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Abstract: Polycystic ovary syndrome (PCOS) is a common endocrine disorder among females
of reproductive age with heterogeneous prevalence. It is well known that female reproductive
competence depends on the dynamic regulation of the hypothalamic–pituitary–gonadal (HPG) axis;
therefore, disruption of this highly regulated system leads to fertility problems. Among disruptors,
both oxidative stress and inflammation contribute to an increased LH-FSH ratio and a consequent
hyperandrogenism. Shifts in this bidirectional interplay between the neuroendocrine system and
oxidative/inflammatory homeostasis result in the accumulation of reactive oxygen/nitrogen species
and inflammatory markers as well as alterations in antioxidant defense mechanisms. Evidence
shows that lifestyle changes, including regular physical exercise, are recognized as the most effective
first-line management to reduce the severity of PCOS symptoms. The aim of our narrative review
is to provide insights into the mechanisms and target factors of PCOS-related hormonal changes,
oxidative/antioxidant homeostasis, and inflammation, and to discuss the effects of exercise, which
takes into account various factors, in relation to PCOS. A better understanding of the PCOS-associated
hormonal changes, oxidative and inflammatory circuits, as well as exercise-induced mechanisms of
action on those targets may improve the quality of life of women with PCOS.

Keywords: polycystic ovary syndrome; oxidative stress; inflammation; hormonal imbalance; exercise

1. Introduction
Background

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disor-
ders among females of reproductive age, whose multifaceted nature has baffled many
researchers and clinicians until now. According to the World Health Organization, PCOS
affects an estimated 8–13% of reproductive-aged women; however, up to 70% of affected
women remain undiagnosed [1].

PCOS is characterized by polycystic ovarian morphology, dysregulated ovarian cycles
with a consequent anovulation as well as biochemical and/or clinical hyperandrogenism [2,3].
Neuroendocrine alterations in PCOS can be associated with an increased gonadotropin-
releasing hormone (GnRH) pulsatility and an increased luteinizing hormone (LH) secretion
from the pituitary gland, which result in an elevated androgen synthesis in the ovarian
theca cells [4].

Polycystic ovarian morphology can be associated with changes in follicle pattern.
Androgen excess enhances the recruitment of primordial follicles into the pool of growing
small pre-antral and antral follicles and impairs selection for dominant follicles. These
alterations account for ovarian enlargement, capsular thickening, as well as thecal/stromal
hyperplasia and luteinization [5]. In addition to hormonal and histopathologic changes,
the hallmark features of this complex endocrinopathy include cutaneous manifestations
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(e.g., acne, seborrhea, hirsutism, male-pattern alopecia, and virilization), infertility, and
large-scale metabolic pathologies, including obesity, hyperinsulinemia, insulin resistance,
metabolic syndrome, and type 2 diabetes (T2DM) [6].

Although morphological and endocrine signaling mechanisms are well described
in this complex endocrine pathology, the underlying biochemical and molecular mecha-
nisms are not fully elucidated. A growing number of studies examine the role of oxida-
tive/nitrosative stress and inflammatory processes in the development and progression
of PCOS [7,8]. During oxidative stress, oxidative/antioxidant homeostasis is disrupted,
which results in an accumulation of reactive oxygen species (ROS) and shifts in antioxidant
defense mechanisms [9–11]. In addition to the accumulation of oxidative stress parame-
ters, increased levels of inflammatory markers and the consequent low-grade inflamma-
tion along with hyperandrogenism maintain an unfavorable homeostatic profile in PCOS
phenotypes [12]. On that basis, PCOS seems to be a complex trait in which morphological
and hormonal features are closely related to inflammation and oxidative stress. Previous
studies proved that altered levels of pro-inflammatory cytokines and oxidative stress in the
follicular environment can negatively influence ovarian morphology and function [13,14].
Follicular fluid is derived from blood and tissue fluid and contains infiltrated macrophages
and lymphocytes. The release of inflammatory and oxidative markers has a negative impact
on folliculogenesis and can result in ovarian fibrosis. Obesity and insulin resistance have
been implicated as aggravating factors in the pathogenesis of PCOS. Hyperinsulinemia
increases androgen production, which promotes adipocyte differentiation and higher free
fatty acid levels, thus leading to inflammation, oxidative stress, and a consequent damage
in oocyte quality [13]. Figure 1 shows insight into the pathogenesis of PCOS.

Figure 1. Summarized scheme regarding the pathophysiology of polycystic ovary syndrome.
AMH: anti-Müllerian hormone; FSH: follicle-stimulating hormone; LH: luteinizing hormone; PCOS:
polycystic ovary syndrome.

