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Abstract: The choroid plexus (CP) plays significant roles in secreting cerebrospinal fluid (CSF) and
forming circadian rhythms. A monolayer of epithelial cells with tight and adherens junctions of
CP forms the blood–CSF barrier to control the movement of substances between the blood and
ventricles, as microvessels in the stroma of CP have fenestrations in endothelial cells. CP epithelial
cells are equipped with several kinds of transporters and ion channels to transport nutrient substances
and secrete CSF. In addition, junctional components also contribute to CSF production as well as
blood–CSF barrier formation. However, it remains unclear how junctional components as well as
transporters and ion channels contribute to the pathogenesis of neurodegenerative disorders. In this
manuscript, recent findings regarding the distribution and significance of transporters, ion channels,
and junctional proteins in CP epithelial cells are introduced, and how changes in expression of their
epithelial proteins contribute to the pathophysiology of brain disorders are reviewed.

Keywords: adherens junction; cerebrospinal fluid; choroid plexus; epithelial cell; tight junction;
transporter

1. Introduction

The brain restricts the entrance of solutes and toxic substances circulating in the
blood by two barriers: The blood–brain barrier (BBB) and blood–cerebrospinal fluid (CSF)
barrier (BCSFB) [1,2]. BBB consists of components, arranged in order from the inside,
such as endothelial cells interconnected by tight junctions (TJs) with few vesicles and no
fenestrations, two basement membranes, pericytes, and end-feet of astrocytes, providing
a strong barrier function [1,3,4]. BBB endothelial cells are also equipped with various
transporters, such as glucose transporter 1 (GLUT1/SLC2A1), to supply nutrient substances
from the blood to the brain [2,3,5,6]. In this way, BBB endothelial cells have a significant
carrier function as well as strong barrier function.

On the other hand, BCSFB is known to be present in a monolayer of epithelial cells of
the choroid plexus (CP). CP protrudes into ventricles, is covered with epithelial cells with
microvilli on the ventricle-facing (apical) side, and has an underlying basal lamina [7,8]. The
stroma of CP is highly vascularized, and the endothelial cells of capillaries in the stroma are
fenestrated, allowing the movement of intravascular substances into the CP stroma [7,9,10].
A monolayer of epithelial cells with TJs and adherens junctions (AJs) has a significant
barrier function as BCSFB. Figure 1 shows the ultrastructure of CP epithelial cells (CPEs),
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with TJ/AJ on the lateral side and microvilli on the ventricle-facing side of the cytoplasm.
CPEs also have a carrier function and are equipped with several kinds of transporters,
including GLUT1 and ion channels, to transport nutrient substances, including glucose,
and secrete CSF [7,10–12]. Standard concentrations of ionic compounds in CSF are reported
as: Na+, 149 mM; K+, 2.9 mM; Cl−, 130 mM; HCO3

−, 22 mM; showing 305 mOsm/L and
pH 7.27, whereas the concentrations in interstitium of CP are Na+, 148 mM; K+, 4.3 mM;
Cl−, 106 mM; HCO3

−, 25 mM; showing 299 mOsm/L and pH 7.46 [7]. Many transporters
and receptors are considered to contribute to CSF secretion in CPEs. Abnormalities in the
transport of nutrient substances and CSF secretion due to CPE injuries may lead to brain
dysfunction. In this manuscript, the relationship between abnormalities in transporters
and several kinds of brain disorders is focused on. On the contrary, some papers indicate
that CP may secrete only partial CSF [13] or may clear CSF [14,15]. In addition, Yamada
and Mase reported that CSF is primarily produced as interstitial fluid (ISF) and drains
into the subarachnoid space and ventricles as sinks, and that CSF produced by CP may
have a special role in releasing hormones, cytokines, and other proteins and play a role in
maintaining circadian rhythms and stress response homeostasis [16]. Therefore, the precise
role of CP in CSF production remains controversial [17].
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solution, and embedded in epoxy resin. (A) CPEs with junctions on the lateral side and microvilli
on the apical side are seen. CPEs facing the ventricle are bound by tight and adherens junctions
(indicated by arrows), whereas the lateral intercellular space (LIS) and basal labyrinth (BL) are
present in junctional clefts. (B,C) Enlarged images show fenestrations (B: dotted arrow) in fenestrated
endothelial cells and tight and adherens junctions (C: arrows). Scale bars indicate 1 µm. AJ: adherens
junction; BL: basal labyrinth; FC: fenestrated capillar; FN: fenestration; LIS: lateral intercellular space;
Mt: mitochondria; MV: microvilli; TJ: tight junction.

