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Abstract: Background: As one of the important components of immunotherapies, mRNA vaccines
have displayed promising clinical outcomes in solid tumors. Nonetheless, their efficacy remains
unclear in pancreatic adenocarcinoma (PAAD). Given the interaction of pyroptosis with anticancer
immunity, our study aims to identify pyroptosis-related antigens for mRNA vaccine development
and discern eligible candidates for vaccination. Methods: Utilizing gene expression data from
TCGA and ICGC, we integrated RNA-seq data and compared genetic alterations through cBioPortal.
Differential gene expressions were integrated using GEPIA. Relationships between immune cell
abundance and tumor antigens were analyzed and visualized via TIMER. WGCNA facilitated the
clustering of pyroptosis-related genes, identification of hub genes, and pathway enrichment analyses.
Pyroptosis landscape was depicted through graph learning-based dimensional reduction. Results:
Four overexpressed and mutant pyroptosis-related genes associated with poor prognosis were
identified as potential antigens for mRNA vaccines in PAAD, including ANO6, PAK2, CHMP2B, and
RAB5A. These genes displayed positive associations with antigen-presenting cells. PAAD patients
were stratified into three pyroptosis subtypes. Notably, the PS3 subtype, characterized by a lower
mutation count and TMB, exhibited “cold” immunological traits and superior survival compared to
other subtypes. The pyroptosis landscape exhibited considerable heterogeneity among individuals.
Furthermore, the turquoise module emerged as an independent prognostic indicator and patients with
high expressions of hub genes might not be suitable candidates for mRNA vaccination. Conclusions:
In PAAD, ANO6, PAK2, CHMP2B, and RAB5A are prospective pyroptosis-related antigens for mRNA
vaccine development, which holds potential benefits for patients classified as PS3 and those with
diminished hub gene expressions, providing insights into personalized mRNA vaccine strategies.

Keywords: mRNA vaccine; pancreatic adenocarcinoma; pyroptosis subtype; pyroptosis landscape;
hub genes

1. Introduction

Pancreatic adenocarcinoma (PAAD), which was the fourth leading cause of cancer-
associated death in the United States, resulted in 49,830 new deaths in 2022 [1]. Charac-
terized by its high malignancy and poor prognosis, PAAD possesses almost equivalent
morbidity and mortality, with a 5-year survival rate of only 11% [1]. Surgery is considered
to be the only curative therapy for PAAD. However, the majority of PAAD patients present
with local late-stage or distant metastasis at the time of diagnosis, and even those who
underwent curative surgery have disease recurrence rates of nearly 90%, at a median of
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7–9 months [2,3]. Standard chemotherapy prolongs life span only modestly [4,5]. Excep-
tionally, in less than 1% of patients with microsatellite instability high tumors, PAAD is
well-known for its immunosuppressive tumor microenvironment, with the characteristics
of a prominent myeloid cell infiltration and absent or dysfunctional adaptive T cell immu-
nity, making it almost entirely refractory to immunotherapies such as immune checkpoint
inhibitors (ICIs) [6,7]. Therefore, there is an urgent need to find out a new therapy to
improve the prognosis of PAAD patients.

With a huge success in preventing the COVID-19 pandemic, messenger RNA (mRNA)
vaccines are attracting widespread interests in both cancers and infectious disease fields [8,9].
After vaccination, mRNA vaccines will express tumor antigens, which will be recog-
nized and taken up by antigen-presenting cells (APCs), facilitating APC activation and
innate/adaptive immune stimulation [10]. Based on the antigen form, cancer vaccines
can be divided into four types: peptide-based vaccines, nucleic acid-based vaccines, tu-
mor/immune cell-based vaccines and viral vector-based vaccines [11]. Nucleic acid-based
vaccines are thought to be a relatively more promising platform, allowing simultaneous
delivery of multiple tumor antigens and encoding full-length tumor antigens, and they
thus are more likely to stimulate a broader adaptive immune response [10,12]. Unlike DNA
vaccines integrating into the tumor cell genome and causing insertional mutations, mRNA
vaccines have potent translation efficiency and are non-integrating and therefore pose
no genetic threats [10]. Although there are no Food and Drug Administration-approved
mRNA vaccines for tumors nowadays, some successful attempts of cancer vaccines, ei-
ther as monotherapy or in combination with ICIs, have been applied in various solid
tumors [13,14]. In stage III/IV melanoma patients, an mRNA vaccine alone or combined
with ICIs induced a powerful immune response, resulting in better prognosis of extended
disease-free survival [15,16]. Recently, a preliminary phase 1 trial confirmed that an indi-
vidualized mRNA vaccine, autogene cevumeran, in combination with atezolizumab and
mFOLFIRINOX induces substantial T cell activity in surgically resected PAAD patients that
correlates with delayed recurrence [17]. Despite substantial progress, several challenges
considering the immunogenicity and effectiveness of mRNA vaccines remain, exerting
influence on our clinical practices. Thus, it is of vital importance to identify individual
tumor-specific neoantigens.