Although PCOS is difficult to cure completely, it can be effectively managed. Accord-
ing to the Recommendations of the International Evidence-Based Guideline 2023 for the
Evaluation and Management of Polycystic Ovary Syndrome, women with PCOS should
make lifestyle interventions, such as performing regular exercise or eating a healthy diet
combined with exercise in order to improve quality of life [15]. A systematic review in
relation to physical activity and PCOS concluded that the optimal exercise volume, in-
tensity, and duration cannot be fully identified, but a minimum duration of 30 min at
a submaximal heart rate level has been shown to improve reproductive functions (the
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average duration was 15 weeks) [16]. Similar to other non-communicable diseases, physical
exercise exerts a protective role in reproductive function and its comorbidities; however,
the effects mediated by exercise are largely determined by various factors (e.g., duration
and intensity of exercise or the individual overall health status).

Due to the high heterogeneity of PCOS, understanding its underling mechanisms and
identifying potential therapeutic interventions are at the heart of research. The purpose
of this narrative review is to highlight the role of oxidative stress and inflammation, ac-
companied by hormonal changes, in the pathogenesis of PCOS. In addition, our aim was
to describe the relationship between these PCOS-related changes and physical exercise,
focusing on the mechanisms of action and main targets. Understanding these underlying
mechanisms may improve the quality of life of women with PCOS and can help to reduce
the PCOS-associated comorbidities.

2. Hormonal Changes in Patients with PCOS
2.1. Hormones of the HPG Axis and PCOS

During the menstrual cycle, androgen and ovarian hormone production is maintained
and regulated by upstream signals from the hypothalamic region of the brain through
the so-called hypothalamic–pituitary–gonadal (HPG) axis [17]. Neurons in the hypotha-
lamus secrete pulsatile GnRH into the portal vasculature of the pituitary gland. GnRH
is responsible for the production and release of gonadotropins, out of which two impor-
tant ones worth mentioning in the case of PCOS are the LH and the follicle-stimulating
hormone (FSH). In the follicles, granulosa and theca cells are sites of action for FSH and
LH gonadotropins, and sites for steroid hormone production. Interactions between theca
and granulosa cells provide the base of the ovarian function. LH acts on the theca cells to
promote the production of androgen from cholesterol that is then utilized by the granulosa
cells to produce estrogen under the control of FSH [18]. FSH, on the other hand, stimulates
the development and maturation of ovarian follicles.

In women with PCOS, it has been found that serum LH concentration is significantly
increased, while the FSH value is decreased compared to healthy women, and this change
eventually results in an elevated LH/FSH ratio [19]. Increased LH secretion has several
consequences. The LH stimulation of ovarian theca cells drives the synthesis of testosterone;
thus, elevated LH levels can lead to hyperandrogenism. Furthermore, elevated serum LH
concentration is closely associated with a reduced chance of conception and an increased
risk of miscarriage [20]. Through the HPG axis, LH release is a result of pulsatile GnRH
release from the hypothalamus to the pituitary. A high pulse frequency of GnRH secretion
favors the release of LH while a low frequency of GnRH secretion contributes to a greater
FSH release [21]. Based on these hormonal changes, determination of the LH/FSH ratio
serves as a gold standard in the assessment of PCOS and is used as a marker for ovarian
reserve capacity [22].

2.2. Action of Physical Exercise on the HPG Axis Hormones in PCOS

Recent studies have shown that lifestyle modifications, including physical exercise,
have protective effects on hormonal disturbances manifested in PCOS. There is no doubt
about the role of hypothalamic pathologies in relation to PCOS. In this scenario, hypotha-
lamic inflammation has been characterized as a potential pathophysiologic basis for the
heterogeneity of clinical and hormonal presentation in PCOS [23]. Studies show that an
imbalanced diet and obesity can target GnRH neurons in the hypothalamus, which inte-
grates all signals in the brain to regulate reproduction. Due to their location in the brain,
GnRH neurons are vulnerable to proinflammatory cytokines, immune cell infiltration,
and microglia expansion; thus, hypothalamic pathologies result in neuroendocrine and
consequent metabolic disturbances. However, physical exercise can induce defense mecha-
nisms by decreasing microglia activation and by improving insulin sensitivity [24]. Conse-
quently, reducing hyperinsulinemia results in a normo-androgenic pattern with decreased
LH concentration.
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Additionally, compelling new evidence indicates that the mechanism by which phys-
ical exercise improves neuroendocrine imbalance can be associated with an increased
activity of the hypothalamic–pituitary–adrenal (HPA) axis. Consequently, the HPA axis
orchestrates the release of glucocorticoids, which exert negative feedback control at the
level of the hypothalamus/GnRH and the anterior pituitary gland/gonadotropins [25].
Similar to other non-communicable diseases, it is important to note that the duration and
intensity of exercise as well as individual mental health (stress-related conditions) are major
regulator factors in the regulatory loop of the HPA axis, cortisol, and reproduction [26].
Supporting this hypothesis, Bonab and Parvaneh provided findings on the effects of aerobic
exercise in adolescent girls with PCOS. They found that 12-week aerobic exercise improved
estrogen and testosterone levels as well as had a positive impact on lipid profile [27]. Jedel
et al. proved that 16 weeks of aerobic exercise is an effective therapy for hyperandrogenism
and oligo/amenorrhea [28].