Some CSF flows in the brain, is mixed with ISF, and is considered to be excreted into
the venous system. Much of CSF was previously thought to be reabsorbed directly through
arachnoid granulations into the venous sinuses [18]. However, alternative pathways for CSF
to return to the systemic circulation have been advocated to drain into cervical lymph nodes
along peri- and paravascular spaces surrounding cerebral arterial vessels [19]. The two
pathways are referred to as the intravascular periarterial drainage (IPAD) pathway [20,21]
and glymphatic system [21,22]. As the two routes are necessary for the discharge of waste
products produced in the brain, the disturbance of fluid flow through the two routes likely
causes impaired brain function with increases or decreases in the amount of normal CSF
compounds or metabolites and the accumulation of abnormal proteins in CSF. Glymphatic
influx and clearance are more effective during sleep and can contribute to circadian rhythm
formation in mice [23]. Accordingly, several kinds of abnormalities in CP, including the CP
volume and pathological findings related to CSF secretion, are also reviewed.

2. Expressed Proteins in CPEs and Stroma
2.1. Expressed Proteins in CPEs

CPEs are characterized by the presence of some epithelial cytokeratins, vimentin, catenins,
S-100 protein, podoplanin, transthyretin/prealbumin, and α1-antichymotrypsin [7,10,24]. Cy-
tokeratin 8 (CK8), CK18, and possibly CK19 were reported to be intermediate filaments
in CPEs [7,25]. However, CK19 has not been fully confirmed to be expressed in CPEs.
The coexistence of CK8, CK18, vimentin, and S-100 protein in CPEs is unique and may
contribute to the special functioning of CPEs.

CPEs are equipped with several transporters for CSF secretion in the apical and/or
basolateral cytoplasmic membrane [7,26]. AQP1 (water channel), Na+-K+-ATPase, NKCC1
(Na+, K+, 2Cl− cotransporter), NHE1 and NBCe2 (acid/base transporters), Clir and VRAC
(Cl− channels), and Kir7.1 and Kv (K+ channels) are expressed in the luminal membrane.
Some acid/base transporters such as NBCn1 (Na+-dependent HCO3

− transporter), Ncbe
(Na+-dependent Cl−/HCO3

− exchanger), and AE2 (anion exchange protein) are expressed
in the basolateral membrane of CPEs. A large amount of AQP1 is expressed in the apical
membrane of CPEs, whereas a small amount is expressed in the basolateral membrane [7].

2.2. Junctional Proteins Expressed between CPEs

The lateral intercellular space (LIS) between the lateral membranes of neighboring
CPEs is generally narrow, and these cells were combined with TJ/AJ [7] (Figure 1). The TJs
contain occludins, claudins, and the associated cytosolic ZO-1 [7]. Claudin-1, -2, -3, and
-11 have all been demonstrated in TJs of CPEs [7,27]. On the other hand, zonula adherens,
including cadherins and catenins, are expressed beneath TJs. Catenins are distributed along
the lateral surface of CPEs [7]. Some cadherins have been reported to be expressed in AJs
of CPEs [7]. P- and N-cadherins are known to be expressed in the lateral membrane and
basal labyrinth of CPEs [7,28]. However, E-cadherin expression in CP was not clear until
recently [7,28,29]. Takebayashi et al. [30] reported that mRNA and protein expression of
E-cadherin was present in CP samples of 10-week-old mice, and immunoreactivity for
E-cadherin was present in the lateral membrane of CPEs in the mice and aged human
brains [30].
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2.3. Proteins Expressed in CP Stroma

CP consists of CPEs with an underlying basal lamina and a stroma with connective
tissues, including fenestrated capillaries [31,32] (Figure 1). Interestingly, the basal lamina of
CPEs was reported to be continuous with the pial basal lamina [31,32]. The CP stroma in
aged human brains was filled with fine fibrous tissues immunoreactive for collagen type 3,
whereas calcified materials immunoreactive for collagen type 1 were occasionally present
in the stroma [33].

Endothelial cells in CP capillaries have a special morphological feature, called fenes-
tration, which enables intravascular molecules to invade the CP stroma. CD34, a transmem-
branous glycoprotein in endothelial cells, is well known as a representative endothelial
cell marker. Not only CD34 but also several kinds of transporters, such as breast cancer
resistance protein (BCRP/ABCG2), a urate transporter, were reported to be expressed in
endothelial cells in the CP stroma as well as in endothelial cells in the BBB area [26,33,34]
(Figure 2). Interestingly, immunoreactivity for GLUT1 is present in endothelial cells in the
BBB area, whereas it is absent in endothelial cells in the CP stroma (Figure 2).
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Figure 2. Representative immunoreactivity for CD34, ABCG2, and GLUT1 in microvessels of the
brain parenchyma with BBB (A–C) and those in the CP stroma (D–F) of human brains. Arrows
indicate immunoreactivity for CD34 (A,D), ABCG2 (B,E), and GLUT1 (C), whereas dotted arrows
indicate no immunoreactivity for GLUT1 in the CP stroma (F). Arrowheads in (F) indicate positive
immunostaining for GLUT1 on the basolateral surface of CPEs. These are compatible with findings
reported in previous papers [24,26,33,34]. Scale bars indicate 10 µm.

