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Abstract: The association between immune checkpoint inhibitors (ICIs) and immune gene networks
in squamous lung cancer (LUSC) and lung adenocarcinoma (LUAD) was studied. Immune gene
networks were constructed using RNA-seq data from the gene expression omnibus (GEO) database.
Datasets with more than 10 samples of normal control and tumor tissues were selected; of these,
GSE87340, GSE120622, and GSE111907 were suitable for analysis. Gene set enrichment for pathway
analysis was performed. For immune gene network construction, 998 unique immune genes were
selected from 21 pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene function
annotation was performed based on the KEGG, Gene Ontology, and Reactome databases. Tumor
tissues showed decreased coagulation, hematopoiesis, and innate immune pathways, whereas
complement- and coagulation-related genes were prominent in the tumor immune gene network. The
average numbers of neighbors, clustering coefficients, network diameters, path lengths, densities, and
heterogeneities were highest for normal tissue, followed by LUAD and LUSC. Decreased coagulation
genes, which were prominent in tumor immune networks, imply functional attenuation. LUAD was
deviated from normal tissue, based on network parameters. Tumor tissues showed decreased immune
function, and the deviation of LUSC from normal tissue might explain LUSC’s better therapeutic
response to ICI treatment.

Keywords: immune gene expression; RNA-seq; network; lung squamous cell carcinoma; lung
adenocarcinoma; immune checkpoint inhibitor; clustering coefficient

1. Introduction

Lung cancer is the leading cause of death among malignancies and is second in
incidence and fourth in prevalence worldwide [1]. In 2020, the global mortality and
incidence of lung cancer were 18.0 and 22.4 per 100,000, respectively [1]. In the USA, lung
and bronchus cancer were the second most common types among new cancer cases and
had the highest mortality of 21% [2].

Immune checkpoint inhibitors (ICIs) disrupt the signaling of programmed death 1
(PD-1) receptors expressed on T cells and the PD, PD-L1, and PD-L2 ligands expressed on
tumor cells [3–5]. These molecules are expressed in non-small-cell lung cancer (NSCLC)
and result in inhibition of CD8+T-cell activation and immune escape [6,7]. Compared
with conventional chemotherapy, ICI treatment shows better overall survival (OS) and
progression-free survival (PFS) for squamous NSCLC (LUSC) and adenocarcinoma NSCLC
(LUAD) [8–12]. Among ICIs, nivolumab is an IgG4 monoclonal antibody studied for lung
carcinoma [8,9]. Median OS was 9.2 and 6.0 months for LUSC patients who received
nivolumab and docetaxel, respectively, and it was 12.2 and 9.4 months among non-LUSC
patients. One-year PFS (%) for nivolumab and docetaxel was 21% and 6% among LUSC
patients and 19% and 12% for non-LUSC patients, respectively. The duration of response
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to nivolumab and docetaxel was 63% and 33% for LUSC, respectively, and 52% and 14%
for non-LUSC (Supplementary Table S1). As that study was performed independently, the
comparison of non-LUSC and LUSC did not exclude bias or deviation, but LUSC seemed
to respond better to ICIs.

A recent meta-analysis of lung ICI monotherapy found that the hazard ratio (HR)
for OS and the 95% confidence interval (CI) for non-LUSC and LUSC were 0.80, 95% CI
0.73–0.87 and 0.71, 95% CI 0.65–0.77, respectively. In addition, the HR (95% CI) for PFS was
0.90 (0.76–1.07) for non-LUSC and 0.65 (0.56–0.77) for LUSC [13]. These combined results
for ICI monotherapy showed better OS and PFS for LUSC. ICIs have enhanced the overall
survival and quality of life of patients with NSCLC. The efficacy of ICIs for NSCLC has
been studied, but the underlying difference concerning histology has rarely been reported.

Network analysis can be applied to study complex systems with multiple variables [14,15].
Constructing mathematical models and calculating topological parameters can reveal biological
systems with functional relationships [16,17]. For the immune system, the co-expression of
immune gene networks could better elucidate the functional aspects of a complex system that
cannot be interpreted via a single or several genes [18–20].