2.3. Anti-Müllerian Hormone and PCOS

Another hormone used closely together with the LH/FSH ratio for identification and
diagnostic purposes is the anti-Müllerian hormone (AMH). AMH is a product of granulosa
cells of the preantral and small antral follicles in women. AMH regulates folliculogenesis
by inhibiting the recruitment of follicles from the resting pool in order to select for the
dominant follicle, after which the production of AMH diminishes [29]. Histomorphological
features of PCOS can be characterized by more pre-antral and small follicles in the ovaries,
partially due to hyperandrogenism, and more AMH is generally produced than in normal
ovaries [30]. AMH has been shown to inhibit FSH-induced aromatase activity and abolishes
the FSH growth-promoting effects on granulosa cells, which leads to a decreased estradiol
production [29]. This imbalance suggests that increased AMH levels likely play a role in
the causation of anovulation and PCOS [30].

2.4. Effects of Physical Exercise on Anti-Müllerian Hormone in PCOS

The correlation between AMH level and ovarian reserve function is well described.
Recent studies also highlight that AMH and antral follicle count are the most sensitive
parameters in the assessment of ovarian reserve capacity [31], which can be influenced by
exercise [32]. Additionally, Al-Eisa et al. reported that 12 weeks of moderate aerobic exercise
significantly reduced AMH levels, which was verified by transvaginal ultrasonographic
examination with a result of improved follicle count [33]. Previous findings were verified
by Wu et al., who concluded that 12-week aerobic exercise was able to improve ovarian
reserves by diminishing AMH levels [34].

2.5. Insulin, Adipokines, and PCOS

Besides gonadotropins and AMH, there is a strong relationship between PCOS and
pancreatic β-cell-secreted insulin release. During physiological processes, insulin activity
plays a role in the function of the HPG axis and ovulation. Consequently, the development
and manifestation of PCOS can be associated with insulin-related metabolic abnormalities,
such as insulin resistance and compensatory hyperinsulinemia and vice versa. Although
insulin resistance is a key feature of both obese and lean individuals, obesity can predispose
to long-term endocrine–metabolic comorbidities. In a previous study, Cadagan et al.
investigated the effects of insulin on theca cells and found that PCOS can disrupt steroid
biosynthesis in ovarian theca cells, which is further augmented under hyperinsulinemia
and increased LH secretion [35]. Insulin also stimulates ovarian androgen production in
theca cells, which is different from the effects on glucose metabolism [36]. In turn, insulin
resistance is affected and maintained by hyperandrogenism. The increased secretion of
androgen is associated with the dysfunction of islets of Langerhans, thereby compromising
the pancreatic metabolic functions and causing hyperinsulinemia. In preclinical studies, a
direct relationship is revealed among the overexposure of androgens, hyperinsulinemia,
insulin resistance, and type 2 diabetes mellitus in women with PCOS [37]. The altered
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endocrine–metabolic environment can be associated with adipose tissue accumulation,
which can predispose PCOS-affected individuals to obesity. Although obesity in itself is a
risk factor for numerous pathologies, morphological and functional alterations of adipose
tissue result in a dysregulated adipokine secretion. A large number of adipokines are
secreted from the adipose tissues, which have various impacts on insulin homeostasis.
Among them, some adipokines mimic or induce insulin-like activity and stimulate insulin
receptors, whereas others possess insulin-sensitizing effects. When the well-regulated
adipokine secretion pattern is disrupted, the insulin metabolism is also disturbed, which
can eventually aggravate the life expectancy of women with PCOS. Based on all these,
adipokines are often used as biomarkers for PCOS-related insulin resistance [38,39].