3. Localization of Several Kinds of Transporters in CPEs
3.1. Glucose Transporters

It is well known that GLUT1/SLC2A1, a representative glucose transporter in the
brain, is predominantly expressed in the basolateral membrane of CPEs [1,35]. In addition,
sodium/glucose cotransporter 2 (SGLT2/SLC5A2) was also reported in CPEs [26,36]. It
was reported that the basal glucose level in brain interstitial fluid (ISF) of normoglycemic
people showing a plasma glucose concentration of 6 mM is estimated to be 1.4 mM [37].
Accordingly, it is likely that these glucose transporters contribute to the transport of glucose
in the stroma of CP into CSF via CPEs based on the concentration gradient. However,
transporters on the apical membrane of CPEs remain unclear. The levels of pCO2 and
HCO3

− in CSF were lower in the diabetic mellitus group than in the control group, whereas
the concentrations of Na+ and Mg2+ in the blood were lower in the diabetic group than the
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control group [38]. Accordingly, some links between glucose transporters and ion channels
in CPEs are suggested in patients with diabetes mellitus.

3.2. Fructose Transporters

Some experimental results using proteomic or transcriptome analysis, immunohis-
tochemistry, Western blotting, and mRNA transcripts showed that GLUT5 (SLC2A5), a
representative transporter for fructose, was expressed on the apical side of CPEs in mice,
rats, and humans [39–41]. Expression of GLUT8 (SLC2A8), another fructose transporter,
in CPEs was also confirmed by transcriptome and immunohistochemical analyses [39,42].
Interestingly, fructose transporters are expressed in CPEs but not in BBB endothelial cells,
indicating the significance of the transport of fructose via CPEs between the blood and
CSF. However, the physiological function of fructose in the brain as well as the direction of
fructose transport between the blood and CSF remain to be clarified.

3.3. Urate Transporters

BCRP/ABCG2, GLUT9/SLC2A9, and urate transporter 1 (URAT1/SLC22A12) were
reported to be urate transporters in BBB and/or BCSFB [26,34,43]. BCRP/ABCG2 is the
main urate transporter on the luminal and apical membrane of the capillary endothelial
cells of BBB and in CPEs, respectively [26,34]. The localization of ABCG2 in the luminal
membrane of brain capillary endothelial cells suggests the transport of urate from the
brain into blood. Immunohistochemical and in situ hybridization studies of GLUT9 and
URAT1 in murine brains indicate the presence of GLUT9 in ependymal cells and brain
capillaries, as well as the presence of URAT1 in ependymal cells [34]. In human brains,
immunoreactivity for GLUT9 was present on the apical side of CPEs, whereas that for
URAT1 was on the basal side of CPEs and also in ependymal cells at the third ventricular
wall [43]. However, the mRNA and protein expression of URAT1 has not been confirmed
in CPEs. In addition, mRNA of GLUT12, a transporter for urate and vitamin C [44,45], was
expressed in CPEs of mice [45]. These findings suggest the possible movement of urate
between CP and CSF.

3.4. Lactate Transporters

Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of mono-
carboxylates, including L-lactate and pyruvate, in several kinds of cells [46,47]. Felm-
lee et al. [48] reviewed in detail the function, regulation, and role in health and dis-
ease of the MCT (SLC16) family. MCT1/SLC16A1, MCT2/SLC16A7, MCT3/SLC16A8,
MCT4/SLC16A3, and MCT5/SLC16A4 are known to be expressed as lactate transporters
in CPEs of human and rat brains [25,41,46,49]. MCT1 and MCT2 were present on the
apical side of CPEs in human brains, whereas MCT4 was present on the basal side [25,49].
The MCT3 gene was expressed in retinal pigments and CPEs of mice and rats [41,50].
Immunohistochemical localization of MCT3 was present on the basolateral membrane of
CPEs in mice [50]. In addition, the mRNA of MCT3 was confirmed to be expressed in CPEs
of rats [41,50].