Pyroptosis, a kind of inflammatory type of non-apoptotic regulated cell death, is
charactered by cell swelling, lysis, and the release of several proinflammatory factors such
as IL- 1β, IL-18, and HMGB1 [18]. Along with the increase of these proinflammatory
factors, many immunostimulatory and tumor suppressor genes are upregulated, whereas
various immunosuppressive and tumor-promoting genes are downregulated [19]. There
is a positive feedback loop between pyroptosis and immune cells, that is, tumor cells
can release danger signals that recruit antitumor immune cells through pyroptosis while
immune cells can induce pyroptosis in tumor cells [19,20]. An immunologically cold tumor
is considered to be naturally refractory to ICIs. However, immunologically cold tumors
were efficiently killed by adding pyroptosis inducers to ICIs while being ineffectively
killed with pyroptosis inducers alone, emphasizing the importance of ICIs with pyroptosis
inducers for the treatment of immunologically cold tumors [19]. Classically, PAAD exhibits
an immunologically cold tumor microenvironment. In order to improve the efficacy of
immunotherapy and thus further extend the life expectancy of PAAD patients, we explored
pyroptosis-related genes as novel PAAD antigens for developing mRNA vaccines, defined
3 pyroptosis subtypes, and mapped the pyroptosis landscape of PAAD to select potentially
suitable patients for vaccination with the help of data from The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium (ICGC).

2. Materials and Methods
2.1. Data Collection and Preprocessing

The PAAD data set, Genomic Data Commons (GDC) TCGA PAAD (n = 182) were
downloaded from the University of California Santa Cruz (UCSC) Xena database (https://
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xena.ucsc.edu/) (accessed on 15 July 2023). The data type was selected as FPKM, and
the “Primary solid tumor” (01A) was extracted and converted to the TPM format. The
data of “Masked Somatic Mutation” were selected as the somatic mutation data of PAAD
patients. The VarScan software (version 2) was used for data preprocessing. The R package
‘maftools’ was used for the visualization of somatic mutation data of PAAD patients.
Meanwhile, the clinical data, including age, tumor node metastasis (TNM) stage, survival
status, and survival time were achieved after eliminating patients lacking clinical data,
leaving 222 patients with survival information and 176 patients with clinical data. The
gene expression data from Homo sapiens and clinical data (including survival status and
time) of another PAAD data set, PACA-CA, were downloaded from the ICGC database
(https://dcc.icgc.org/) (accessed on 15 July 2023). After excluding patients without clinical
and survival data, a total of 122 tumor samples were incorporated into this study.

In addition, the pyroptosis-related genes with scores greater than 0.15 were extracted
from GeneCards (https://www.genecards.org/) (accessed on 15 July 2023), finally reaching
403 pyroptosis-related genes (Table S1). The genes of immune cell death (ICD) and immune
checkpoint (ICP) were obtained from the previous literature (Tables S2 and S3) [21,22]. A
detailed flow chart is shown in Figure S1.

2.2. cBioPortal Analysis and GEPIA Analysis

The cBio Cancer Genomics Portal (cBioPortal, http://www.cbioportal.org) (accessed
on 15 July 2023) [23] was used to integrate RNA-seq raw data from databases such as TCGA,
compare genetic changes in PAAD, and extract microsatellite instability (MSI) and tumor
mutation burden (TMB) data of TCGA-PAAD patients. The Gene Expression Profiling
Interactive Analysis (GEPIA, http://gepia2.cancer-pku.cn) (accessed on 15 July 2023) [24]
was used to integrate differential gene expressions, which were identified by analysis of
variance (ANOVA) with |log2FC| values > 1 and q values < 0.01. The Kaplan–Meier
curves were used to evaluate overall survival (OS) and progression-free survival (PFS),
with the median as the cutoff value and log-rank tests for comparison. p-values < 0.05 were
considered to be statistically significant.