2.6. Effects of Physical Exercise on Insulin Sensitivity and Adipokines in PCOS

The mechanism by which exercise results in a normo-androgenic environment is at-
tributable to the involvement of the HPG axis. In this scenario, reduced hyperinsulinemia
restores the sensitivity of the GnRH pulse activator role in diminishing LH release and an-
drogen overproduction. These changes can eventually lead to dominant follicle maturation
and regular ovulation [40]. Moreover, exercise improves glucose and insulin metabolisms
by restoring glucose homeostasis through increased skeletal muscle glucose disposal [41].
The molecular background of the exercise-induced protective mechanism is that exercise
activates the protein kinase C (PKC)/Akt/glucose transporter-4 (GLUT-4) signaling circuit
that is damaged in PCOS [42,43]. Subsequently, the improvement in insulin sensitivity may
therefore reduce inflammation and the release of cytokines that promote insulin resistance.

The exercise-induced reduction in abdominal obesity resulting from the metabolically
active visceral adipocytes may also lead to reduced secretions of tumor necrosis factor-
alpha (TNF-α) and IL-6 [44]. In addition to pro-inflammatory cytokines, adipokine release
is also altered as a consequence of physical exercise. Among adipokines, the roles of
leptin, resistin, vaspin, apelin, and adiponectin are highlighted in reproductive function
and insulin sensitivity [38,45]. In a previous study, Al-Eisa et al. found that the change
in AMH and adiponectin levels correlated significantly with physical activity level [33].
In agreement with these results, further studies have verified that the exercise-induced
improvement in body fat percentage positively affects adipokine release [46,47].

2.7. IGF-1 and PCOS

In addition to the classic regulators such as FSH and LH, insulin-like growth factor
(IGF) is involved in the regulation of insulin and androgens. IGF-1 plays a major role in
ovarian tissue. IGF-1, once bound in ovarian granulosa cells, activates primordial follicles,
enhances follicle development, and stimulates the proliferation and steroidogenesis of
theca interstitial cells. Women with PCOS show an increase in the bioactivity of IGF-1,
resulting from an increase in IGF-1 levels in non-obese patients or from a reduction in
insulin-like growth factor-binding protein-1 (IGFBP-1) concentrations in obese patients. It
was demonstrated by several research groups that the combined actions of IGF-1 along
with growth hormone (GH) are responsible for the elevation in LH and the consequent
hyperandrogenism in women with PCOS [48,49]. Increased IGF-1 levels can also lead to
increased insulin sensitivity, which is strongly associated with obesity, as IGF-1 increases
peripheral glucose uptake [50].

2.8. Effects of Physical Exercise on IGF-1 in PCOS

There have been a few studies on the link between physical exercise and IGF-1, and
the effect of exercise on IGF-1, however, shows discordant results [51,52]. Besides these
findings, evidence on the relationship between exercise and IGF-1 in PCOS is more limited.
Stener-Victorin et al. did not detect any changes in IGF-1 level between control and trained
individuals [53]. Szczuko et al. reported that dietary intervention, another lifestyle factor
in PCOS therapy, increased IGF-1, and its concentration was correlated with the level of
SHBG and HDL [54].
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3. Role of Oxidative Stress and Inflammation in PCOS
3.1. Oxidative Stress and Lipid Peroxidation

With the keen awareness that PCOS is a major public health problem in women of
reproductive age, understanding the underlying mechanisms driving PCOS is vital for
devising targeted interventions and improving clinical outcomes. Oxidative stress as
a general term is usually used to describe an imbalance between the production of free
radicals and antioxidant defense mechanisms [55]. A large number of studies verify a causal
relationship between oxidative stress and PCOS. A wide range of oxidative and antioxidant
biomarkers serve as useful targets to estimate and evaluate the risk and role of oxidative
damage in fertility-related conditions. Among oxidative biomarkers, malondialdehyde
(MDA), nitric oxide (NO), advanced glycosylated end products (AGEs), and xanthine
oxidase (XO) can be associated with increased oxidative stress in women with PCOS.

3.1.1. MDA and PCOS

Murri et al. showed a meta-analysis which proved a ~47% increase in MDA concen-
tration in women with PCOS compared to the healthy individuals [56]. MDA is a result
of lipid peroxidation of polyunsaturated fatty acids and is among the most researched
biomarkers, which lead to tissue damage through the disruption of protein structure and
functions. Kuscu and Var compared blood MDA levels in PCOS patients with healthy
controls and found that the MDA level was significantly higher in the PCOS group and was
separate from obesity [57]. In accordance with these findings, Zhang et al. demonstrated
that PCOS patients exhibited significantly increased serum MDA levels compared to the
control group [58]. These results shed light on the fact that oxidative stress can affect the
development and progression of PCOS, which can be independent from adipose tissue
accumulation. NO is a free radical, and it is an important cellular signaling molecule
involved in many pathological processes compromised in PCOS [55,59].

