte prolifer-
ation, and carcinogenesis, whereas necroptosis suppressed inflammation, proliferation,
and carcinogenesis.

4.4.3. Necroptosis

Necroptosis is associated with necroinflammation in the liver, where persistent in-
flammation can ignite tumorigenesis. Hepatic necroptosis fosters the recruitment and
activation of liver macrophages, inducing chronic inflammation, which subsequently trig-
gers oncogenic pathways, thereby driving the progression of MASLD to HCC in male
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mice. This effect was abrogated in Ripk3−/− or Mlkl−/− mice [163]. However, fibrosis
was unaffected in this model. New insights into the fine regulation of necroptosis and
tumorigenesis were provided by a recently published study. Concurrent activation of the
necroptosome and NF-κB activation in hepatocytes, which typically express only low levels
of RIPK3 due to their minimal physiological cell turnover, prevented cell death and induced
a prolonged ‘sublethal’ state with leaky membranes. Hepatocytes in this sublethal state
function as secretory cells releasing specific chemokines, including CCL20 and monocyte
chemotactic protein 1 (MCP-1 or CCL2), which promote the activation of pro-carcinogenic
monocyte-derived macrophage cell clusters and tumorigenesis. In contrast, inactive NF-
κB in the setting of necroptosis accelerated cell death in untransformed hepatocytes and
thereby prevented hepatocarcinogenesis [164]. A recent study reported promising results
from the treatment of liver cancer cells with CBL0137, a small molecule anti-cancer drug
candidate that induces apoptosis and necroptosis [165]. Overall, necroptosis may serve
as a tumor-promoting form of cell death that can be regulated within liver cells through
NF-κB activation.

4.4.4. Ferroptosis

As described above, ferroptosis is negatively regulated by SLC7A11, GPX4, and
GSH. Iron metabolism-related genes such as SLC7A11 are upregulated in human cancers
and are associated with a poor prognosis in HCC [166,167]. Ferroptosis may serve as
a predominant driver of HCC-promoting necroinflammation in MASH-HCC. Ectopic
SLC7A11 expression suppressed HCC development in hepatocyte-specific Atf4-deficient
mice and provided protection from ferroptosis. This suggests that ferroptosis contributes
to the necroinflammatory response that promotes HCC and indicates that ferroptosis
inhibitors may prevent the progression from MASH to HCC [168]. In a human HCC cell line
(HepG2), sorafenib-mediated cell death was blocked by ferrostatin-1 but not ZVAD-FMK
(an apoptosis inhibitor) and necrosulfonamide (a necroptosis inhibitor). Notably, treatment
with sorafenib and other ferroptosis-inducing agents upregulated NRF2, which promotes
SLC7A11 transcription. In vivo experiments with NRF2 knockdown tumor cells showed
reduced tumor size, an effect further enhanced with additional sorafenib treatment [169].
SLC7A11, a crucial component of the cystine/glutamate antiporter that blocks ferroptosis,
is overexpressed in various human cancers, including liver cancer [170]. Interestingly, the
tumor suppressor p53 downregulates SLC7A11 expression, rendering cancer cells more
susceptible to ferroptotic cell death [170]. The expression of GPX4, another ferroptotic
inhibitor, was observed in human hepatocellular carcinoma specimens and correlated with
a poor survival prognosis [171].