In this study, to identify the difference in ICI response between LUAD and LUSC, gene
set enrichment for pathway analysis was followed by the construction of immune gene
networks using RNA-seq from public data.

2. Materials and Methods

This was a retrospective study using datasets from the public Gene Expression Om-
nibus (GEO) database. This study was approved by the Institutional Review Board of Seoul
St. Mary’s Hospital. The search for adequate datasets was performed from January 2023
to February 2023 with the keywords lung cancer, Homo sapiens, expression profiling by
high throughput sequencing, and RNA sequencing, which resulted in 493 datasets. Among
them, studies using human primary lung tissue with more than 10 control or normal lung
cancer tissues were identified.

GSE87340, GSE120622, and GSE111907 were selected for analysis [21–23] (Figure 1).
As the purpose of this study was to compare normal tissue and lung cancer networks
for immune gene expression, normal control data were required. Datasets studying cell
lines, therapeutics, or RNA other than coding genes were excluded. Raw count data
could be downloaded for GSE87340, but the GEO dataset provided normalized count data
for GSE120622 and transcript per million (TPM) values for GSE111907, which were not
suitable for analysis. Therefore, the raw Fastq dataset was downloaded from the sequence
read archive (SRA) database for GSE120622 (PRJNA463790, SRP162843) (Supplementary
Table S2) and GSE111907 (PRJNA438518, SRP255477) (Supplementary Table S3). Sratoolkit,
provided by the SRA database, was utilized to download RNA-seq fastq files. HISAT2 was
utilized to align raw Fastq files with GRCH38 genomic sequences [24]. Samtools was used
to convert SAM files to BAM files and to sort the BAM files. Stringtie was used to calculate
the read count data [25]. The versions of the software used are listed in Supplementary
Table S4.

2.1. Gene Set Enrichment for Pathway Analysis

After selecting normal controls and an equal number of tumor tissues, gene set enrich-
ment for pathway analysis was performed using the GAGE R package [26], which utilizes
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [18,27]. Significant path-
ways showing a global p-value less than 0.05 were plotted as heatmaps and immune-related
pathways were plotted.
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Figure 1. Flow chart of this study. The search was performed using the following terminology: The
search resulted in 493 datasets; among them, 3 were recruited for study and the others were excluded.

2.2. Network Construction

For network analysis, data from diseased tissues were selected according to the cor-
responding normal data. From 21 pathways in KEGG, 998 unique immune genes were
selected as previously reported [25]. Gene function annotations based on KEGG, Gene
Ontology, and the Reactome database were categorized as adaptive immunity, antigen
presentation, cytokines–chemokines, complement, hematopoiesis, innate immunity, leuko-
cyte migration, NK cell activity, platelet activity, and signaling [28,29]. If the annotated
frequency was comparable between groups, the chemokine–cytokine and signaling or
hematopoiesis pathways were selected, followed by other pathways [18].

Cases for network analysis were selected to match the available number of normal
controls with an equal number for LUAD or LUSC. LUAD and LUSC cases were selected
in sequence for network analysis.

Networks were constructed based on a Pearson’s correlation coefficient greater than
or equal to 0.95 and a p-value less than 0.05 for each immune gene. Each immune gene was
regarded as a node, and the correlation pairs between genes were regarded as links. Links
were undirected and created based on correlation coefficients with statistical significance.
If the carcinoma patients were outnumbered by the controls, carcinoma samples were
selected based on random selection without replacement to match the number of control
samples. These immune gene correlation networks were constructed using Hmisc and
ggplot2, an R package [30,31], and plotting of the constructed networks and calculation of
the topological parameters were performed using the Cytoscape Network Analyzer [32,33].
Among the network topological parameters, assortativity and modularity were calculated
via igraph [34,35]. All statistical analyses were performed using R version 4.2 and related
packages or Cytoscape version 3.9.1 [36,37].

2.3. Network Topological Analysis

The network topological parameters were calculated [14–17] and provided global
quantitative aspects as follows [38,39]: a node (N) indicates an immune gene; a link (L)
indicates a paired correlation between the nodes plotted in a line. The hub node has
the maximum number of links within the network. The degree (k) is the number of
links connected to the node, and the average degree (<k>) is the average number of links
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connected to a node in a network. Connected components are the number of clusters of
nodes connected to each other.

