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Abstract: The prevalence of cardiovascular diseases (CVDs) is a growing global health concern.
Recent advances have demonstrated significant reductions in acute cardiovascular events through
the management of modifiable cardiovascular risk factors. However, these factors are responsible for
about 50% of the global cardiovascular disease burden. Considering that CVDs are one of the top
mortality causes worldwide, the concept of residual cardiovascular risk is an important emerging area
of study. Different factors have been proposed as sources of residual risk markers, including non-HDL
particles characterization, as well as inflammation measured by serum and imaging technics. Among
these, metabolic-associated steatotic liver disease (MASLD) remains controversial. Two opposing
viewpoints contend: one positing that fatty liver disease merely reflects classical risk factors and
thus adds no additional risk and another asserting that fatty liver disease independently impacts
cardiovascular disease incidence. To address this dilemma, one hypothetical approach is to identify
specific hepatic energy-yielding mechanisms and assess their impact on the cardiovascular system.
Ketogenesis, a metabolic intermediate process particularly linked to energy homeostasis during
fasting, might help to link these concepts. Ketogenic metabolism has been shown to vary through
MASLD progression. Additionally, newer evidence supports the significance of circulating ketone
bodies in cardiovascular risk prediction. Furthermore, ketogenic metabolism modification seems to
have a therapeutic impact on cardiovascular and endothelial damage. Describing the relationship, if
any, between steatotic liver disease and cardiovascular disease development through ketogenesis
impairment might help to clarify MASLD’s role in cardiovascular risk. Furthermore, this evidence
might help to solve the controversy surrounding liver steatosis impact in CVD and might lead to a
more accurate risk assessment and therapeutic targets in the pursuit of precision medicine.

Keywords: cardiovascular risk; cardiovascular disease; ketone bodies; ketogenesis; MASLD

1. Introduction

Cardiovascular diseases (CVD) represent a major concern in preventive health. An
estimated 17.9 million people died from CVDs in 2019, representing 32% of global deaths
worldwide. Of these deaths, 85% were due to heart attack and stroke. In the United
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States, CVD remains the leading cause of death for both men and women, accounting for
approximately one in every four deaths [1]. According to the American Heart Association,
in 2020, nearly half of U.S. adults (48%) were estimated to have some form of CVD, with
the prevalence slightly higher in men (50.5%) than in women (47.3%) [2]. In Europe, the
burden of CVD is similarly worrying, with cardiovascular diseases being the leading cause
of death, accounting for 45% of all deaths in Europe and 37% in the European Union. The
prevalence of CVD in European adults is estimated to be around 49% in men and 38% in
women [3].

The prevention of CVD is a critical aspect of public health strategies, providing a
Global action plan for the prevention and control of non-communicable diseases (NCD).
This plan aims to reduce the number of premature deaths from NCDs by 25% by 2025
through different global targets [4]. Lifestyle modifications, such as adopting a balanced
diet, engaging in regular physical activity, avoiding nicotine exposure, and maintaining a
healthy weight, play a pivotal role in reducing the risk of CVD. These measures address key
modifiable risk factors, including hypertension, dyslipidemia, diabetes, and obesity, which
are known to significantly increase the likelihood of developing CVD. Together, the control
of hypertension, dyslipidemia, dysglucemia, sleep care, physical activity performance,
taking care about nutrition, avoiding tobacco, and maintaining a healthy weight are known
as life’s essential eight [5]. Investigations of the pathogenesis of CVD have identified
several potential pathways involving inflammation, endothelial function, atherosclerosis,
cardiac stress and remodeling, hemostatic factors, microbiota, and epigenetics, among
others [6–10].