4.4.5. Autophagy/Autophagy-Induced Cell Death

Autophagy is commonly recognized for its dual impact on both tumorigenesis and
cancer advancement. Initially, autophagy functions as a tumor suppressor by impeding
tumorigenesis through the elimination of damaged cell organelles and the mitigation of
oxidative stress, thereby reducing DNA damage and genome instability. However, once
normal cells transform into tumor cells, autophagy can be upregulated to survive mi-
croenvironmental stress and increase tumor growth [172]. In human liver tumors, p62,
a ubiquitin-binding autophagy receptor that accumulates when autophagy is impaired,
is highly expressed [173]. Furthermore, elevated expression of p62 in hepatocytes en-
hances HCC induction, and its high expression in non-tumor human liver predicts rapid
HCC recurrence after curative ablation [174]. LAMP2A, a regulator of chaperon-mediated
autophagy, exhibits reduced expression in human tumor tissues compared to adjacent
non-tumor tissues. Additionally, LAMP2A downregulation significantly increased cell pro-
liferation in human hepatocyte and HCC cell lines [175]. Phosphatase and tensin homolog
(PTEN) deletion in the liver activates the AKT/mTOR pathway, which induces autophagy
inhibition and increases protein synthesis, both of which enhance ER stress [176]. Apart
from its role in hepatocytes, autophagy is involved in the activation of HSCs, a hallmark of
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fibrogenesis in the liver [177]. The suppression of autophagy in HSCs attenuates the activa-
tion of HSCs in vivo and leads to the suppression of fibrosis and tumor formation [178].
While p62 has a tumor-promoting effect in hepatocytes, whole-body depletion, and HSCs-
specific depletion leads to enhanced tumorigenesis, implying an overall tumor-suppressive
dominant role in HSCs [179].

4.5. Tumor Microenvironment

In the previous section, we explored the existing evidence regarding the role of regu-
lated cell death in hepatic tumor development and progression. However, tumorigenesis
regularly occurs in conjunction with alterations in the surrounding stroma, creating a
heterogeneous landscape known as the tumor microenvironment (TME). In the liver, TME
plays a crucial role, as most HCCs arise from chronically injured hepatocytes in cirrhotic
livers. Consequently, the TME has emerged as an essential driver contributing to tumor
survival, growth, angiogenesis or cell invasion, and the maintenance of hepatocarcinogene-
sis [180]. The TME is orchestrated by both cellular and non-cellular components, including
cancer cells, stromal tissue, and the surrounding matrix. Stromal components include
immune cells, fibroblasts, angiogenic cells, and vascular tissue, which collectively play an
active role in eliciting inflammatory responses. The focal point of interest lies in active
communication between stromal cells (recruited or resident), cancer cells, and proximal
immune cells. This interaction occurs either directly or indirectly through the produc-
tion of inhibitory/stimulatory signals, underscoring the significant role of the TME in the
pathogenesis of HCC. Regulated cell death processes play a pivotal role in intercellular
communication by the release of DAMPs and cytokines.

4.5.1. Pyroptosis

It has been demonstrated that cancer cells undergoing epithelial-mesenchymal tran-
sition (EMT), a hallmark of cancer, suppress NLRP3 inflammasome activities of tumor-
associated macrophages (TAMs) in response to chemotherapy [181]. This suppression is
mediated through the delivery of exosomal miR-21. Consequently, the inactivation of the
NLRP3 inflammasome lowers IL-1β secretion, thereby reducing chemotherapy-induced
inflammation and cell death in the TME of patients with head and neck cancer [181]. In
breast cancer, cancer-associated fibroblasts (CAF), another abundant cell type in the TME,
facilitate tumor growth and metastasis through inflammasome signaling, a process atten-
uated when NLRP3 or IL-1β is specifically ablated [182]. In liver cancer, transcriptomic
data from HCC samples indicate a highly immunosuppressive TME and upregulated
markers for apoptosis, ferroptosis, and pyroptosis are associated with poorer survival [183].
However, it remains unclear how pyroptosis precisely affects biological processes in the
TME of HCC and contributes to a pro- or anti-immunogenic TME.

4.5.2. Apoptosis

Understanding how apoptosis is regulated in different cell types in the TME presents
a significant challenge. Typically, apoptotic pathways are downregulated in malignant
hepatocytes, another typical feature of cancer cells. Therefore, inducing apoptosis in cancer
cells is a therapeutic strategy. However, apoptosis and cell death induction in immune cells
located within the TME are associated with chemotherapy resistance and immune evasion
by HCC cells. Given that HCC commonly arises in pre-damaged, fibrotic livers, there may
be benefits to inducing apoptosis and clearing activated HSCs, which are also present in
the TME. For instance, the interaction between HCC and HSCs has been shown to promote
sorafenib resistance in HCC cells. Hence, pharmacological inhibition of HSC activation
increases apoptotic cell death in sorafenib-treated multicellular hepatic spheroid containing
HSCs and HCC cells [184]. In patients with HCC, higher expression of marker genes of
apoptosis, ferroptosis, and pyroptosis have been linked to an immunosuppressive TME
and poorer survival outcomes [183].
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4.5.3. Necroptosis