2.3. Tumor Antigens and Immune Cells Infiltration

The analysis modules such as gene expressions, somatic mutations, clinical outcomes,
and somatic copy number changes were analyzed and the relationships between tumor
immune infiltration cell (TIIC) abundance and potential tumor antigens were visualized
through Tumor Immune Estimation Resource (TIMER, https://cistrome.shinyapps.io/
timer/) (accessed on 15 July 2023) [25]. The Spearman correlation analysis was used, and
p-values < 0.05 were considered to be statistically significant.

Moreover, the gene expression data of the infiltration of immune cells and other
stromal cells were evaluated by using the R package ‘MCPCounter’ [26], which provided
the abundance estimates for eight immune cells, namely T cells, CD8+ T cells, natural killer
(NK) cells, B lymphocytes, monocytic lineage, dendritic cells, neutrophils, and cytotoxic
lymphocytes as well as two non-immune stromal cells, namely fibroblasts and endothelial
cells. The Spearman correlation analysis based on the abundance estimates by R package
‘MCPCounter’ and the expressions of antigen genes was performed, and p-values < 0.05
were considered to be statistically significant.

2.4. Discovery and Validation of Pyroptosis Subtypes

The R package ‘ConsensusClusterPlus’ [27] was performed on cluster pyroptosis-
related genes and used to construct a consistent matrix and identify the corresponding
pyroptosis subtypes and gene modules on the basis of gene expression profiles. Partitioning
was performed using the median algorithm of “1-Pearson correlation” distance metrics,
with 1000 repetitions and resampling 80% of patients in the queue each time. The cluster
sets ranged from 2 to 9, and the optimal partition was defined by evaluating the consensus
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matrixes and the consensus cumulative distribution functions. The pyroptosis subtypes
were then validated in an independent PACA-CA cohort with the same settings.

2.5. Prognostic Evaluation of the Pyroptosis Subtypes

The log-rank test was used to evaluate the prognostic role of different pyroptosis sub-
types. ANOVA was performed to determine the correlation between pyroptosis subtypes
and various pyroptosis-related molecular and cellular features. The chi-square test was
used to screen for the most frequent genetic mutations. Single-sample Gene Set Enrichment
Analysis (ssGSEA) was performed to calculate the immune enrichment scores for each
sample through the R package ‘GSVA’ [28].

2.6. Weighted Gene Co-Expression Network Analysis (WGCNA)

The modules of pyroptosis-related genes were screened using the R package
‘WGCNA’ [29]. The soft threshold was calculated through ‘pickSoftThreshold’ functions,
with 4 calculated as the best soft threshold. Scale-free networks were established based
on the soft threshold, followed by the construction of topological matrixes, hierarchical
clustering, and eigengene calculations. The inter-module correlations were established in
the light of the eigengene module, and then hierarchical clustering was performed. GSEA
was performed with the help of the Metascape database (www.metascape.org/) (accessed
on 15 July 2023) [30], including the Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) [31,32]. Adjusted p-values < 0.05 were considered to be statistically
significant in the KEGG and GO analysis.

2.7. Construction of Pyroptosis Landscape of Tumor Microenvironment

A graph learning-based dimensionality reduction analysis was used, exploiting the
dimensionality reduction capabilities of the Monocle package, which is an R package with
a Gaussian distribution, in order to visualize the distribution of pyroptosis subtypes in indi-
vidual patients. The maximum number of components was set to 2, and the discriminative
dimensionality reduction method of ‘DDRtree’ was used. Finally, the pyroptosis landscape
was visualized by using functional diagram cell trajectory of pyroptosis subtypes coded
by colors.

2.8. Statistical Analysis

Statistical analyses were conducted utilizing R software (version 4.1.1). Differences be-
tween two groups were compared with the Wilcoxon rank sum test. Difference comparisons
among more than two groups were evaluated using the Kruskal–Wallis test. Correlation
analysis was performed using the Spearman correlation analysis. p-values < 0.05 were
considered to be statistically significant.