At present, classic cardiovascular risk factors can only explain approximately 57% of
cardiovascular events in women and 52% in men, accounting for a 10-year all-cause mortal-
ity of 22.2% and 19.1%, respectively [11]. This limitation highlights the growing importance
of clinical and translational research in studying residual risk due to other characteristics.
In this context, non-HDL molecules and the triglyceride content of cholesterol-carrying
particles have demonstrated a significant and likely causal role in cardiovascular risk. Non-
HDL cholesterol includes all atherogenic lipoproteins and is considered a better marker
of risk than LDL cholesterol alone [12–14]. Elevated levels of non-HDL cholesterol are
associated with an increased risk of atherosclerotic cardiovascular disease. Lipoprotein (a),
or Lp (a), is another lipid-related risk factor receiving increased attention. Lp (a) is a unique
lipoprotein particle with a structure similar to LDL cholesterol, but with an additional
protein called apolipoprotein (a). Elevated levels of Lp (a) have been independently associ-
ated with increased risk of cardiovascular diseases, including coronary heart disease and
stroke [15]. Lp (a) is considered a genetically determined risk factor, with concentrations
largely unaffected by lifestyle changes or most lipid-lowering medications [16,17].

Local and systemic inflammation plays a significant role in the pathogenesis of
CVD [18–26]. Hs-CRP has been widely recognized as a marker of systemic inflamma-
tion and an independent predictor of cardiovascular events. Furthermore, IL-1 and IL-6 are
key cytokines involved in inflammatory processes and have been linked to atherosclerosis
progression [19–21]. These findings underscore the need for a broader approach to cardio-
vascular risk assessment and management, encompassing both traditional and emerging
risk factors. Identifying and targeting these residual risks could lead to more effective
strategies for preventing cardiovascular diseases.

2. Liver Steatotic Disease as a Potential Residual Cardiovascular Risk Factor

The progressive increase in the global prevalence of hepatic steatosis disease raises the
question of whether this condition might play a role in predicting residual cardiovascular
risk [27]. Steatotic liver disease (SLD), previously known as non-alcoholic fatty liver disease
(NAFLD), has become the most common cause of liver disease in developed countries
today, as up to 30–40% of the global population may be affected by NAFLD [28,29]. This
incidence and persistence of simple steatosis in patients is associated with the development
of more advanced forms of the disease with a higher morbimortality, such as non-alcoholic
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steatohepatitis (NASH), cirrhosis, or the development of hepatocellular carcinoma [29].
Furthermore, the increasing prevalence of this condition among young individuals confers
additional risk due to the prolonged duration of disease exposure [29]. However, the
number of deaths directly attributable to liver disease itself is relatively limited [29].