3.5. Thyroid Hormone Transporters

MCT8 (SLC16A2) was established as an active transporter to transport thyroid hor-
mones T3 and T4 [51]. It is now considered that MCT8, MCT10/SLC16A10, and organic
anion transporting polypeptide 1C1 (OATP1C1) are specific thyroid hormone transporters,
and that MCT8 and OATP1C1 are expressed in the brain [52]. Roberts et al. [53] reported
that human MCT8 was immunohistochemically expressed in endothelial cells and also visi-
ble on apical and basal surfaces of CPEs, whereas immunoreactivity for OATP-14, known as
OATP1C1, was present on both apical and basolateral surfaces of CPEs. On the other hand,
mouse MCT8 was primarily expressed on the apical surface of CPEs, whereas OATP14 was
present mainly on the basolateral surface of CPEs. We confirmed that immunoreactivity for
MCT8 existed on the apical surface of human CPEs [25].
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3.6. Iron-Regulatory Proteins and Iron Transporters

Iron is essential for the normal functioning of several kinds of cells. As excess iron
can generate toxic reactive oxygen species, the metabolism of iron is tightly controlled.
Astrocytes are largely responsible for regulating iron metabolism in the brain [54,55].
Concerning iron metabolism in the brain, iron in the blood crosses the BBB to enter the
central nervous system mainly through transferrin and the transferrin receptor. Ionized
iron in endothelial cells can be exported into the cerebral parenchyma by ferroportin, the
only known iron export transporter. Extracellular iron is accumulated in astrocytes through
the divalent metal transporter 1 (DMT1). Iron is partially stored in ferritin as ferric iron
(Fe3+) or is exported from astrocytes through ion channels and ferroportin–ceruloplasmin
cascade [55]. Under conditions of iron deprivation, astrocytes support neuronal iron
uptake by releasing Fe2+ through ferroportin and secreting ceruloplasmin. Ceruloplasmin
oxidizes Fe2+ to Fe3+, which binds to the transferrin receptor [55]. Hepcidin, which is
synthesized by astrocytes and microglia, binds to ferroportin and induces its internalization
and degradation [56,57]. In this way, the ferroportin–hepcidin system functions as the main
pathway for cellular iron export and regulates cellular iron levels in astrocytes. Excess
iron storage in astrocytes possibly results in oxidative damage to astrocytes, followed by
neuronal cell injury. Hephaestin, a large membrane-anchored multicopper ferroxidase, is
known to be involved in iron metabolism [58]. Dietary iron is exported across enterocytes
by ferroportin, and hephaestin increases the efficiency of this process by oxidizing the
transported iron to Fe3+ and promoting its release from ferroportin. Ferroportin, hepcidin,
and hephaestin were reported to be present in human CPEs as well as astrocytes [59–61].
Interestingly, Ca2+ is required for the iron transport activity of human ferroportin, and the
activity of ferroportin could be limited under conditions of hypocalcemia [58]. Accordingly,
decreased concentrations of Ca2+ in CP may induce excess accumulation of Fe2+ in the
cytoplasm of CPEs, possibly followed by the induction of oxidative cellular damage.

3.7. Ions and Water Transporters

Several kinds of transporters for Na+, K+, Cl−, HCO3
−, and water are known to

be expressed in the apical and/or basolateral membrane of CPEs [7,17,24,26,62,63]. As
transporters expressed on the apical membrane of CPEs, Na+-K+-ATPase, NKCC1 (Na+,
K+, 2Cl− cotransporter), NHE1 and NBCe2 (acid/base transporters), Clir and VRAC (Cl−

channels), Kir7.1 and Kv (K+ channels), and AQP1 (water channel) are known. On the other
hand, other acid/base transporters such as NBCn1 (Na+-dependent HCO3