Single-cell RNA sequencing analysis shows that tumor-associated macrophages are
prone to undergo necroptosis. In addition, spatial transcriptomics data reveals their co-
localization with poorly differentiated tumor regions in HCC. Interestingly, in the absence
of a necroptotic microenvironment, pre-malignant cells could evolve into higher malignant
HCC subtypes [185]. Another study found that a necroptosis-associated hepatic cytokine
microenvironment triggers intrahepatic cholangiocarcinoma (ICC) development indepen-
dently of the oncogenic drivers [186]. The authors used hydrodynamic tail vein injection
(HDTV)-mediated transposon delivery and electroporation (Epo) to induce liver tumors.
While HDTV induced HCC, electroporation, which induces surrounding liver damage and
necrosis, led to ICC. Treatment with necrostatin-1, a potent necroptosis inhibitor, shifted
cell death to apoptosis, attenuated Epo-associated cytokine induction, and redirected ICC
development towards the outgrowth of solid HCC tumors. The results were confirmed
using mice deficient for Mlkl in hepatocytes, indicating that a necroptosis-enriched liver
microenvironment promotes ICC outgrowth from oncogenically transformed hepatocytes.

4.5.4. Ferroptosis

New insights into the role of ferroptosis in tumorigenesis and TME were provided
by a study conducted by Conche et al. [187]. GPX4, a master regulator of ferroptosis, was
knocked out in hepatocytes, inducing ferroptosis in vitro as well as in vivo, resulting in
acute liver failure and inflammation. Meanwhile, the induction of ferroptosis in HCC was
insufficient to suppress tumorigenesis. Ferroptosis in non-malignant hepatocytes induces
an anti-tumor response through CXCL10 secretion, stimulating cytotoxic CD8+ T cells into
the tumor. This anti-tumor response from ferroptotic hepatocytes was counterbalanced
by the simultaneous release of HMGB1, a cellular DAMP, from tumor cells. HMGB1
triggered the infiltration of myeloid-derived suppressor cells (MDSC) in conjunction with
programmed death-ligand 1 (PD-L1) upregulation, leading to immunosuppression and
protecting tumor cells from the ferroptosis-induced CD8-dependent anti-tumor activity.
Consequently, the combined blockade of PD-1 and MDSC infiltration in HCC conferred a
survival benefit in mice. Interestingly, primary colorectal cancer did not respond to this
approach, suggesting that the ferroptosis-induced immune response is specific for the
respective local TME. Besides contributing to our understanding of ferroptosis in HCC, the
study unravels the complexity of cell death in the context of tumor development, tumor
progression, and TME. Cell death in both benign and malignant liver cells can have pro- or
anti-tumorigenic effects or both simultaneously. It seems likely that dying or sublethal cells
are simultaneously secreting a myriad of DAMPs and cytokines, balancing the reaction of
the extracellular microenvironment beyond a simple ‘pro-’ or ‘anti-tumor’ effect.

4.5.5. Autophagy/Autophagy-Induced Cell Death

The growth, metastasis, and recurrence of hepatocellular carcinoma are driven and
sustained by liver cancer stem cells (LCSCs), potentially contributing to the unfavorable
prognosis associated with the disease. These cells thrive in a TME marked by common
features such as oxygen and nutrient deficiencies. It is likely that autophagy plays a role
in maintaining CD133+ LCSCs under conditions of oxygen and nutrient deprivation [188].
The autophagy inhibitor chloroquine has been shown to increase apoptosis and reduce
cell division of LCSCs, potentially sensitizing them to the TME and improving the efficacy
of anti-cancer treatments. In a study involving patients undergoing curative resection for
HCC, high expression of LC3, an autophagy-related marker, in both the tumor and the TME
was significantly associated with lower recurrence rates, suggesting a tumor-suppressive
function of autophagy in both tumor tissue and the TME [189].