Interestingly, steatotic liver disease is deeply linked to metabolic and cardiovascular
disease [30]. Insulin resistance, a hallmark of metabolic syndrome, plays a central role
in the development of NAFLD by promoting the accumulation of fat in the liver and
exacerbating liver inflammation and damage [31–33]. Liver steatosis also contributes to
alterations in lipid metabolism and glucose regulation (Figure 1) [33]. As research has
advanced, the association between NAFLD and classic cardiovascular risk factors has
become more evident, including hypertension, dyslipidemia, obesity, and type 2 diabetes
mellitus [34]. Thus, the conceptualization of steatotic liver disease (SLD) has significantly
progressed, with a particular focus on distinguishing between metabolic and alcohol-
related factors while avoiding stigmatizing terms for patients. The term non-alcoholic
fatty liver disease (NAFLD) has been re-evaluated due to concerns that it might overlook
the nuances of alcohol’s role in liver steatosis [35]. Acknowledging that both excessive
and moderate alcohol consumption can influence liver health, a more refined diagnostic
approach has been advocated. This shift to the broader category of SLD allows for a
more inclusive understanding, taking into account varying levels of alcohol intake. The
new nomenclature distinguishes between excessive (Metabolic and Alcohol Steatotic Liver
Disease—MetALD) and moderate or no alcohol intake (Metabolic-Associated Steatotic
Liver Disease—MASLD) [35]. Although the repercussions on the disease epidemiology
are still under evaluation, with some data pointing to a low reclassification capacity of the
new definition [36], the inclusion of a metabolic disturbance basis on SLD categorization
reaffirms a new paradigm in the comprehension of this systemic disease. However, the
question remains open: Does MASLD contribute independently to cardiovascular residual
risk beyond traditional factors?
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Figure 1. Role of simplified MASLD pathogenesis in classic cardiovascular risk factor development.
TCA: Tricarboxylic acid; TAG: Triglycerides; ROS: Reactive oxygen species; AG: Acylglycerides;
CV: Cardiovascular. Upwards arrows: increases; downwards arrows: decreases; red cross: blocks;
red lighting symbol: interferes or impacts. Legend: Both pernicious genes and lifestyle have a role in
the incremental concentration of glucose in the liver, which is metabolized through the TCA cycle
and the glucogen synthesis pathways, among others. An excess in Acetyl CoA provides a higher
concentration of intrahepatic acyl glycerides, which is directly linked to insulin resistance, providing
reduced glycogen synthesis, a need for higher levels of insulin to provide glucose for energetic
purposes (effective liver glucose), which activates intrahepatic gluconeogenesis and an excess in
triglycerides, leading to a less efficient metabolization, with Radical Oxygen Species production
and a higher plasma concentration of triglycerides and cholesterol particles contributing to a higher
cardiovacular risk through classical risk factors [30–33].
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Cardiovascular events are the most frequent cause of morbimortality in patients with
NAFLD [29]. Consequently, interest in studying the potential causal relationship between
SLD and cardiovascular disease has surged [27,37,38]. Initially, some epidemiological
assessments pointed out that hepatic lipid accumulation mirrors an individual’s metabolic
milieu but does not represent an independent risk factor for CV events [39,40]. This concept
is also included in the current European Society of Cardiology guidelines for cardiovas-
cular risk prevention [41]. In these cohorts, although some effects of steatosis and liver
fibrosis could be addressed, this prediction capacity was lost when further adjustments
were applied. However, other investigations suggest that NAFLD might proffer an addi-
tional, independent prognostic value for cardiovascular events, including a biopsy-based
NAFLD stage correlation with the probability of cardiovascular arrest [42] and a mendelian
randomization study, which found an independent link between NAFLD and CVD when
gene function adjustments were included [43]. Nevertheless, biopsy or genetic studies
are too risky, expensive, and complicated to be efficient in the risk factor scenario [44].
Thus, hepatic steatosis may be considered a surrogate metric for metabolic risk when
evaluated through non-invasive techniques such as ultrasound, MRI, and transient elastog-
raphy [45,46] and even validated serologic indices [47]. Several epidemiological studies
have explored the association between non-invasively assessed SLD and metabolic and
cardiovascular risk regarding quality of life [48], as well as the impact of lifestyle modifi-
cation [49], incidence of T2DM [50], and incidence of cardiovascular events [51]. Various
prospective cohort analyses and meta-analyses, grounded in liver biopsy results [42] and
non-invasive biomarkers [52,53], have buttressed this hypothesis and precipitated a specific
AHA statement on this subject [27] (Table 1).

Table 1. Studies providing evidence on NAFLD invasive and non-invasive assessment in the predic-
tion of cardiovascular disease [27].

Diagnostic NAFLD Reference Patients, n Type of Study Impact of the NAFLD

Ultrasound

Stepanova and Younossi,
2012 [54] 20,050 Prospective OR, 1.23 for CVD events

Haring et al., 2009 [55] 4160 Prospective HR, 6.22 for all-cause
mortality and CVD

Kim et al., 2012 [56] 4023 Cross-sectional OR, 1.32 for CAC > 10

Targher et al., 2007 [57] 2839 Cross-sectional
OR, 1.49 for DKA DBP, and
cerebrovascular disease in
type 2 DM

Tsutsumi T et al., 2021 [58] 2306 Prospective HR, 1.08 independently with
worsening CVD

Hamaguchi et al., 2007 [59] 1637 Prospective HR, 4.1 for nonfatal CVD
events

Yoshitaka and al, 2017 [60] 1647 Prospective
HR, 10.4 not overweight, 3.1
overweight for incident CV
events

Wong et al., 2011 [61] 612 Prospective
OR, 2.31 for significant
coronary artery disease
(>50% obstruction)

Santos et al., 2007 [62] 505 Cross-sectional OR, 1.73 for coronary
calcification

Mantovani et al., 2016 [63] 286 Retrospective
OR, 6.73 for incident
cardiovascular events in type
1 diabetes
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Table 1. Cont.