− transporter),
Ncbe (Na+-dependent Cl−/HCO3

− exchanger), and AE2 (anion exchange protein) are
expressed in the basolateral membrane of CPEs. NKCC1 was reported by some studies to
transport Na+, K+, and Cl− from CPEs into the ventricle unidirectionally [7,62], whereas
it was reported by others to transport these ions bidirectionally between CPEs and the
ventricle [17,63]. In addition, NKCC1 is considered to contribute to the transport of water
under some conditions [62]. A large amount of AQP1 necessary for water transport is
expressed in the luminal membrane of CPEs, whereas a small amount is also known to
be present in the basolateral membrane [7]. Transient receptor potential vanilloid type
4 (TRPV4), which was originally described as a calcium-permeable non-selective cation
channel, is now recognized as a polymodal ionotropic receptor [64,65]. TRPV4, which is
permeable to calcium, potassium, magnesium, and sodium, was reported to be present
in the apical membrane of CPEs [17,66]. Accordingly, when TRPV4 is activated, Ca2+ can
flow into CPEs [66]. These results indicate the contribution of TRPV4-mediated activities
to transepithelial ion and water movement. Figure 3 shows the polarized distribution
of representative transporters and ion channels in CPEs and the hypothesized directions
of ions.
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Figure 3. Polarized distribution of representative ion transporters/channels and proteins implicated
in CSF secretion in the cytoplasmic membrane of CPEs. AQP1, a water channel, is expressed in
large quantities in the luminal membrane, whereas it is also present less frequently in the baso-
lateral membrane. On the apical side of the cytoplasmic membrane of CPEs, sodium potassium
ATPase Na+,K+-ATPase, the sodium hydrogen exchanger 1 NHE1, sodium bicarbonate cotransporter
e2 NBCe2, sodium potassium chloride cotransporter 1 NKCC1, potassium chloride cotransporter
4 KCC4, inward rectifying potassium channel Kir7.1, and transient receptor potential vanilloid TRPV4
(a non-selective cation channel) are expressed. On the basal side of the cytoplasmic membrane of CPEs,
anion exchange protein AE2 (a chloride bicarbonate exchanger), potassium chloride cotransporter
KCC1, Na+ dependent HCO3

− transporter NBCn1, and Na+-dependent Cl−/HCO3
− exchanger

Ncbe are expressed. In the junctional space, claudin-2, a component of the tight junction, is involved
in the permeation of water as well as monovalent cations, whereas cadherins, components of the
adherens junction, have extracellular calcium ion-binding domains. Among MCTs, proton-coupled
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lactate transporters, MCT1 and MCT2 are immunohistochemically expressed on the apical side of
CPEs, whereas MCT3 and MCT4 are considered to be on their basal side. (#1): Directions of Na+,
K+, and Cl− through NKCC1 were unidirectional (outward flow) according to some studies [7,62],
whereas they were bidirectional according to others [17,63]. Steffensen et al. [62] reported that
mouse CP has the ability to transport water against an osmotic gradient in a K+-induced, NKCC1-
mediated manner [62]. (#2): TRPV4 may have a significant role in controlling ion and water flux. (#3):
Cadherins have extracellular calcium ion-binding domains and depend on calcium ions to function.
(#4): Claudin−2 likely contributes to the transport of water as well as monovalent cations in TJs.
(#5, #6): Transmembranous directions of lactate and proton have not been determined at MCT1 and
MCT2 on the apical side of CPEs or at MCT3 and MCT4 on the basal side of CPEs [25,41,49,50]. AJ/TJ:
adherens and tight junctions; BL: basal labyrinth; LIS: lateral intercellular space.

4. Localization of Transporters and Proteins in Junctions between Neighboring CPEs

There are the basal labyrinth (BL), lateral intercellular space (LIS), and a zone with
TJ/AJ, which are aligned from the basolateral to apical sides, between the lateral membranes
of neighboring CPEs [7]. Some junctional proteins function as adhesive molecules and
contribute to CSF production.

4.1. Tight Junction

TJs are formed by occludin, claudins, and the associated cytosolic zonula occludens-1
situated along the entire lateral surface [7]. These are considered to regulate the function
of TJs together. Occludin regulates the size-selective paracellular diffusion of hydrophilic
molecules [67]. However, Saitou et al. [68] reported experimental findings suggesting a
non-essential role for occludin in TJ formation. Claudin−1, −2, −3, and −11 were reported
to be situated in TJs of CPE [27,69], whereas claudin-5 was identified as a critical regulator
of BBB permeability in cerebral capillaries [70]. Interestingly, claudin-2 contributes to the
transport of water as well as monovalent cations in the TJs of CPEs [71].

4.2. Adherens Junction

AJs are complexes that occur at cell-cell junctions and cell-matrix junctions in CPEs
and are mainly composed of cadherins and catenins [7]. Cadherins are transmembranous
proteins that have extracellular calcium ion-binding domains and depend on calcium
ions to function. Adhesion between cells is mediated by extracellular cadherin domains.
Cadherins are protected against degradation by proteases in the presence of calcium ions.
Although the expression of cadherins in CP has been demonstrated, the specific forms
of cadherins expressed remained unclear until recently [7,28,29]. Christensen et al. [28]
reported the expression of P- and N-cadherins in the lateral membrane and basal labyrinth
of CPEs. Recently, the mRNA and protein of E-cadherin were confirmed to be expressed in
CP samples of 10-week-old mice using RT-PCR, Western blotting, and immunohistochem-
ical analyses [30]. In addition, the presence of even or uneven expression of E-cadherin
with expression of P- and N-cadherins was reported in the lateral membrane of CPEs in
human brains [30]. Uneven expression of cadherins may be related to the epithelial-to-
mesenchymal transition-like phenomenon and E-cadherin-to-P-cadherin switch, occurring
in inflamed or injured tissues [72,73]. Calcium signaling is known to be pivotal to the
circadian clock in the suprachiasmatic nucleus [74]. Accordingly, it is worth elucidating
whether the expression of cadherins, which are calcium-dependent junctional proteins in
CPEs, is related to circadian rhythm formation.