3. Results
3.1. Identification of Potential Pyroptosis-Related Antigens in PAAD

To identify potential PAAD mRNA vaccines, we first screened for abnormally ex-
pressed genes and detected 9221 differential genes, of which 1532 were overexpressed
genes that potentially encoded tumor-related antigens (Figure 1A). A total of 10,101 mu-
tant genes were then screened by the analyses of the mutation fragments and counts of
genes that potentially encoded tumor-specific antigens in individual samples (Figure 1B,C).
Mutation analysis confirmed TP53 as the most common mutation gene in terms of both
mutation fragments and counts (Figure 1D,E). In addition, regardless of mutation quantity
and frequency, we observed obvious mutations such as TP53, CDKN2A, TTN, CKDN2A-DT,
LRP1B, etc., which might be of vital importance to the tumorigenesis and development of
PAAD. In the combination of the results of mutation genes and overexpressed genes, we
found 726 frequently mutated and overexpressed tumor-related genes that might serve as
potential tumor antigens.

www.metascape.org/
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Figure 1. Identification of potential tumor antigens in PAAD. (A) The chromosomal distribution of
upregulated genes in PAAD to identify potential tumor-associated antigens. (B–E) Identification
of potential tumor-specific antigens in PAAD. Samples overlapping in (B) altered genome fractions
and (C) mutation counts. Genes with the highest frequency in (D) altered genome fractions and
(E) mutation counts.
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Subsequently, we focused on the possibility of pyroptosis-related genes as mRNA
antigens. We finally identified 54 pyroptosis-related genes from the 726 potential tumor
antigens above, of which 5 genes were closely associated with the OS while 4 genes
were associated with PFS in PAAD after performing Kaplan–Meier curves (Figure 2A).
In addition, we found that patients with high expressions of ANO6, PAK2, CHMP2B,
and RAB5A genes had worse OS and PFS than those with low expressions (Figure 2B–I).
Considering the interaction between tumor antigens and APCs, we further evaluated
the correlation of these potential antigens with APCs by combining MCPCounter with
the TIMER database. MCPCounter showed that ANO6, PAK2, CHMP2B, and RAB5A
genes were positively correlated with various immune cells and stromal cells (Figure 3A),
which were further confirmed by the TIMER database, especially various APCs (B cells,
macrophages, and dendritic cells) (Figure 3B–E). The above results indicated that the
identified tumor antigens might be directly recognized, processed, and presented by APCs
to T cells, thus triggering immune responses. Meanwhile, these genes might induce
pyroptosis in tumor cells, with the ability of further tumor killing.

Biomedicines 2024, 12, x FOR PEER REVIEW 6 of 19 
 

RAB5A genes had worse OS and PFS than those with low expressions (Figure 2B–I). Con-
sidering the interaction between tumor antigens and APCs, we further evaluated the cor-
relation of these potential antigens with APCs by combining MCPCounter with the 
TIMER database. MCPCounter showed that ANO6, PAK2, CHMP2B, and RAB5A genes 
were positively correlated with various immune cells and stromal cells (Figure 3A), which 
were further confirmed by the TIMER database, especially various APCs (B cells, macro-
phages, and dendritic cells) (Figure 3B–E). The above results indicated that the identified 
tumor antigens might be directly recognized, processed, and presented by APCs to T cells, 
thus triggering immune responses. Meanwhile, these genes might induce pyroptosis in 
tumor cells, with the ability of further tumor killing. 

 
Figure 2. Identification of tumor antigens associated with the prognosis of PAAD patients. (A) 
Screening process of potential tumor antigens. (B–I) Kaplan–Meier curves of OS and PFS in PAAD 
patients classified by the gene expression levels of ANO6 (B,C), PAK2 (D,E), CHMP2B (F,G), and 
RAB5A (H,I). 

Figure 2. Identification of tumor antigens associated with the prognosis of PAAD patients. (A) Screen-
ing process of potential tumor antigens. (B–I) Kaplan–Meier curves of OS and PFS in PAAD patients
classified by the gene expression levels of ANO6 (B,C), PAK2 (D,E), CHMP2B (F,G), and RAB5A (H,I).