Diagnostic NAFLD Reference Patients, n Type of Study Impact of the NAFLD

CT

Mahfood Hadad et al.,
2016 [64] 25,837 (11 studies) Meta-analysis

RR, 1.77 for incident CVD,
1.43 for cardiovascular
mortality

Zhou et al., 2018 [65] 8346 (6 studies) Meta-analysis OR, 2.20 for incident CVD in
patients with diabetes

Mellinger et al., 2015 [66] 3014 Cross-sectional OR, 1.20 for CAC score >90th
percentile for age

Assy et al., 2010 [67] 61 Cross-sectional OR, 2.03 for coronary
calcification

Ultrasound/CT

Chen et al., 2010 [68] 295 Cross-sectional OR, 2.46 for CAC > 100

Liver biopsy

Simon et al., 2022 [42] 422 Prospective HR, 2.15 for MACE

Ji Hye Park et al., 2021 [69] 398 Cross-sectional

OR, 4.07 increased risk of
ASCVD for NASH OR, 8.11
increased risk of ASCVD for
advanced fibrosis

Ekstedt et al., 2015 [70] 229 Retrospective HR, 1.55 for CVD mortality

Fatty Liver Index

Chun HS et al., 2023 [71] 78,762 Cross-sectional

OR, 1.10 for CVD history in
MAFLD
OR, 1.40 for high probability
of ASCVD in MAFLD
OR, 1.22 for high probability
of ASCVD in NAFLD

Pais et al., 2016 [72] 5671 Retrospective
The severity of NAFLD
correlates with CIMT and the
severity of carotid plaque

Lee J et al., 2020 [73] 1173 Prospective
OR, 1.70 for CAC
progression in patients with
NAFLD

Pennisi et al., 2021 [74] 542 Cross-sectional

OR, 1.62 risk factors for
ASCVD in patients with
steatosis
OR, 1.67 risk factors for
ASCVD in patients with
severe fibrosis

NAFLD: non-alcoholic fatty liver disease; OR: Odds ratio; CVD: cardiovascular disease; HR: hazard ratio;
CAC: coronary artery calcium; DKA: diabetic ketoacidosis; DBP: diastolic blood pressure; RR: relative risk;
MACE: major adverse cardiovascular event; ASCVD: atherosclerotic cardiovascular disease; NASH: non-alcoholic
steatohepatitis; MAFLD: metabolic dysfunction-associated fatty liver disease.

Although further meticulous epidemiological research should be performed in the
field, the pursuit of specific hepatic metabolic pathways linking MASLD to CVD is settled.
In this context, the production of ketone bodies through the Randle cycle presents several
interesting features: (i) liver exclusiveness, (ii) ketone synthesis variation along the MASLD
spectrum [75], and (iii) potential prediction capacity in cardiovascular disease [76]. Ketoge-
nesis predominantly occurs in the liver, where fatty acids are converted into ketone bodies,
namely acetoacetate, beta-hydroxybutyrate, and acetone. Ketone bodies exhibit biphasic
alterations in MASLD patients, escalating during initial disease phases and waning during
advanced stages [75]. Ketone bodies have been related to CVD in two ways. On the one
hand, their reducing effect on oxidative stress and inflammation was suggested to protect
from CVD [77,78]; on the other hand, they were found to be associated with cardiovascular
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risk in CVD-naïve patients [76]. Thus, further elucidation of the role of ketogenesis may
contribute to the understanding of the link between SLD and cardiovascular risk. Thus,
assessing ketogenesis may contribute to the understanding of the link between SLD and
cardiovascular risk.