3.1.2. Nitric Oxide and PCOS

In the last twenty years, the importance of NO in both the oxidative and inflammatory
environment has been recognized. In the ovary, NO can be generated not only by ovarian
cells but also by the ovarian vasculature and by the resident or infiltrating macrophages [60].
NO is generated by one of three nitric oxide synthase enzymes: endothelial NOS (eNOS),
inducible NOS (iNOS), and neuronal NOS (nNOS). Nitric oxide is a freely diffusible
molecule that possesses a key role in various reproductive and endocrine conditions, such
as oocyte maturation, follicular development, ovulation, and PCOS-related cardiovascular
complications. PCOS-related changes in NO levels are widely investigated; however, the
role of NO in this condition is still a matter of debate. In a meta-analysis by Murri et al. [56],
there was no statistically significant difference in plasma NO levels in women with PCOS
compared with controls. Karabulut et al. researched the relationship between PCOS and
oxidative stress levels by measuring NO. Their results showed statistically higher levels of
NO in blood samples of PCOS patients compared to the control groups [61]. Nevertheless,
recent findings suggest that the deficiency in NO in PCOS can be associated with the arrest
of follicular development [59].

3.1.3. AGEs, AOPPs, and PCOS

AGEs or ‘glycotoxins’ can be associated with the severity of oxidative damage and
inflammation. They are also called the end products of a chemical process in which the
carbonyl group of carbohydrates reacts non-enzymatically and interacts with lipids or with
amino groups of proteins [62]. AGE levels as oxidative stress markers have been reported in
several studies and evidence suggests that AGEs result in a hormonal imbalance in PCOS by
altering enzyme functions and leading to inflammatory changes and insulin resistance [62].
Lin et al. evaluated the effect of AGEs on the function of granulosa cells and found that
the proliferation of granulosa cells and the production of progesterone were inhibited by
treatment with AGE products. These changes occurred through downregulation of the LH
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receptor/cAMP regulatory activity [63]. Advanced oxidation protein products (AOPPs)
are novel markers of oxidant-mediated protein damage and they act as a unique class of
proinflammatory mediators [55]. Hyderali et al. summarizes that plasma levels of AOPPs
were significantly higher in women with PCOS compared with the healthy controls [64].

3.1.4. Xantin Oxidase in PCOS

Another oxidative biomarker associated with PCOS is xanthine oxidase. XO is an
enzyme that participates in the generation of superoxide anion radicals. Serum XO, which
plays an important role in the catabolism of purines in humans and generates ROS, was
increased in PCOS in studies [55]. In a cross-sectional study, Isik et al. examined the
relationship among XO, oxidative stress, inflammation, and blood parameters in women
with PCOS. They concluded a positive correlation between XO activity and LH/FSH ratio
as well as inflammatory status [65].

3.1.5. Mitochondrial DNA and PCOS

Increased ROS production can induce damage in mitochondrial components such as
mtDNA, proteins, and lipids and finally prompts cell apoptosis mediated by mitochondrial
alterations [66]. In a previous study, Zeber-Lubecka et al. summarized that any defects at
the level of mtDNA replication affect the formation of numerous mutations; thus, mtDNA
damage can be a contributor in the pathogenesis of PCOS. They demonstrated that mito-
chondrial mutations can lead to impaired oxidative phosphorylation, disruption to insulin
signaling pathways, and result in an increased ROS production and a consequent oocyte
impairment [67]. Sang-Hea Lee et al. have demonstrated that the number of mtDNA
copies were found to be lower in women with PCOS than in the control groups [68], with
a negative correlation with the severity of the syndrome. These results are verified by
the findings of Zhang et al., who also demonstrated that decreased mtDNA content in
peripheral leukocytes is associated with the development of T2DM, which is the late-stage
complication of PCOS [69].