5. Alterations in CP Proteins with Aging and Brain Disorders
5.1. Age-Related Morphological Changes in CPEs

Some researchers have reported that CPEs show age-related morphological and func-
tional changes. CPEs of elderly humans are known to exhibit decreases in the total volume,
height, and length of apical villi, compared with cells of younger people [9,12]. Scarpetta
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et al. [75] reported age-related changes in murine CPEs, such as flattening of epithelial cells,
reduction in microvilli length, an increase in interrupted TJs, and a decrease in mitochon-
drial density with elongation of mitochondria [75]. These morphological mitochondrial
alterations were accompanied by increased superoxide levels and a decreased membrane
potential [75]. Wakamatsu et al. [33] reported that immunoreactivities for osteopontin and
collagen were present in the densely fibrous or calcified CP stroma of aged human brains. In
the calcified stroma with psammoma bodies, the basal lamina immunopositive for type IV
collagen was destroyed, and the covering CPEs were thin or disappeared [33]. In addition,
Biondi ring tangles were present in the cytoplasm of CPEs in aging brains [76]. These tangles
were specific intracellular inclusions in CPEs and were made of tightly packed bundles of
long filaments with a diameter of around 10 nm, which were morphologically distinct from
amyloid fibrils and paired filaments of neurofibrillary tangles in the case of Alzheimer’s
disease (AD) [76]. It is not surprising that these morphological changes reported in aged
brains cause age-related functional impairments of CP. Figure 4A shows a schematic illus-
tration of the choroid plexus and ependymal cells. An illustration of normal-looking CPEs
is shown on the left side of the figure, whereas CPEs in aged people are on the right side.
On the left side, tight and adherens junctions between CPEs, the basement membrane, and
fenestrated capillaries characterized by immunoreactivity for CD34 and ABCG2 but not
GLUT1 are shown. On the other hand, thin epithelial cells, psammoma bodies, an injured
basement membrane, and Biondi ring tangles seen in aged people are presented on the right
side [33,76] (Figure 4A). Non-fenestrated capillaries in the BBB area show immunoreactivity
for GLUT1 as well as CD34 and ABCG2 (Figure 2). Figure 4B–E presents hematoxylin and
eosin stained images showing CPEs with a normal-looking appearance (B), thin or disap-
peared CPEs with dense fibrous materials or psammoma bodies in the stroma (C,D), and
Biondi ring tangles in the cytoplasm of CPEs in human brains (E). Various morphological
abnormalities in CP were reported in autopsied-aged brains [9,12,33,75,76].
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side) human brain (A), and images of CP stained with hematoxylin and eosin in human brains (B–E).
(A) CPEs are bound by TJ/AJ, which are composed of BCSFB. Ependymal cells, mainly bound by
gap junctions, are located between the ventricle and brain parenchyma. ISF can pass through the
ependymal cell layer into the ventricle and is mixed with CSF. In aged human brains, psammoma
bodies are frequently present in the stroma of CPEs, whereas Biondi ring tangles can be occasionally
observed in the CP cytoplasm. Fenestrated capillaries without BBB in the CP stroma show CD34
(+), ABCG2 (+), and GLUT1 (−), whereas non-fenestrated capillaries with BBB in the BBB area show
CD34 (+), ABCG2 (+), and GLUT1 (+). (B–E) Images stained with hematoxylin and eosin in CPEs of
human brains of male patients in their 40 s (B), 80 s (C), and 70 s (D,E) are shown. Thick epithelial
cells exhibit a normal-looking morphology, and the stroma is filled with capillaries (B). Epithelial
cells (indicated by a long arrow) covering the fibrous stroma are very thin or have disappeared (C).
Epithelial cells (indicated by a single arrow) covering the psammoma body (indicated by double
arrows) are very thin or have disappeared (D). Biondi ring tangles (indicated by a short arrow) are
seen in the cytoplasm of CPEs (E). Scale bars indicate 10 µm.