3. Metabolic Associated Steatotic Liver Disease Role in Ketogenesis Impairment

Ketogenesis is initiated in the mitochondrial matrix of hepatocytes and entails a
cascade of enzymatic reactions, catalyzed by lipases, enzymes of betaoxidation, and HMG-
CoA synthase [79]. The generated ketone bodies acetoacetate, betahydroxybutyrate (BHB)
and acetone can serve as energy source, particularly furnishing essential energy to the brain
and the cardiovascular system during periods of fasting or carbohydrate restriction [80].
The influence of MASLD on ketogenesis is bi-phasic. Initially, ketone body production
is augmented due to an increase in beta-oxidation while other hepatic features remain
clinically normal [81]. Subsequently, as steatohepatitis and fibrosis unfold, production is
reduced due to a decrease in HMG-CoA activity [80,82] (Figure 2).
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Figure 2. TCA: Tricarboxylic acid; PEP: Phosphonyl pyruvate. Legend: A dual result of triglyceride
exposure might be expected depending on the MASLD status, as a higher exposure to beta-oxidation
products leads to a higher production of ketone bodies in the first stages of SLD, while, as fibrosis
progresses, ketone metabolism is reduced as a potential early marker of liver metabolic dysfunc-
tion [75]. Upward arrows indicate an increase in the synthesis of ketone bodies, activation of the
TCA cycle, and gluconeogenesis. Downward arrows would represent a decrease in the processes
of lipogenesis and the accumulation of fatty acids. The red cross would indicate the inhibition of
the hydroxy-methyl-glutaril-CoA (HMG-CoA) complex pathway, thus decreasing the production of
ketone bodies. The red lightning symbol suggests stress or damage leading to steatosis and possibly
hepatic fibrosis.
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3.1. Ketogenesis Impairment in MASLD

In the early stage of MASLD, hepatic lipogenesis is increased, resulting in liver steato-
sis. This is associated with increased fatty acid uptake and synthesis [83] and insufficient
fatty acid conversion to ketone bodies [84]. This impaired ketogenesis could deleteriously
impact mitochondrial functionality, given the intimate relationship between the ketoge-
nesis pathway and mitochondrial integrity [85]. The accumulation of fatty acids within
hepatocytes can provoke mitochondrial dysfunction and oxidative stress, igniting a vicious
cycle that exacerbates hepatic lipid accumulation, induces hepatic injury, and propels
inflammation and fibrosis, favoring the progression from simple steatosis to metabolic-
associated steatohepatitis (MASH) [86]. Ketogenesis can be influenced by multiple factors,
including insulin resistance, nutrient availability, and signaling cascades across various
cellular receptors and pathways. Insulin resistance, a pivotal actor in SLD onset and pro-
gression, notably exerts a suppressive impact upon ketogenesis [87]. Additionally, the
peroxisome proliferator-activated receptor-alpha (PPARα), instrumental in regulating fatty
acid metabolism, becomes substantively involved in the regulatory mechanisms of this pro-
cess comprising hepatic fatty acid and plasma lipoprotein metabolism during nutritional
transition and the regulation of hepatic inflammatory response [88].

When NAFLD advances to NASH, the interplay between impaired ketogenesis and
hepatic lipid metabolism diversifies, adding inflammation and cellular injury to lipid accu-
mulation. In this context, impaired ketogenesis may intensify hepatic lipid accumulation,
oxidative stress, and mitochondrial dysfunction, thereby contributing to hepatocellular
injury and inflammation [75]. Then, as the pathophysiological process evolves through the
progression toward fibrosis and cirrhosis, ketone production is diminished. This metabolic
disturbance might affect systemic energy homeostasis especially in the brain and heart [79],
which are the main targets of CVD. Thus, circulating ketone bodies might serve as indirect
hepatic function markers with specific cardiovascular implications, but these should be
completely understood, compelling the interaction between SLD progression, ketone body
production, and endothelial dysfunction (Figure 3).
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3.2. Ketogenesis Impairment in Cardiovascular Disease

Beta-hydroxybutyrate is the most abundant in plasma, constituting more than 90%
of the total ketone bodies, though acetoacetate and acetone also occur in blood sam-
ples [80]. Particularly during glucose-limiting conditions such as prolonged fasting or
rigorous physical exertion, these ketone bodies are indispensable, ensuring energy pro-
vision predominantly for the cerebrum and myocardium [80]. The affinity of these fuel
transfer metabolites for the major organs involved in cardiovascular events is still intrigu-
ing. Emerging evidence underscores the advantageous impact of ketone bodies on cardiac
metabolic adaptability under pathological scenarios like heart failure (HF) [89–92]. Hence,
during energy deficits, the malfunctioning heart may escalate ketone utilization, acting as a
compensatory response to its amplified energy demands [91,92]. Yet the question remains:
does reduced ketogenesis improve or deteriorate CVD prognosis?