3.2. Identification of Potential Pyroptosis Subtypes in PAAD

Recently, pyroptosis has been proven to play a crucial role in killing tumors and is
closely associated with tumor immunity. Pyroptosis typing can help to reflect the pyroptosis
status of tumors and their microenvironment, thus aiding with the identification of PAAD
patients suitable for vaccination. Therefore, the expression profiles of 403 pyroptosis-related
genes in TCGA-PAAD were analyzed to construct consensus clustering. On the basis of
cumulative distribution functions and functional delta area, we selected k as 3, where
pyroptosis-related genes were stably clustered (Figure 4A,B). The principal component
analysis (PCA) showed that three pyroptosis subtypes, which were defined as PS1, PS2, and
PS3, had a clear degree of differentiation (Figure 4C). Prognosis analysis manifested that
PS3 had better OS than PS1 and PS2 in the TCGA-PAAD cohort (Figure 4D). Consistent with
the TCGA-PAAD cohort, the PACA-CA cohort could also be divided into the pyroptosis
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subtypes of PS1, PS2, and PS3 (Figure 4E). The three pyroptosis subtypes in the PACA-CA
cohort also showed significant prognostic differences, with PS3 having a better prognosis,
while PS1 and PS2 had a poorer prognosis (Figure 4F). However, their differences were
relatively small compared to those of the TCGA-PAAD cohort (Figure 4F). As for the
different TNM stages, three pyroptosis subtypes showed irregular distribution, with the
overall pattern of higher proportions of early-stage patients in the PS3 subtype while there
were higher proportions of median- and late-stage patients in the PS1 and PS2 subtypes
(Figure 4G,H). Overall, pyroptosis typing could be used to predict the prognosis of PAAD
patients, which had been validated by different cohorts.
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Figure 3. Identification of tumor antigens correlated to APCs. (A) The correlation analysis of immune
and stromal cells with ANO6, PAK2, CHMP2B, RAB5A calculated by MCPcounter. (B) Correlation of
the expression levels of ANO6 (B), PAK2 (C), CHMP2B (D), RAB5A (E) with the infiltration of B cells,
macrophages, dendritic cells, and the purity of the tumor.
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Figure 4. Identification of potential pyroptosis subtypes in PAAD. (A) Cumulative distribution func-
tions and functional delta area of pyroptosis-related genes in the TCGA-PAAD cohort. (B) Clustering
heatmap of TCGA-PAAD samples (k = 3). (C) Principal component analysis of pyroptosis subtypes
in the TCGA-PAAD cohort. (D) Kaplan–Meier curves of OS in different pyroptosis subtypes in the
TCGA-PAAD cohort. (E) Clustering heatmap of PACA-CA samples (k = 3). (F) Kaplan–Meier curves
of OS in different pyroptosis subtypes in the PACA-CA cohort. (G) Proportional distribution of PAAD
stages in different pyroptosis subtypes in the TCGA-PAAD cohort. (H) Proportional distribution of
PAAD stages in different pyroptosis subtypes in the PACA-CA cohort.

3.3. The Relationship between Pyroptosis Subtypes and Mutation Status

For the fact that higher TMB and somatic cell mutation rates correlated with stronger
anti-tumor immunity, we calculated the TMB, MSI, and mutation counts for each patient
using the mutation data of the TCGA-PAAD cohort and compared all the pyroptosis
subtypes. Mutation counts and TMB were the lowest in the PS3 subtype while being
relatively higher in the PS1 and PS2 subtypes (Figure 5A,B). However, there were no
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significant differences in MSI between the three pyroptosis subtypes, with the PS3 subtype
being slightly higher than the PS1 and PS2 subtypes (Figure 5C). In addition, 30 genes,
including TP53, KRAS, CDKN2A, etc., also exhibited different mutation statuses among
different subtypes (Figure 5D). These results showed that TMB and mutation count might
serve as potential indicators for using mRNA vaccines, and different pyroptosis subtypes
had different mutation characteristics.
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3.4. The Relationship between Pyroptosis Subtypes and Immunomodulator