4.6. Liver Surgery/Ischemia-Reperfusion Injury

Hepatic ischemia-reperfusion injury (IRI) is a major complication of liver resection and
liver transplantation. IRI occurs when the blood supply to the liver is interrupted, leading
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to hypoxia and cell damage. In liver resection, IRI occurs after hepatic portal occlusion
(HPO or Pringle maneuver), while in liver transplantation, warm and cold ischemia times
contribute to IRI, affecting the organ quality and amplifying inflammatory processes [190].
Paradoxically, the restoration of the blood flow, the reperfusion, exacerbates tissue damage
due to the preceding oxygen deprivation [191]. Oxidative stress leads to the activation of
inflammatory pathways and mitochondrial damage, culminating in excessive cell death of
parenchymal liver cells [192]. Therefore, IRI can affect all stages of liver transplantation
and impact the postoperative outcome after liver surgery.

4.6.1. Pyroptosis

Pyroptosis has been shown to play a role in various transplanted organs, including
kidneys and the heart [193,194]. In a porcine liver transplantation model, the comparison of
cold storage vs. different protocols of machine perfusion strongly suggests a role for NLRP3-
and IL-18-related pathways [195–197]. Inhibiting NLRP3 by the small-molecule inhibitor
MCC950, either added to the hypothermic machine perfusion system or injected after
transplantation, reduced pyroptosis, and improved outcomes in pigs [198]. In a murine
IRI study of warm ischemia, the expression levels of nucleotide-binding oligomerization
domain 1 (NOD1), caspase 1, and GSDMD increased significantly [199]. Treatment with a
NOD1 agonist before induction of IRI led to an increased expression of pyroptosis-related
genes. Pre-damaged steatotic livers are even more prone to IRI damage and express
higher levels of cleaved caspase 1 and GSDMD [200]. Newer evidence demonstrated the
potential to target and address cell death regulators in the context of IRI. In cells undergoing
pyroptosis or apoptosis, cell-surface protein NINJ1 is crucial for plasma membrane rupture.
Deficiency or inhibition of NINJ1 improved hepatocellular plasma membrane integrity
in an IRI model, resulting in reduced liver enzymes, decreased IL-18 and DAMPs such
as HMGB1, and diminished neutrophil infiltration [6]. Cell-specific findings showed that
NINJ1 deficiency in Kupffer cells protected mice from IRI through NINJ1/DUSP1 signaling,
reducing neutrophil infiltration. These results were validated in a small human patient
cohort undergoing liver resection with portal occlusion, where preoperative sivelestat, a
neutrophil elastase inhibitor, decreased postoperative serum levels of myeloperoxidase and
liver enzymes, highlighting the critical role of enhanced neutrophil activity in hepatic IRI,
influenced by cell death in resident macrophages [201].

4.6.2. Apoptosis

Most of the described mechanisms of IRI generally assume cell damage that primarily
leads to lytic cell death. However, several reports propose that apoptosis occurs in the
human and rodent post-ischemic liver [202–204]. Apoptosis during IRI is initiated through
the activation of death receptors, specifically through the signaling pathways involving
the death receptor CD95 (Apo-1/Fas) and its corresponding ligand CD95L [205]. The
neutralization of CD95L not only protects the liver against IRI but also attenuates liver
damage, reducing both apoptosis and necrosis [206]. In patients who have undergone
liver resection with HPO compared to those without, an increased rate of apoptosis is
observed [207].

4.6.3. Necroptosis

Overall evidence suggests that necroptosis plays a relevant role as a form of lytic
cell death in the IRI model, although some studies do not attribute any effects to necrop-
tosis [208,209]. A recent study revealed the presence of activated MLKL in human liver
grafts before and after reperfusion [210]. Interestingly, patients experiencing early allo-
graft dysfunction show a significant increase in MLKL activation, which correlates with
serum liver enzyme levels. Additionally, IRI damage is increased in pre-damaged steatotic
livers, as liver steatosis exacerbates hepatic IR injury through increased MLKL-mediated
necroptosis both in in vivo and in vitro models [211,212]. Furthermore, it exacerbates liver
damage after IRI in aging mice [213]. Mechanistically, MLKL deficiency may promote
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PTEN-induced kinase 1 (PINK1)-mediated mitophagy activation, inhibiting oxidative DNA
damage in hepatocytes, which in turn suppresses macrophage cGAS-STING activation
and inflammatory liver IRI [214]. Underlining the importance of necroptosis as a mediator
of intercellular crosstalk, it is suggested that MLKL-mediated hepatocyte necroptosis is
controlled by the Notch pathway in macrophages [215]. Despite conflicting evidence,
overall data suggest a detrimental role of necroptosis in IRI.