3.2. Effects of Physical Exercise on Oxidative Stress Parameters in PCOS

It is well documented that in many non-communicable diseases such as PCOS, there
is a strong relationship between ROS generation and glucose/insulin metabolism, which
can be characterized by a dysregulated mitochondrial function and insulin resistance [70].
The main causes for these pathological changes are an incomplete oxidation of fatty acids,
resulting in lipid accumulation, which may inhibit insulin signaling, and an increased ROS
content and oxidative stress, potentially resulting in mitophagy and apoptosis. Conse-
quently, physical exercise has a beneficial effect on these pathways. The above-mentioned
physiological changes were also verified by Malamouli et al., who concluded that exer-
cise intervention has a positive impact on mitochondrial health in the skeletal muscle of
women with PCOS. These changes were mediated by decreasing ROS production along
with improving insulin sensitivity [71].

3.3. Antioxidant Defense Mechanisms

A large number of studies have underpinned that shifts in the oxidant/antioxidant
homeostasis can maintain or aggravate the PCOS-related redox imbalance. In the complex
biochemical background of PCOS pathologies, there are key antioxidants that have an
influence on the endocrine disturbance, including SOD, GPx, GSH, as well as nuclear factor
erythroid 2-related factor 2 (Nrf2).

3.3.1. Superoxide Dismutase and PCOS

SOD is an enzyme and an integral part of the antioxidant defense system that elim-
inates superoxide anions (O2−), a major oxygen radical, by catalyzing them into H2O2,
which is eventually turned into water by GPx. Depending on the metal cofactor, SOD can
have several variants and protein folds, such as the Cu/Zn type, Fe and Mn type, and Ni
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type [72]. SOD activity in PCOS is reported in several studies; however, the results are
controversial. In a previous study, Seleem et al. investigated the role of oxidative stress
and inflammation in PCOS and found that both follicular fluid and serum SOD levels
were significantly lower in women with PCOS compared to the control group. The mean
relative levels of Cu and Zn SOD mRNAs were also significantly lower in cells isolated
from the follicular fluid in PCOS than the control group [73]. Sabuncu et al. showed that
women with PCOS had higher SOD levels than healthy individuals [74], while in another
study, Zhang et al. established a contrary change [58]. In accordance with Zhang et al., the
study by Bizoń et al. further supported that SOD activity significantly decreased in both
serum and follicular fluid and suggested that changes in SOD activity could be a clinical
parameter for determining systemic oxidative stress in PCOS [75].

3.3.2. Glutathione Peroxidase, Glutathione, and PCOS

Continuing the list of the antioxidants, GPx is an enzyme family that protects the
organism from oxidative damage by reducing lipid hydroperoxides to their corresponding
alcohols and reducing H2O2 to water. The GPx activity evaluation for antioxidant defense
assessment in PCOS was reported in a large number of studies [56]. Results regarding GPx
activity are still conflicting; thus, some studies show elevated GPx values in women with
PCOS or demonstrate a similar GPx range between PCOS patients and healthy individuals.
Sulaiman et al. concluded that the increase in GPx activity can be associated with the
fact that GPx has a higher affinity toward peroxides and thus scavenge free radicals more
efficiently [8]. Contrary to these findings, there are previous findings which demonstrated
a GPx reduction in PCOS. Uckan et al. concluded that oxidative stress and decreased
antioxidant parameters (e.g., SOD, catalase, and GPx) in PCOS patients were correlated
with hyperinsulinemia, hypertension, and dyslipidemia [76]. Similar to GPx, GSH is
another major antioxidant that can prevent damage to cellular components against reactive
oxygen species, free radicals, peroxides, and heavy metals. Sulaiman et al. demonstrated
a lower GSH level in women with PCOS compared to healthy women [8]. These results
support the conclusions reached by other researchers, such as Chelchowska et al., whose
findings showed a reduction of up to 50% in glutathione levels in women with PCOS
compared to healthy individuals [77].

3.3.3. Nrf2 and PCOS

Nrf2 is a master transcriptional factor that regulates the expression of antioxidant
proteins to protect against oxidative damage and inflammation. After activation, Nrf2
detaches from Keap1 and translocates to the nucleus to activate several antioxidant genes,
such SOD, catalase, heme oxygenase-1, and GPx. In patients with PCOS, an association has
been reported between reduced Nrf2 cell content and hyperandrogenism, insulin resistance,
and obesity [78]. Wang et al. examined the role of the Keap1/Nrf2 pathway on oxidative
stress in the ovaries of women with PCOS as well as an in vitro human ovarian granulosa
cell line. As a result of oxidative stress, they detected an increase in Nrf2 expression and
concluded that in the early stage of oxidative stress, the body adaptively increases Nrf2
expression to maintain the functionality of ROS removal. However, during sustained
oxidative stress leading to cell damage, antioxidant function is further impaired, which
results in a decrease in Nrf2 expression. In agreement with other studies, they verified that
antioxidant and anti-inflammatory supplementation can up-regulate and thus ensure the
defense mechanism, Nrf2, and increase the antioxidant enzyme concentrations [79,80].