The diameter is the maximum length of the shortest path between two nodes. The
characteristic path length is the average of the shortest path length. The average number
of neighbors is the number of identical nodes connected to the node of interest, and the
normalized average number of neighbors is the network density. The clustering coefficient
is the number of links by which neighbors of a given node are connected to each other and
can be considered friends of a friend. The local clustering coefficient (C) for a given node
i with ki degree was calculated as follows: Ci = 2Li/ki (ki − 1), where Ci denotes the local
clustering coefficient, Li denotes the number of links between the neighbors of ki, and ki
denotes the number of degrees ki for a given node i. The average clustering coefficient (<C>)
represents the average of Ci, which is calculated as follows: <C> = 1/N ∑N

i=1 Ci. If Ci = 0,
there are no friend’s friends, or the neighbors of a given node are not linked. Density (d)
is the number of links within a network divided by the total possible links between nodes,
which was calculated as d = L/Lmax, where L denotes the number of links and Lmax denotes
the possible number of links for a given node. Heterogeneity is the diversity of the number of
links in a node or the coefficient of variation of the number of edges in a node, which was
calculated as follows: heterogeneity =

√
variance(k)/mean (k). Centralization (degree) was

defined as the importance of a node based on the number of links, which was calculated as
C = ∑j=1 aij/n − 1, where aij is the adjacency matrix and n is the total number of nodes. The
degree of distribution is the number of nodes with degree k. Modularity denotes the tendency
of nodes to cluster and form groups that could divide the network into communities and

was calculated as follows: Q = 1/2L ∑ij(Aij −
kikj
2L )δ(Ci, Cj), where L is the number of links,

Aij is the adjacency matrix, ki or kj is the degree of i or j, and Ci and Cj are the components
of i and j, respectively. The assortativity coefficient denotes the association of the nodes that
tend to be related to similar nodes, which is basically a Pearson’s correlation coefficient of the
degree, and is calculated as follows: r = 1/σ2

q ∑jkjk (ejk − qjqk), where ejk is the fraction of links
that connect node i to one of type j, qj and qk are the fraction of each type of end of an edge,
and σq is the standard deviation of a distribution qk. For the calculation of network similarity
using topological network parameters, the distance between normal and LUAD or LUSC data
points was calculated utilizing Euclidean, Manhattan, and cosine distance.

2.4. Connectivity Map Analysis

The gene signatures selected for network analysis were reviewed using connectivity
map analysis (https://clue.io) accessed 19 February 2023 on to search for associations
between genes, small molecules, treatment therapeutics, and disease states [40]. The con-
nectivity map was based on databases including drug-specific gene expression associated
with disease-specific gene signatures. The connectivity score was calculated by dividing
the connection strength by the maximum connection strength of a given gene and the
reference gene profiles, ranging from −1 to 1. A value of 1 indicates maximum positive
connection, while −1 indicates negative connection [40,41]. Among the network gene
expression signatures, we selected the top 100 genes for analysis and entered them onto the
CMAP website.

3. Results

The baseline characteristics of datasets that include studies of lung cancer using
RNA sequencing with normal controls (GSE87340, GSE120622, and GSE111907) are listed
in Table 1. GSE87340 only included LUAD patients along with normal tissue, while
GSE120622 included LUAD as well as LUSC. GSE111907 was distinct in that the au-
thors sorted the cells by flow cytometry using CD10+EPCAM−CD45−CD31− (fibrob-
lasts), CD31+CD45−EPCAM− (endothelial cells), CD45+EPCAM− (immune cells), and
EPCAM+CD45−CD31− (malignant cells).

https://clue.io
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Table 1. Baseline characteristics of downloaded GEO datasets.