4.6.4. Ferroptosis

In a recent study using a murine IRI model, it was discovered that transmembrane
member 16A (TMEM16A), a component of hepatocyte Ca2+-activated chloride channels,
interacts with GPX4, leading to its ubiquitination and degradation, thereby promoting
ferroptosis [216]. Knocking out TMEM16A, specifically in hepatocytes in mice, reduced
IRI-induced liver damage, improving inflammation and ferroptotic cell death. Analysis
of liver specimens from patients undergoing liver resection with hepatic portal occlusion
revealed increased TMEM16A post-resection compared to pre-resection biopsies. In a
different patient cohort, intraoperative hepatic portal occlusion reduced GPX4 expression
and increased iron overload in the liver [207]. Consistent with these findings, mice fed a
high-iron diet exhibited exacerbated IRI, suggesting that targeting ferroptosis could be a
viable strategy to mitigate IRI in both mice and patients.

4.6.5. Autophagy/Autophagy-Induced Cell Death

Autophagy plays a crucial role in cellular adaptation to various endogenous and
exogenous stressors, including IRI [217]. In a murine IRI model, increased levels of LC3-II
and p62 proteins suggest either autophagosome formation or impaired fusion with lyso-
somes, leading to their accumulation [218]. Mild hypothermia treatment, used to mitigate
organ damage in transplantation, upregulates Rab7 expression facilitating autophagosome
degradation and reducing liver damage. Mitophagy, the selective removal of damaged
mitochondria, is protective in hepatocytes, although its mechanisms remain incompletely
understood. In rats, the anti-apoptotic augmenter of liver regeneration (ALR) protein,
found in mitochondria, promotes mitophagy by recruiting PINK1 and Parkin to mitochon-
dria, thereby attenuating IRI [219]. Overall, autophagy in injured liver cells might protect
from cell death in the context of IRI. However, more studies are needed to fully understand
the mechanisms.

5. Potential Treatment Options: Targeting Cell Death in Liver Diseases

Over the past few decades, numerous researchers have investigated cell death path-
ways using inhibitors and methodologies in both animal models and human studies to
identify clinically applicable drugs that can mitigate liver diseases (Table 1). In this chapter,
we provide a summary of treatment options based on their respective targets for cell death,
along with an overview of potential applications in various liver diseases. .

Table 1. Pharmacologic Inhibitors of Cell Death in Liver Disease.

Cell Death Drug Stage Target of Compound Disease/Model Ref.

Apoptosis

VX-166 Preclinical

Pan-caspase MASLD/MASH
Cirrhosis

[135,220–225]GS-9450 Phase II, randomized,
placebo-controlled trial

Emricasan
(IDN-6556)

Randomized,
placebo-controlled trial

Aramchol Randomized,
placebo-controlled trial Stearoyl-CoA desaturase 1 MASLD [226]

Meretrix oligopeptides Preclinical NF-κB MASLD [227]

Seladelpar
(MBX-8025) Preclinical Proliferator-activated

receptor-delta MASH [228]

Resveratrol Preclinical SIRT1 MASLD [229]

TBE-31 Preclinical NRF2 MASH/Fibrosis [230]
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Table 1. Cont.

Cell Death Drug Stage Target of Compound Disease/Model Ref.

Autophagy

Rapamycin Preclinical
mTORC1

MASLD/MASH
Liver transplantation with

HCC
[231–233]

Everolimus Randomized trial

Metformin Preclinical AMPK ALD
MASLD [234,235]

Ezetimibe Preclinical AMPK, TFEB MASH [236]

FGF21 Randomized,
placebo-controlled trial AMPK MASLD/MASH [237]

Dihydromyricetin
Berberine Preclinical SIRT3 MASLD [238,239]

Curcumin Preclinical NRF2/FXR/LXRα MASLD
ALD [240,241]

S217879 Preclinical NRF2 MASLD [242]

Necroptosis

Necrostatin-1 Preclinical RIPK1
Liver I/R injury

Drug-induced acute liver
injury

[243,244]