Previous studies have shown that ICP regulators, such as PD-L1 and TIM3, and ICD
regulators, such as CALR and HMGB1, play critical roles in regulating host anti-tumor
immunity and thus affect the efficacy of mRNA vaccines. While pyroptosis was closely
associated with immune regulation, we evaluated the different expressions of ICP and ICD
regulators in the three pyroptosis subtypes. We detected 25 ICD genes and 46 ICP genes
both in the TCGA-PAAD cohort and PACA-CA cohort. We found that the expressions
of ICD genes almost had the same trend in different subtypes, such as ANXA1, CALR,
CXCL10, EIF2AK2, HMGB1, MET, PANX1, etc. (Figure 6A,B). In the TCGA-PAAD cohort,
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we observed more different expressions of ICP genes, which might be related to the larger
sample numbers in this cohort. The expression trends of ICP genes were similar in the
two cohorts, such as CD274, CD276, CD44, etc., with the highest expressions in the PS1
subtype, followed by PS2, and the lowest expressions in the PS3 subtype (Figure 6C,D). In
conclusion, pyroptosis typing could reflect the expression levels of ICD and ICP regulators
and could be used as a biomarker for mRNA vaccines.
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Figure 6. Relationship between pyroptosis subtypes and immunomodulator. (A,B) Comparison of
the expressions of ICD regulators in the TCGA-PAAD cohort (A) and PACA-CA cohort (B) in three
pyroptosis subtypes. (C,D) Comparison of the expressions of ICP regulators in the TCGA-PAAD
cohort (C) and PACA-CA cohort (D) in three pyroptosis subtypes. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.5. The Molecular and Cellular Features of Pyroptosis Subtypes

Due to the fact that the response to mRNA vaccines depends on the immune status of
the tumor, we scored the previously reported 28 signature genes in the TCGA-PAAD cohort
and PACA-CA cohort through ssGSEA to further describe the immune cell compositions in
the three pyroptosis subtypes. The immune cell compositions varied greatly in the three
pyroptosis subtypes (Figure 7A,B). For instance, in the TCGA-PAAD cohort, the scores of
activated CD4 T cells in PS1 were obviously higher than those in PS2 and PS3, whereas
several immune cell scores, such as activated CD8 T cells, monocytes, etc., were higher in
PS2 than in PS1 and PS3, which were consistent with the immune cell infiltration trends
observed in the PACA-CA cohort (Figure S2A,B). Kaplan–Meier curves showed that only
central memory CD8 T cells, NK cells, and type 2 helper T (Th2) cells of 22 immune cells had
prognostic differences, with higher cell scores indicating worse prognosis (Figure 7C–E).
Significant differences were found in the gene expressions of central memory CD8 T
cells among three pyroptosis subtypes in the TCGA-PAAD cohort while no differences
were observed in the PACA-CA cohort (Figure 7F). Gene expressions of NK cells showed
significant differences among three pyroptosis subtypes in both cohorts, with the highest
expressions in PS2, followed by PS1 and PS3 (Figure 7G). Gene expressions of Th2 cells
also exhibited significant differences in both cohorts, with the highest expressions in PS1,
followed by PS2 and PS3 (Figure 7H). Based on the ESTIAMTE algorithm calculation of
the immune scores, we observed that PS3 subtype had lower overall immune and stromal
cell infiltrations and higher tumor purity compared with PS1 and PS2 subtypes in the
TCGA-PAAD cohort (Figure S3A). However, the differences were not obvious among
three subtypes in the PACA-CA cohort, with higher immune scores only found in the PS2
subtype than the PS3 subtype (Figure S3B). In summary, the PS2 and PS1 subtypes might
represent immunologically “hot” tumors while PS3 subtype was an immunologically “cold”
tumor. These results reflected the immune status of different PAAD pyroptosis subtypes,
helping to identify appropriate PAAD patients for mRNA vaccination, which might induce
immune infiltration in immunologically “cold” PS3 subtype PAAD patients.

3.6. Pyroptosis Landscape of PAAD

The pyroptosis landscape was constructed using the pyroptosis-related gene expres-
sion profiles of individual PAAD patients (Figure 8A). The x-axis (PCA1) was associated
with various immune cells, of which the activated B cells, eosinophils, macrophages, mast
cells, T follicular helper cells, etc. had the highest positive correlation, while the y-axis
(PCA2) had a positive correlation with almost all immune cells (Figure 8B). Meanwhile, in a
single subtype, we also observed some intra-cluster heterogeneity. All of the samples were
further divided into six states (1, 2, 3, 5, 6, 7) according to the sample trajectory (Figure 8C).
On the basis of their positions, we chose states that were located at the endpoints for
further analysis, namely state 1, 3, 5, 6, and 7, and their proportions in the three pyroptosis
subtypes were displayed in Figure 8D. Kaplan–Meier curves showed significant differences
in OS between 5 states, of which state 6 had the best prognosis, whereas the survival curves
of state 1, 3, 5, and 7 were relatively concentrated (Figure 8E). Subsequently, we compared
the differences of 28 immune cells in these states and found that immune cell scores varied
greatly between different states (Figure 8F). On the whole, the pyroptosis landscape based
on pyroptosis subtypes did not have the ability to accurately identify the pyroptosis status
and predict the prognosis of every PAAD patient. More samples may be needed for further
confirmation and typing verification.
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Figure 7. Molecular and cellular characteristics of pyroptosis subtypes. (A,B) Heatmap of enrichment
scores of 28 immune cells in the TCGA-PAAD (A) cohort and PACA-CA (B) cohort among different
pyroptosis subtypes in PAAD. (C–E) Kaplan–Meier curves of OS in the TCGA-PAAD cohort classified
by the immune scores of central memory CD8 T cells (C), NK cells (D), and Th2 cells (E). (F–H) Differ-
ences in enrichment scores of central memory CD8 T cells (F), NK cells (G), and Th2 cells (H) among
three pyroptosis subtypes in the TCGA-PAAD cohort and PACA-CA cohort. * p < 0.05, *** p < 0.001.