Preliminary findings suggest that ketone synthesis in apparently healthy individuals
is associated with higher cardiovascular risk. Inadequate ketone body synthesis might
aggravate cardiac malfunction by depriving the heart muscle of an essential energy source
during metabolic distress periods [91,92]. A similar theory has been advanced concerning
arteriosclerosis [93].

Conversely, dysregulated ketone metabolism and heightened BHB concentrations,
frequently observed in diabetic cohorts, might elevate cardiovascular risk by fostering
oxidative stress and endothelial malfunction [94]. It appears that maintaining equilibrium
in ketone metabolism, evading both deficiency and surplus, is imperative for cardiovascular
integrity [95]. Some investigations, specifically from the MESA cohort, have appraised
the nexus between circulating ketone bodies and CVD occurrence. Preliminary results
show that augmented endogenous ketone body levels correlate with a higher incidence and
mortality rate of CVD among populations without prior events due to CVD. This potentially
positions ketone bodies as prospective biomarkers for cardiovascular risk evaluation [76].

Thus, the interpretation of ketone bodies in the clinical setting remains unclear. On
the one hand, further ketone synthesis in apparently healthy individuals leads to higher
cardiovascular risk, while on the other hand, ketone body insufficiency in diseased patients
seems to be associated with further morbidity and mortality. Hence, different hypotheses
might arise from this controversy: Are ketone bodies an early biomarker of cardiovascular
disease? This approach might mean that people generating a relative excess of ketones
while being apparently healthy are adapting to a thinner metabolic health equilibrium
through flexible homeostatic resources such as ketone bodies. However, an increased
ketogenesis could be a consequence of other metabolic disturbances such as SLD progres-
sion, providing further cardiovascular and metabolic risk through other pathways such
as dyslipidemia or serum glucose control, but then, how is mild ketone body increase
associated with a better prognosis in secondary cardiovascular prevention? Although this
fact could be elucidated by a higher capacity of these patients to provide energetic balance
through accessory pathways, this would not correlate with the apparent harmful effect of
liver steatosis progression, which is linked to a higher production of ketones during the
intermediate phase of MASH. In addition to its role in energy supply, BHB operates as
an epigenetic regulator, curbing histone deacetylases and subsequently modifying gene
transcription [96]. This modulatory capability suggests that ketogenesis perturbations
altering BHB concentrations could potentially impact cardiac gene expression, introducing
another layer of complexity to cardiovascular pathophysiology. Therefore, an in-depth
exploration of the relationships between hepatic ketogenesis and cardiovascular health is
key to uncovering clinically significant ties between SLD and CVD.

3.3. Impaired Ketogenesis: Bridging Non-Alcoholic Fatty Liver Disease (NAFLD) and
Cardiovascular Disease (CVD)

Mediation analyses to prove the connection between SLD and CVD through circulating
ketone bodies have been appraised. Post A et al. investigated the association between
NAFLD and circulating ketone bodies in a cohort of 6297 participants and determined



Biomedicines 2024, 12, 692 9 of 15

the extent to which NAFLD and circulating ketone bodies were associated with all-cause
mortality [97]. An elevated FLI as a marker of liver steatosis was independently associated
with an increased risk of mortality. Higher total ketone bodies were also associated with an
increased mortality risk. Mediation analysis suggested that the association of elevated FLI
with all-cause mortality was in part mediated by ketone bodies (proportion mediated: 10%,
p < 0.001).