GSE87340 GSE120622 GSE111907

LUAD LUAD LUSC LUAD/LUSC

Cases (n) 27 43 37 24/12
sex (M/F), n 4/23 24/19 35/2 7/29
Age, yr (sd) 66.1 (12.6) 81.5 (12.1) 89.1 (8.1) 70 (32–87)
Stage (n) a IA (10)/IB (17) IA (2), IB (16), IIA (4) IA (3), IB (16), IIA (4) I (14), II (12)

IIB (4), IIIa (12), IIIb (4) IIB (7), IIIA (4), IIIB (0) III (8)
IV(1) IV(3) IV (1)

Differentiation (n) Well (20) NA NA Well (7), Well/Mod (1)
Moderate (7) NA NA Mod (15), Mod/poor (5)

NA NA poor (9)
Sequential selection 26 19 19 11/10
of control cases (n)
Sequential selection 26 19 19 11/10
of cancer cases (n)

Platform GPL111154 GPL20301 GPL17553
Illumina Illumina Illumina

HiSeq 2000 HiSeq 4 000 HiSeq 2000
Reference [21] [22] [23]

a Stage of one case is unidentified.

Gene set enrichment for pathway analysis showed increased T-cell receptor- and Fc
gamma receptor-mediated phagocytosis but decreased coagulation and hematopoiesis path-
ways in most of the tumors (Supplementary Table S5 and Supplementary Figures S1–S5).

The topological network structures are shown for GSE87340 (Figure 2), GSE120622
(Figure 3), and GSE111907-1 with LUAD (Figure 4) and for GSE111907-2 with LUSC
(Figure 5). The common topological structure revealed larger networks with more diverse
genes in the normal lung tissue compared with LUAD or LUSC tissue. For GSE111907,
sorted immune cells were plotted; fibroblast and endothelial cells along with tumor cells are
plotted in Supplementary Figure S6 for LUAD and in Supplementary Figure S7 for LUSC.

The genes in the constructed networks showed prominent ratios of coagulation genes,
but innate-immunity-related genes were less prominent in the tumor tissue and sorted
tumor cells (Supplementary Table S6).

The range of coagulation-related genes included in networks from normal tissue was
1% to 4%, while that in tumor tissue or carcinoma cells was 3% to 11% (Supplementary
Figures S8 and S9). The range of innate-immunity genes included in networks from normal
tissue was 25% to 30%, while that in tumor tissue or carcinoma cells was 16% to 31%. The
range of signaling genes included in networks from normal tissue was 8% to 11%, compared
with 2% to 9% in tumor tissue or carcinoma cells (Supplementary Figures S8 and S9).

The topological network parameters showed a higher average number of neighbors,
characteristic path length, network density, network heterogeneity, and centrality (Table 2)
for normal tissue and sorted immune cells, followed by LUAD and LUSC. Except for
assortativity and modularity, most of the parameters were lowest in LUSC and highest in
normal tissue.

The clustering coefficient was reported to be higher in normal tissues compared with
malignancies [37]; in the present study, the clustering coefficient was higher for normal
tissue and for sorted immune cells in general. These results imply that the network
parameters can represent the immunological status of tissues. LUSC tissue and sorted
tumor cells are thought to have relatively enhanced immune activity compared with
AS-NSCLC.

The hub genes (k degree, annotated function) for each constructed network were as
follows: GSE87340 normal tissue, JAK3 (k = 43, adaptive immunity); GSE87340 LUAD,
CD3E (k = 10, adaptive immunity); GSE120622 normal tissue, VAV1 (k = 74, chemokine);
GSE120622 LUAD, CD4 (k = 33, adaptive immunity); GSE120622 LUSC ITGAM (k = 18,
leukocyte migration); GSE111907-1 sorted immune cells, CD5 (k = 87, hematopoiesis); LUAD,
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PTGIR (k = 20, platelet); GSE111907-2 sorted immune cells, CD5 (k = 85, hematopoiesis); and
LUSC, F2RL3 (k = 16, platelet).
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Table 2. Network parameters, including density, heterogeneity, centralization, distribution degree,
and modularity.