3.7. Identification of Pyroptosis Gene Co-Expression Modules and Hub Genes in PAAD

The identification of hub pyroptosis-related genes can help oncologists determine
whether a patient is suitable for mRNA vaccine. To identify these hub genes, we constructed
a WGCNA of pyroptosis-related genes, with a soft threshold of 4 for the scale-free network
(Figure 9A). The gene matrix was then converted to an adjacency matrix. Each gene module
was set to have at least 20 genes. After calculating the eigengenes of each module and
integrating similar modules, we finally obtained 11 modules, of which the grey module
represented unassigned genes (Figure 9B,C). Different modules showed different module
scores, with the PS3 subtype module having the lowest scores overall (Figure 9D). Only
the eigengene in the turquoise module was found to be an independent prognostic factor
after using multiple Cox regression and the elimination of collinearity factors (Figure 9E).
Further Kaplan–Meier curves showed that patients with lower turquoise module scores
had better OS than those with higher scores (Figure 9F). Moreover, genes in the turquoise
module, including CBL, LYZ, ISG20L2, PPARA, IGF1R, EIF2AK2, BMP8A, CMTM3, LRP1,
etc., were significantly enriched in immune-related functions and pathways such as the
Cytokine Signaling in Immune System, Positive Regulation of Protein Phosphorylation,
and Cytokine–Cytokine Receptor Interaction pathways (Figure S4A,B). Therefore, the hub
genes can serve as biological markers for predicting the prognosis of PAAD patients and
finding suitable patients for mRNA vaccines.
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Figure 8. Pyroptosis landscape of PAAD. (A). Pyroptosis landscape of PAAD. Each dot in the
landscape represents a patient and three colors correlated to three pyroptosis subtypes, representing
the overall characteristics of the pyroptosis-related microenvironment. (B) Correlation between
PCA1/2 and immune cells. (C) Reclassification of PAAD patients according to their locations.
Different colors represent different states. (D) Proportional distribution of three pyroptosis subtypes
in different states. (E) Kaplan–Meier curves of OS in different states. (F) Comparison of gene
expressions of different immune cells in five different states. * p < 0.05, ** p < 0.01, *** p < 0.001.
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4. Discussion

PAAD, which is the sixth leading cause of cancer-associated death in China, remains a
dramatic clinical challenge for pancreatic doctors, with a persistently increasing tendency
towards morbidity and mortality [33]. PAAD is known to be naturally refractory to ICIs,
which may be partially explained by the low rate of mutations for generating neoanti-
gens [34]. However, some researches showed that PAAD indeed had more neoantigens
than we had previously expected [35,36]. As immunogenic neoantigens have the capacity
to activate T cells to induce immune responses, treatments with neoantigens may stimulate
neoantigen-specific T cells and improve the prognosis of PAAD patients [17]. Pyroptosis is
a kind of non-apoptotic regulated cell death, which is believed to have broad crosstalk with
anticancer immunity [18]. For instance, a variety of chemotherapy drugs such as doxoru-
bicin and epirubicin could induce pyroptosis in breast cancer by promoting the expression
of nuclear PD-L1 and GSDMC and facilitating the activation of caspase-8 [37]; thus, the
induction of non-apoptotic regulated cell death, such as pyroptosis, can be considered as
a new anticancer therapy since cancers are born with resistance to apoptosis. Therefore,
in order to improve the prognosis of PAAD patients, we established potential targets for
mRNA vaccines and searched for PAAD patients that may benefit from those vaccines.