5.2. CP Changes in Brain Disorders

A combination of increased CSF secretion caused by CP abnormalities and impaired
CSF absorption likely induces posthemorrhagic hydrocephalus [77]. Liu et al. [78] reported
on the relationship between abnormal CPEs and hydrocephalus or stroke. Periventricu-
lar white matter was injured with neutrophil infiltration into CP and white matter in a
thrombin-induced hydrocephalus model [79]. Sadegh et al. [15] reported that overexpres-
sion of NKCC1, a bidirectional Na-K-Cl cotransporter, in CP accelerated CSF clearance and
mitigated posthemorrhagic hydrocephalus, indicating a role of NKCC1 in CSF secretion.

Many studies have reported the contribution of CP abnormalities to the pathogenesis
of neurodegenerative diseases. Senay et al. [80], using a novel magnetic resonance imaging-
based segmentation method, reported a significant CP volume increase in early psychosis
and a significant positive correlation between higher CP and higher lateral ventricle vol-
umes in chronic psychosis, suggesting that CP enlargement may be a marker of an acute
response around disease onset [80]. CP enlargement was significantly correlated with a
higher allostatic load in patients with schizophrenia [81]. Histopathologically, an increased
somal width of CPEs was present in the case of schizophrenia [82]. In AD patients, the
CP volume was a good marker for the evaluation of tau deposition and neuroinflamma-
tion [83]. A larger CP volume was associated with the severity of cognitive impairment in
the AD spectrum [84]. Increased CP volumes in AD also correlate with age and cognitive
performance [85]. Using laser capture microdissection followed by label-free quantitative
mass spectrometry of CP, signaling pathways in activated fatty acid beta-oxidation and in-
hibited glycolysis were changed in patients with AD compared with controls [86]. Quintela
et al. [87] pointed out the roles of ions, glucose transporters, and transporters related to Aβ

clearance in circadian regulation formation. Histopathologically, increased amyloid-β (Aβ)
deposition, reduced TJ formation, and decreased expression of lipoprotein receptor-related
protein 1 (LRP-1), a transporter for Aβ clearance, were reported in CPEs of AD patients [78].
These findings are considered to result in reduced CSF secretion, decreased Aβ clearance,
and increased inflammatory cell invasion. The rhythmicity of clock genes was disrupted
in CP of the APP/PS1 mouse model for AD [88]. Biondi ring tangles were present in
the cytoplasm of CPEs in aged brains, especially AD brains [76]. The CP volume was
associated with frontal or executive function, followed by the dementia conversion risk
in patients with Parkinson disease (PD) [89]. The CP volume had the potential to serve
as a biomarker for motor disabilities in PD patients [90]. Examination of the CP volume
could assist in differentiating patients with frontotemporal lobar degeneration from healthy
controls and in characterizing disease severity [91]. Butler et al. [92] reported that CP calci-
fication may be a specific and relatively easily acquired biomarker of neuroinflammation
and CP pathology in humans. Ricigliano et al. [93] reported using 3.0-T brain MRI that
CPs are enlarged and inflamed in patients with multiple sclerosis (MS), particularly in
those with relapsing-remitting MS with inflammatory profiles. CP enlargement was closely
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linked to emerging functional impairment, as depicted in mouse models and patients with
MS [94]. In experimental autoimmune encephalomyelitis (EAE), the mouse model for
MS, significant findings suggesting a relationship between the pathogenesis of MS and
CP were found. It was previously reported that mucosal vascular addressin cell adhesion
molecule 1 (MAdCAM-1) was upregulated in CPEs during EAE and likely facilitated the
entry of leukocyte subsets into CP [95]. Recently, the deletion of MAdCAM-1 was con-
firmed to be relatively resistant to actively induced EAE [96]. These findings suggest a
significant contribution of MAdCAM-1 expression in CPEs to the pathogenesis in mouse
models and possibly also in patients with MS. Regarding the relationship between systemic
infection and brain dysfunction, the CP-to-cortex network is considered to be involved
in the spread of inflammation into the brain. Yang et al. [97] reported in human brains
with COVID-19 that inflammation spread from CPEs to several kinds of brain cells with
an increased number of CD68-positive macrophages, although SARS-CoV-2 could not be
detected in the brain. In addition, Helicobacter suis DNA was previously reported to be
more frequently found in gastric biopsies from patients with PD compared with a control
group. Helicobacter suis, administered as bait in mice, was demonstrated to induce inflam-
mation in the brain, including CP and cognitive decline [98]. In the mice, CP inflammation
and disruption of BCSFB were detected, whereas the BBB in cerebral capillaries remained
functional. It may be said that CP is a novel player in the stomach–brain axis [98]. These
findings in MS models and systemic infection suggest that CP receiving blood supply from
fenestrated capillaries may be a gateway to the spread of inflammation from systemic
circulation into the brain. Accordingly, epithelial injury in CP with BCSFB dysfunction may
make it more susceptible to the effects of systemic inflammation and easier to cause brain
damage. Abnormal findings in CP of brains with physiological and pathologic disorders
are introduced in Table 1.