GSE87340 GSE120622 GSE111907-1 GSE111907-2
N LUAD N LUAD LUSC CD45+ CD10+ CD31+ LUAD CD45+ CD10+ CD31+ LUSC

Nodes (N) 155 79 385 228 156 385 150 118 158 400 159 151 116
Edge (N) 805 109 2704 1069 319 4839 670 1579 472 4820 1149 517 327
Average
neighbor 14.07 3.49 19.81 11.544 10 30.369 12 39.128 10.8 29.11 22.813 18.857 6.069

Network
diameter 9 14 22 10 5 11 6 9 5 12 8 6 5

Network
radius 5 7 11 5 3 6 3 5 3 6 4 3 3

Path length 2.852 4.994 6.463 3.765 2.2 3.167 2.177 2.11 2.032 4.148 2.393 1.782 2.365
Clustering
coefficient 0.552 0.358 0.544 0.545 0.762 0.554 0.627 0.801 0.614 0.523 0.761 0.89 0.513

Network
density 0.13 0.07 0.078 0.064 0.325 0.097 0.444 0.508 0.372 0.090 0.362 0.555 0.217

Hetero-
geneity 0.834 0.682 1.097 0.766 0.507 0.788 0.612 0.564 0.604 0.803 0.678 0.518 0.59

Network
centrality 0.273 0.136 0.216 0.121 0.273 0.182 0.279 0.225 0.34 0.174 0.282 0.192 0.304

Connected
components 15 11 32 22 30 28 25 12 36 25 21 39 21

Assortativity 0.351 0.512 0.605 0.375 0.858 0.422 0.894 0.873 0.791 0.529 0.781 0.931 0.833
Modularity 0.293 0.677 0.333 0.571 0.765 0.383 0.778 0.107 0.7246 0.502 0.559 0.549 0.751

Abbreviations: N, normal; LUAD, lung adenocarcinoma; LUSC, squamous cell lung carcinoma; CD45+, immune
cell; CD10+, fibroblast; CD31+, endothelial cell.

The coagulation pathway was decreased in tumor tissue compared with normal tissue,
and complement–coagulation genes were prominent in the network topology from tumor
tissues. These results imply that decreased expression of coagulation genes plays an
important role in carcinogenesis.

Topological network analysis showed that normal tissue had the highest network
parameters, followed by LUSC and LUAD tissue. These results suggest that immune
status and immune activity are higher for LUAD compared with LUSC. Altogether, the
study results may explain LUSC’s favorable response to ICI treatment compared with that
of LUAD.

The connectivity map revealed various small molecules associated with gene expres-
sion network signatures (Supplementary Figure S10). We selected A549 and HCC515,
which is a LUAD origin cancer cell line. IKZF1, an IKAROS family zinc finger protein, was
selected for the GSE120622 LUAD dataset. The molecules suggested by the connectivity
map included various targets and associated small molecules for datasets (Supplementary
Tables S7–S11).

The Euclidean, Manhattan, and cosine distances from normal to LUAD and LUSC
were as follows: Euclidean, 1642.6, 2396.1; Manhattan, 1831.8, 2656.9; and cosine, 0.0024,
0.0513, respectively. These analysis results indicate that LUAD tissues are closer to normal
tissues compared with LUSC, and LUSC tissues deviated more from the normal samples.

4. Discussion

The application of cancer immunotherapy has achieved clinical advances and proven
antitumor effects for melanoma, NSCLC renal cell carcinoma, head and neck squamous cell
carcinoma, urothelial cell carcinoma, colorectal cancer, and others [13,42,43]. The effect of
ICIs on histological types of NSCLC has been reported, and a meta-analysis revealed that
both non-LUSC and LUSC responded to ICIs, with LUSC showing a greater response [13].
However, another meta-analysis of smaller size reported that non-LUSC showed a greater
response to ICI treatment in previously untreated patients [43]. These differences in meta-
analysis results may have been caused by selection bias, analytical methods, and the criteria
for response. The LUSC group seemed to show a greater magnitude of response compared
with the non-LUSC group. However, the underlying mechanism of ICI response depending
on histologic type has rarely been reported.
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Network analysis could provide comprehensive quantitative results for complex
systems, including RNA-seq or metabolite analysis [44]. Finding a single causative variable
might explain the pathophysiology in a more intuitive manner. Unlike these reductive
methods, network analysis considers given variables and analyzes the relationship between
them. By calculating the topological network parameters, global quantitative values could
represent these systems.