RIPA-56 Preclinical RIPK1 MASLD/MASH [245]

Necrosulfonamide Preclinical MLKL CCL4-induced acute injury [246]

Pyroptosis

CY-09,
Tranilast,
Oridonin
MCC950
IFM-514

Preclinical NLRP3
MASLD/MASH

ALD
Liver fibrosis

[247–252]

Canakinumab Randomized,
placebo-controlled trial IL-1β Alcoholic hepatitis [253]

Ferroptosis

Ferrostain-1, Liproxstatin-1
Vitamin E Preclinical Lipophilic antioxidation

TAA-induced ALI
Autoimmune hepatitis

MASLD/MASH
ALD

[115,254–256]

Selenium Preclinical GPX4 MASH [145]

FGF21 Preclinical HO-1 inhibition,
NRF2 activation

Iron overload-induced liver
damage and fibrosis [257]

5.1. Pyroptosis

In recent years, a number of small molecular compounds, such as CY-09, MCC950,
oridonin, IFM-514, and tranilast, have demonstrated efficacy in mitigating inflammatory
diseases through the inhibition of the NLRP3 inflammasome [247]. CY-09 reduces hepatic
steatosis and insulin resistance, whether used alone or in combination with endoscopic
sleeve gastroplasty, in a MASLD animal model [248,258]. MCC950 improves steatosis and
fibrosis in elderly mice as well as in a MASLD animal model, accompanied by normalized
hepatic caspase 1 and IL-1β expression [249,250]. The NLRP3 blocker oridonin has also
been reported to attenuate inflammatory cell infiltration and injury in the ALD model
and ameliorate CCL4-induced liver fibrosis [251,252]. Disulfiram, clinically used to treat
alcohol use disorder, has recently been demonstrated to inhibit pyroptosis by blocking
GSDMD pore formation [259]. Treatment with disulfiram alleviates acute lung injury and
ischemia/reperfusion-induced acute kidney injury, indicating a potential application in
liver disease beyond alcohol use disorder [260,261]. The therapeutic benefits of the IL-1β
antibody canakinumab for the treatment of alcoholic hepatitis are currently investigated.
The randomized-controlled trial NCT03775109 is testing wether canakinumab can improve
histology and survival rates [253].

5.2. Apoptosis

Previously, the pan-caspase inhibitor VX-166 showed conflicting results in the reduc-
tion of hepatic steatosis, histological inflammation, and liver injury across different dietary
models [220,221]. The pan-caspase inhibitor emricasan has been reported to mitigate liver
injury and fibrosis through the inhibition of apoptosis in a MASLD animal model [222].
However, its beneficial effect in preclinical models was not confirmed in clinical trials
including patients with MASH and MASH-related cirrhosis [135,225]. Treatment with
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GS-9450 clinically induced reductions in liver enzyme levels, but it did not significantly
decrease cytokeratin 18, which is released from apoptotic cells, in sera from patients with
MASH [224]. On the other hand, three months of administration of aramchol, which
regulates SCD1 fatty acid enzymes, has been reported to be safe, tolerable, and signifi-
cantly reduce liver fat content in patients with MASLD, potentially targeting ER-stress and
apoptosis [226].

5.3. Necroptosis

Necrostatin-1, a potent RIPK1 inhibitor, has protective effects against hepatic injury,
improving liver function and reducing inflammatory responses in animal models of liver
IRI and drug-induced liver failure [243,244]. Interestingly, necrostatin-1 also exhibits an
off-target effect by suppressing ferroptosis at high concentrations, although the mechanism
behind it is not yet fully understood [262]. The RIPK1 inhibitor R552, which has completed
phase I clinical trials and is currently undergoing phase II studies for autoimmune and
inflammatory diseases, has clear effects on liver disease [263]. Another promising inhibitor,
RIPA-56, a highly specific and metabolically stable inhibitor of RIPK1, improved liver
inflammation and fibrosis in mice fed a high-fat diet and was effective in hepatocytes
from patients with MASLD [245]. Additionally, the novel MLKL inhibitor, P28, demon-
strated potent anti-fibrotic properties by reducing the activation of hepatic stellate cells and
expression of fibrosis-related markers without having cytotoxic effects [264].