Table 1. Summary of abnormal findings reported in CP in presence of physiological and pathologic
brain disorders.

[1] Morphometry of human brains by imaging techniques

Psychosis An increase in CP volume in early psychosis and a positive correlation between higher CP and
higher lateral ventricle volumes in chronic psychosis. [80]

Schizophrenia CP enlargement and allostatic load. [81]

Alzheimer’s disease
The CP volume is a good marker for the evaluation of tau deposition and neuroinflammation. [83]

A larger CP volume is associated with the severity of cognitive impairment in the AD spectrum. [84]
Increased CP volumes in AD correlate with age and cognitive performance. [85]

Parkinson’s disease
The CP volume is associated with frontal or executive function, followed by the dementia

conversion risk. [89]

The CP volume has the potential to serve as a biomarker of motor disabilities. [90]

FTLD The CP volume can assist in differentiating patients with FTLD from healthy controls and
characterizing disease severity. [91]

CP enlargement and inflammation [93]
Multiple sclerosis

CP enlargement is closely linked to emerging functional impairment. [94]
[2] Pathological findings of CPEs and interstitium by histological or molecular biological techniques

Hydrocephalus

Overexpression of NKCC1 mitigates posthemorrhagic hydrocephalus. [15]
Increased CSF secretion and impaired CSF absorption in the posthemorrhagic state. [77]

The relationship between abnormal CPEs and hydrocephalus or stroke. [78]
Periventricular white matter injury with neutrophil infiltration into CP and white matter in

thrombin-induced hydrocephalus. [79]

Schizophrenia Increased somal width of CPEs. [82]

Alzheimer’s disease

Biondi ring tangles. [76]
Increased amyloid-β deposition, reduced TJ formation, and decreased expression of LRP-1. [78]

Changes in signaling pathways associated with cell metabolism including activated fatty acid
beta-oxidation and inhibited glycolysis. [86]
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Table 1. Cont.

Multiple sclerosis A large number of HLA-DR immunostained T lymphocytes in CPEs. [78]

Aging, inflammation,
or others

Decreases in total volume, height, and length of microvilli of CPEs in the elderly. [9,12]
The basement membrane immunopositive for type IV collagen is destroyed and covering CPEs

are thin or have disappeared. [33]

Age-related changes in flattening of CPEs, reduction in microvilli length, an increase in
interrupted tight junctions, and a decrease in mitochondrial density with elongation of

mitochondria of mice.
[75]

Biondi ring tangles are present in aged brains. [76]
Roles of Na+/K+-ATPase, GLUT1, and transporters related to Aβ clearance in circadian

regulation in CPEs. [87]

CP calcification may be a specific and relatively easily acquired biomarker of neuroinflammation
and CP pathology in humans. [92]

MAdCAM-1 is upregulated in CPEs during experimental autoimmune encephalitis and may
facilitate the entry of leukocyte subsets into CP. [95]

In human brains with COVID-19, barrier cells of the CP sense and relay inflammation into the
brain with infiltration of increased number of CD68-positive macrophages into the stroma of CP. [97]

Helicobacter suis infection induces brain inflammation associated with cognitive decline, including
CP inflammation, and the CP is a novel player in the stomach–brain axis. [98]

AD: Alzheimer’s disease, FTLD: frontotemporal lobe degeneration.

6. Summary and Future Directions

Covering epithelial cells in CP are equipped with several kinds of transporters for
ions and nutrient substances, whereas junctions between them are equipped with specific
junctional proteins with barrier and carrier functions. These features make it possible to
secrete CSF and supply nutrient substances to ventricles. In the stroma of CP, capillaries
with fenestrated endothelial cells supply blood to CP, making it possible to transport a
variety of nutritional substances into the CP stroma. On the contrary, it allows blood cells,
including monocytes, to penetrate the stroma in the presence of pathological conditions
such as inflammation. Penetrating inflammatory cells may affect several kinds of neuroglial
cells in the brain, followed by the appearance or exacerbation of neurological symptoms.
In addition, abnormal Ca2+ concentrations in CPEs may induce BCSFB dysfunction with
degradation or switching of cadherins, oxidative cell damage by excess accumulation of
Fe2+. It is required to clarify how abnormalities of transporters, ion channels, and junctional
proteins in CPE due to CP injuries are involved in the pathogenesis of neurodegenerative
disorders by analyzing the latest biological images of patients with the disorders and their
autopsied brains.
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