3.4. Effects of Physical Exercise on Antioxidant Parameters in PCOS

Although there are few studies which examine the effects of physical exercise on the
antioxidant parameters, specifically with the mechanism of action in women with PCOS, the
beneficial role of exercise in reproductive health is undeniable and unquestionable. As seen
in many types of pathological conditions, there is no standard template for the relationship
between training and ROS production, which determine the consequent antioxidant defense
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mechanism. The extent to which ROS is helpful or harmful depends on the duration
and intensity of exercise as well as the fitness condition and nutritional status of the
individual [41,81]. With a previous study, Wu et al. support the protective effect of
exercise in PCOS. They reported that a 12-week aerobic training period in women with
PCOS increased SOD levels in line with total antioxidant capacity, while MDA levels were
reduced and AMH was improved [34].

3.5. Inflammation

Compelling evidence suggests that hyperandrogenism-associated immune-stress and
an inflammatory environment can lead to reproductive dysfunction via the disturbance of
the HPG axis [82–84]. A large number of studies underpin that certain types of immune
cells are involved in PCOS pathogenesis. The most abundant immune cells in PCOS are
macrophages and neutrophils. These cells produce inflammatory cytokines, such as IL-1,
IL-6, IL-18, and TNF-α, which are present in high levels in both the serum and follicular
fluid of women with PCOS. When discussing the effect of the immune system on PCOS, it
is important to note that natural killer cells, dendritic cells, lymphoid T and B cells, and
their role in cytokine dysregulation are also key features in PCOS [85]. T cells, which are
classified into helper T cells, cytotoxic T cells, and regulatory T cells, participate in the
regulation of ovarian homeostasis. Therefore, even a slight disturbance in the ratio of T cells
can result in a proinflammatory phenotype with high levels of cytokines, including TNF-α,
IL-6, interferon-γ (IFNγ), and IL-17, which can be associated with PCOS, preeclampsia,
or infertility [86]. Although the link between T cells and PCOS is well documented, the
role of B cells is not fully elucidated. In a very recent study, Ascani et al. showed that B
cells are not central mediators of PCOS pathology and that their frequencies are altered
as a direct effect of androgen receptor activation. Consequently, hyperandrogenic women
with PCOS have increased frequencies of double-negative B memory cells and increased
levels of circulating immunoglobulin M [87].

Based on all these, hyperandrogenism-induced immune system stimulation in PCOS
can change the proinflammatory cell profile, leading to a disturbed cytokine release.

3.5.1. Interleukins and PCOS

Among interleukins, IL-6 acts as a pro-inflammatory cytokine, and the production of
the IL-6-producing T cells, neutrophils, and M1 macrophages is strongly correlated with
hyperandrogenism. Additionally, IL-6 is produced by adipocytes and is thought to be
a reason why obese individuals have higher levels of inflammatory parameters, such as
C-reactive protein (CRP) [88–90]. Previously, Fulghesu et al. underpinned that women with
PCOS exhibited higher IL-6 values compared to healthy individuals, and this pathological
elevation was further enhanced as a consequence of insulin resistance [91].

IL-1 and IL-18 are members of the IL-1 cytokine superfamily and are produced primar-
ily from monocytes and macrophages. IL-1α and IL-1β directly affect progesterone and
estradiol production in cultures of purified human granulosa cells [92]. IL-1α inhibits estra-
diol production of the granulosa cells, while IL-1β enhances basal progesterone secretion
of human granulosa and theca cells and in small and large follicles [93]. Zangeneh et al.
concluded that increased IL-1α can impair the feedback system of the neuro-inflammation
process and that increased IL-1β can be associated with anovulation in women with
PCOS [94,95]. Interleukin 18 (IL-18) is a cytokine with a relatively late discovery that was
initially described as an IFNγ-inducing factor. Elevated IL-18 levels were already observed
in several low-grade inflammatory conditions, such as obesity or prediabetes, but their
importance within PCOS is controversial. Yang et al. examined changes in IL-18 levels
in women with PCOS and they detected increased IL-18 levels in women with PCOS.
Furthermore, IL-18 values showed a positive correlation with obesity, IR, and hyperan-
drogenism [96]. By contrast, Kabakchieva et al. demonstrated no significant difference
in IL-18 levels between healthy women and those with PCOS [97]. Numerous studies



Biomedicines 2024, 12, 560 10 of 15

found a relationship between IL-18 levels and obesity, but not between IL-18 and PCOS
specifically [98,99].