5.4. Ferroptosis

Targeting ferroptosis might be a promising therapeutic option in various disorders,
especially liver diseases. Prior reports suggest that iron chelators like deferoxamine and
ciclopirox olamine can curb lipid peroxidation propagation by preventing the Fenton
reaction, although research on their efficacy in liver diseases is limited [20]. Drugs that
target lipid peroxidation, such as ferrostatin-1, liproxstatin-1, and vitamin E, show promise
in alleviating liver dysfunction and ferroptosis in different animal models of liver diseases,
including acute liver injury, autoimmune hepatitis, ALD, and MASLD [115,254,256,265].
Interestingly, liproxstatin-1, a ferroptosis inhibitor, has been found to alleviate steatosis and
steatohepatitis in MASLD by broadly mitigating cell death pathways involving apoptosis,
pyroptosis, and necroptosis, hinting at a potential link between ferroptosis and other
forms of cell death [255]. Additionally, targeting ACSL4 with thiazolidinediones, a class of
antidiabetic compounds, has shown promise in inhibiting ferroptosis in a lipoxygenase-
dependent manner, aligning with their recommended use in MASLD [23]. FGF21, a
biological analog, has recently emerged as a novel ferroptosis suppressor, expanding the
treatment options for diseases associated with ferroptosis [257]. Despite the growing
research on ferroptosis modulators in various diseases, further investigations are needed to
fully elucidate the roles and mechanisms of these pharmacological agents in liver diseases.

5.5. Autophagy/Autophagy-Induced Cell Death

Pharmacological strategies targeting autophagy have been explored for liver disease
treatment. Suppression of mTORC1 by rapamycin or everolimus increases peroxisome
proliferator-activated receptor α (PPARα) activity and autophagy, reducing steatosis and
inflammation in MASLD models [231,232]. However, these interventions affect various
pathways, and their impact on fibrosis remains controversial. The AMPK activator met-
formin has been reported to improve ALD and MASLD through the upregulation of
mitophagy [234,235]. Treatment with ezetimibe, which is usually used to treat hypercholes-
terolemia, improves steatohepatitis by promoting autophagy via AMPK activation and
TFEB nuclear translocation, independent of mTOR [236]. FGF21 analogs improve insulin
sensitivity and reduce liver fat in MASH patients [266]. Stimulating SIRT3 with agents like
dihydromyricetin or berberine, along with activating the NRF2/FXR/LXRα pathway with
curcumin, benefits MASLD-related conditions [238–240]. The novel NRF2 activator S217879
rectifies autophagy defects and enhances liver health in MASLD progression [242]. Despite
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ongoing efforts, no autophagy-selective drugs are in clinical development, highlighting the
need for further research to find potent and safe autophagy modulators for liver diseases.

6. Conclusions

We have reviewed and summarized various forms of programmed cell death and re-
lated molecular mechanisms in the context of liver diseases. Different types of programmed
cell death play a unique role in maintaining liver function. However, disruption in any
of these mechanisms can contribute to the onset of liver diseases. Our comprehension
of cell death pathways as initiators and modulators of disease is continually growing.
Envisioning the targeted regulation of key players in cell death pathways for disease treat-
ment and cellular damage alleviation is intriguing. However, evidence also highlights
the need to consider the intricate and complex network of intertwined and compensatory
pathways. For instance, in liver cancer, the response of both tumoral and non-tumoral mi-
croenvironments to dying cells must be taken into account. Many cell death pathways are
counterbalanced by the activation of complementary pathways, and the release of various
DAMPs can elicit diverse reactions in distinct cell types. Understanding how cell death
pathways operate in various cell types under different pathological situations remains to
be elucidated. For precise treatment of liver diseases, a combination of distinct inhibitors
may be necessary to address the multitude of pathways, ultimately enabling the provision
of precise and effective treatment options for patients. Despite significant advances in liver
disease research, several challenges must be addressed before the regulation of cell death
can be effectively utilized as a therapeutic strategy in clinical settings. Given the diverse
range of pathogenic factors that trigger cell death programs and the complexity of liver
disease pathogenesis, a detailed understanding of the interactions between different forms
of programmed cell death and their impact on disease progression is imperative. This
approach could ultimately facilitate the development of accurate and effective treatment
options for patients.
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