This association might be mechanistically rooted in impaired lipid metabolism, which
fosters dyslipidemia, typified by an augmentation of triglycerides and low-density lipopro-
tein cholesterol (LDL-C), and a decrease in high-density lipoprotein cholesterol (HDL-C)
levels [98]. Furthermore, the intricate web intertwining NAFLD and CVD might be in-
fluenced by inflammatory pathways, especially in the context of the more aggressive
non-alcoholic steatohepatitis (NASH). This latter condition is associated with systemic in-
flammation and a surge in pro-inflammatory cytokines such as tumor necrosis factor-alpha
(TNF-α) and interleukin-6 (IL-6), which are pivotal in atherosclerosis and CVD pathogene-
sis [99,100]. Moreover, the potential role of impaired ketogenesis in modulating nitric oxide
(NO) bioavailability and, consequently, impacting endothelial function, which is pivotal for
vascular well-being, cannot be ignored. A decrease in endothelial NO production is intrin-
sically linked with endothelial dysfunction, a harbinger of atherosclerosis and subsequent
CVD [101].

Intriguingly, the nuanced effect of impaired ketogenesis is somewhat illuminated by
the impact of externally provided ketone production on a myriad of markers like dys-
lipemia [102,103], dysglycemia [104–106], appetite and obesity [107], blood pressure [108],
meta inflammation [78,109], and endothelial dysfunction [77,110], providing regulation of
insulin and glucagon role in beta-oxidation, glycolysis, gluconeogenesis, and NO synthase
in the hemodynamic control of vascular system. These findings, as well as the predictive
value of circulating ketone bodies for CVD, point to an independent effect of impaired
ketogenesis on CVD and a potential benefit of circulating ketone bodies for assessing
cardiovascular risk (Figure 3).

Some novel therapeutic tools to treat metabolic disturbances, such as sodium-glucose
co-transporter 2 inhibitors (SGLT2i), might also help to elucidate the consequential impact
of ketogenesis in CVD. By obstructing glucose reabsorption in proximal renal tubules and
by amplifying urinary glucose excretion, SGLT2i not only mitigates hyperglycemia but also
reduces cardiovascular events and mortality in diabetic patients with close monitoring to
avoid euglycemic diabetic ketoacidosis [111–113]. Furthermore, SGLT2i might augment
glucagon secretion [114]. On a contrasting note, SGLT2i, while inducing a mild ketosis,
paves the way for several metabolic adaptations, potentially conferring assorted benefits.
For example, mild ketosis, propelled by an elevation in circulating ketone bodies like BHB,
could offer an alternative energy substrate for various tissues when glucose utilization is
jeopardized [115]. BHB also plays roles in signaling activities, potentially exerting anti-
inflammatory and anti-aging effects by inhibiting the NLRP3 inflammasome and reducing
oxidative stress [86,116–118]. For patients with type 2 diabetes, the utilization of ketone
bodies as an alternate fuel might aid in safeguarding cardiac and renal functions. These
benefits have translated into a potential role of ketogenesis in SGLT2i protection against
heart failure, decompensation, and kidney failure [116–118].

The clinical approach to cardiovascular disease represents na urgent for the research of
new pathways that may elucidate the connection between different pathogenic mechanisms,
deriving causal biomarkers and potential therapeutic targets. The finding of new pathways
may help to finally control the cardiovascular pandemic. Thus, the available pathophysio-
logical and epidemiological data hint at the impact of impaired ketogenesis as a potential
mediator between SLD and cardiovascular disease. This statement could be set based
on liver exclusiveness in ketone production, the fluctuations in ketogenesis according to
MASLD status, and evidence for the role of ketone bodies in cardiovascular disease. These
concepts might pinpoint impaired ketogenesis as a distinct biological mechanism linking
MASLD with CVD. For these reasons, the authors consider that future research should
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support the effort to develop and perform specific studies to furnish mechanistic evidence
of this connection. Subsequent evidence may aid in refining our understanding of residual
cardiovascular risk, providing further knowledge of both processes, and thereby enhancing
diagnostic and therapeutic precision and fostering the progress of precision medicine.
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