3.5.2. TNF-α and PCOS

Continuing the list of inflammatory parameters, TNF-α is a cytokine that has pleiotropic
effects on various cells, including muscles, adipose tissues, macrophages, and ovaries.
TNF-α is mainly generated by activated macrophages, T-lymphocytes, and natural killer
cells [100]. An inappropriate or excess activation of TNF-α signaling is associated with
chronic inflammation and can eventually lead to the development of pathological compli-
cations as it is functionally known to trigger a series of various inflammatory molecules,
including other cytokines and chemokines [100]. TNF-α promotes insulin resistance, causes
hyperandrogenism, and is involved in follicular development; hence, it has been implicated
in the pathophysiology of PCOS. Thathapudi et al. investigated TNF-α levels and found
that its concentration was significantly increased in women with PCOS [101]. In a com-
prehensive meta-analysis by Gao et al., the results clearly showed that TNF-α levels were
significantly increased in PCOS, which was directly related to the insulin resistance and
androgen excess [102]. Oróstica et al. also demonstrated that increased TNF-α signaling
negatively affects the glucose uptake of the endometrial stromal cells [103].

3.5.3. NF-κB and PCOS

NF-κB is a protein complex which controls cytokine production and cell survival and
is involved in cellular responses to stimuli such as stress, cytokines, and free radicals. In
PCOS, hyperglycemia-induced inflammation can directly stimulate hyperandrogenism.
This is suggested by the direct correlation of the plasma levels of testosterone or an-
drostenedione with p65 expression and intranuclear NF-κB. Physiological hyperglycemia
induced by insulin resistance results in an increased NF-κB level in women with PCOS,
and vice versa [104]. In another study, González et al. demonstrated that plasma levels of
testosterone and androstenedione positively correlated with the percent change of NF-κB,
leading to elevated levels of relevant inflammatory indicators, which may serve as major
contributors in the pathogenesis of PCOS [105].

3.6. Effects of Physical Exercise on Inflammatory Parameters in PCOS

Since chronic low-grade inflammation is a known key contributor to PCOS, the effects
of exercise, specifically aerobic exercise, were analyzed on the most common inflammatory
markers, such as IL-6, TNF, and CRP. One such study was conducted by Elbandrawy et al.,
who concluded that aerobic exercise is effective in lowering IL-6, TNF-α, and CRP in women
with PCOS [106]. Some of the possible mechanisms that explain the effect of exercise on
inflammation include the exercise-stimulated accumulation of anti-inflammatory cytokines
(such as IL-10 and IL-1 receptor antagonist), alterations in psychosocial factors (depression,
stress, and anxiety), and weight loss via reducing the visceral fat amount [107]. Based on all
this information, aerobic exercise is beneficial in the management of PCOS and is indicated
as an effective modality in the prevention and therapy of PCOS.

4. Conclusions

Despite a long history of studies on PCOS, there are still many unanswered and
controversial questions for researchers and clinicians. Lifestyle changes (physical exercise,
diet, and behavioral changes) serve as first-line management in international evidence-
based guidelines for PCOS. Our review article provides a detailed insight into the protective
effects of physical exercise on hormonal, inflammatory, and oxidative/antioxidant processes
in PCOS. The mechanisms by which exercise improves PCOS are related to decreased
hyperinsulinemia and a balanced androgenic environment, with an underlying reduction
in inflammatory processes and improvement in oxidant/antioxidant homeostasis. The
take-home message seems feasible: exercise to protect your reproductive health, which is a
cornerstone of life quality and well-being (Figure 2).
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Figure 2. Exercise-induced normo-androgenic environment via decrease in inflammatory and oxida-
tive stress parameters in women with PCOS. GnRH: gonadotropin-releasing hormone; LH: luteinizing
hormone; FSH: follicle-stimulating hormone; AMH: anti-Müllerian hormone; MDA: malondialde-
hyde; NO: nitric oxide; ROS: reactive oxygen species; AGE: advanced glycosylated end product;
AOPP: advanced oxidation protein product; XO: xanthine oxidase; SOD: superoxide dismutase;
GSH: glutathione; GPx: glutathione peroxidase; Nrf2: nuclear factor erythroid 2-related factor 2;
CRP: C-reactive protein; WBC: white blood cell; NF-κB: nuclear factor-kappa B; IL-6: interleukin-6,
IL-18: interleukin-18; TNF-α: tumor necrosis factor-alpha, IGF-1: insulin-like growth factor-1.
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