The network construction for normal tissue showed that genes with various functions
comprised the immune network, and the network diameter was larger than for tumor
tissue or sorted tumor cells. Complement- and coagulation-related genes were the most
prominent, and innate-immune genes were less prominent within tumor tissue. In addi-
tion, pathway analysis showed that coagulation pathways were decreased in most of the
studied tumor tissues. These results suggest that coagulation-related genes or pathways
are significantly associated with other genes whose expression was decreased in most
of the tumor cells. Decreased innate-immune genes along with prominent complement-
and coagulation-related genes in the immune network may be related to carcinogenesis.
The down-regulation of the hematopoiesis pathway in most of the cancer tissues was
noted, which is thought to be the effect of the proliferative nature of tumor cells and the
suppression of immune cell proliferation or differentiation. These results show that im-
mune functions are thought to be decreased in tumor tissue, along with proliferation and
differentiation of immune cells.

These immune networks might reflect the tumor microenvironment or features of
tumor cells and ICI responses [41]. One proposed mechanism for immune responses is
that CD8+ T cells secrete interferon-γ to kill tumor cells and also induce PDL1 on tumor
cells, which binds PD1 on CD8+ T cells to mitigate the tumor-eliminating response. The
tumor microenvironment might be associated with increased cytokines from regulatory T
cells that secrete immunosuppressive cytokine–chemokines, such as TGF-beta and IL10,
which suppress the activation, proliferation, and functions of CD8+ T cells. Tumor cells that
secrete VEGF upregulate immune-suppressive molecules such as CTLA4, LAG3, and TIM3.

The network parameters revealed that the average neighbor, network diameter, radius,
path length, clustering coefficient, density, heterogeneity, and centrality of normal tissue
and LUAD were more similar compared with those of normal tissue and LUSC. Indeed,
the similarity and distance between normal tissue and LUAD were more similar compared
with normal tissue and LUSC. From these data, we suppose that these similarities might be
an explanation for the better ICI responses in LUSC. The deviation of LUSC from normal
topological parameters might be related to better immune response after ICI treatment [36,37].

The hub nodes were inconsistent between normal tissue and cells and tumor tissues
and tumor cells. It is not clear why hub genes are heterogeneous, but it could reflect a
variation in immune function at the point of sample collection. However, the hub nodes for
normal tissue and cells had a higher degree compared with those of tumors. This might be
related to the active immune function in normal tissue and cells. In addition, the average
number of neighbors was increased in normal tissue and cells, which may be related to
increased immune function.

The connectivity map revealed that the IKZF1 (IKAROS zinc fingers) gene showed
a significantly high connectivity score in the LUAD cell line. About 6.4%, 1.0%, and 7.5%
of LUAD patients showed IKZF1 gene mutation, deletion, or gene amplification, whereas
6.8%, 2.5%, and 5.0% of LUSC patients in previous studies showed gene mutation, deletion,
or gene amplification [3,45]. IKZF1 is a transcription factor that is the master regulator
of lymphocyte development. IKZF1 gene mutation/deletion and gene amplification are
reported to be related to the mitigated and enhanced efficacy of ICIs, respectively. Genomic
alteration of IKZF1 predicts poor prognosis and low infiltration by immune cells in tissue,
which is incongruent with the results of this study [46,47]. This might be derived from the
fact that this study considered not merely one gene but the whole network. Further studies
are required for verification of the role of the IKZF1 gene in ICI response.
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One limitation of this study was that it was performed using public datasets, which
might have been established in different contexts and with different patient characteristics.
As this study was focused on the construction of immune gene networks, these mathemati-
cal models require verification based on biological experiments to understand the exact
mechanism of ICI response and histological differences in non-small-cell lung carcinoma.

5. Conclusions

In conclusion, tumor tissues showed a decrease in coagulation, innate-immune genes,
and hematopoiesis pathways compared with normal tissue or cells. Complement- and
coagulation-related genes were prominent in the immune network, which implies that tu-
mor tissue and cells exhibit a decrease in coagulation genes, thereby affecting other immune
genes in the tumor tissue. The topological parameters showed that LUSC deviated from nor-
mal tissue compared with LUAD. This implies that LUSC tissues are biologically deviated,
which might provoke enhanced immune and immune checkpoint inhibitor responses.
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