Through the overlap of overexpressed, frequently mutant, and pyroptosis-related
genes, we obtained 54 genes, of which 4 genes were closely associated with the OS and PFS
in PAAD, namely ANO6, PAK2, CHMP2B, and RAB5A. These four genes had exhibited a
favorable correlation with APCs. This notable association positions them as compelling
candidates for mRNA vaccines, with the potential to augment immune cell infiltration and
instigate heightened tumor cell pyroptosis. Some of these candidates have been confirmed
to play critical roles in the development and progression of PAAD. For example, RAB5A
was overexpressed in PAAD and could promote aggressive biological behavior through
regulation of the Wnt/β-catenin signaling pathway [38]. Moreover, RAB5A could drive
PAAD subtype-dependent modulation of endosome trafficking [39] and promote the for-
mation of filopodia via the activation of cdc42 and β1-integrin [40]. However, the functions
of the other genes, ANO6, PAK2, and CHMP2B, have not undergone investigation as of
present. This signifies the need for further experimental endeavors aimed at delineating
the precise roles played by these three genes in the context of PAAD. Such endeavors are
crucial in establishing a robust theoretical foundation to underpin the development of
mRNA vaccines.

Given the pervasive nature of tumor heterogeneity, the efficacy of mRNA vaccines is
anticipated to be limited to a subset of patients. To discern the most suitable candidates for
this therapeutic approach, a stratification strategy was employed among PAAD patients.
This categorization involved segregating patients into three distinct pyroptosis subtypes
(PS1, PS2, PS3), which was contingent upon the distinctive expression profiles exhibited by
pyroptosis-related genes. Kaplan–Meier curves manifested that PAAD patients classified as
PS3 had better OS than PS1 and PS2 both in the TCGA-PAAD and PACA-CA cohorts, which
might be related to the outcome of low mutation count and TMB in the PS3 subtype. These
results indicated that pyroptosis typing could be used for the prediction of the prognosis of
PAAD patients. Apart from the prediction of prognosis, pyroptosis typing is also indicative
of the therapeutic effect of mRNA vaccines. With the least expression of various ICD and
ICP genes and the least overall infiltrations of immune and stromal cells, the PS3 subtype
typically exhibited an immunologically “cold” tumor and was less likely to respond to ICIs.
Currently, it is a great challenge for an immunologically “cold” tumor to benefit from ICIs.
However, mRNA vaccines, as a promising method of cancer immunotherapy, may have
the capacity of converting cultivated or barren land on steep slopes into grassland and
forests, namely the reinvigoration of the immune system and stimulation of more immune
infiltration to execute the antitumor effects. In some preclinical studies, mRNA vaccines
were used in immunologically “cold” tumors, and promising outcomes were achieved
in some solid tumors, such as pancreatic cancer, renal clear cell carcinoma [41], prostate
cancer [42], etc. On the contrary, the PS1 and PS2 subtypes might represent immunologically
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“hot” tumors with more immune cell infiltrations and higher immune scores. Meanwhile,
several important ICP genes, such as CD274, CTLA4, CD276, etc. were highly expressed in
the PS1 and PS2 subtypes, indicating an immunosuppressive tumor microenvironment in
these patients, and they were more likely to be benefit from ICIs. The combination of mRNA
vaccines with ICIs might be a theoretically successful strategy for these patients. Higher
immune cell scores of central memory CD8 T cells, NK cells, and Th2 cells correlating
with worse prognosis further confirmed the immunosuppressive tumor microenvironment
in PAAD. Collectively, the pyroptosis typing of PAAD in this study not only has shown
prognostic relevance but also could serve as an indicator to choose suitable patients for
mRNA vaccines or combination therapies. However, the complex pyroptosis landscape of
PAAD failed to accurately identify the pyroptosis status and predict the prognosis of every
PAAD patient, which was an obstacle to the success of personalized mRNA vaccines. More
samples were needed for further confirmation and typing verification. Furthermore, CBL,
LYZ, ISG20L2, PPARA, IGF1R, EIF2AK2, BMP8A, CMTM3, LRP1, etc. were determined as
hub genes clustered in the turquoise module, and their upregulation correlated with worse
prognosis, suggesting that PAAD patients with high expression of these hub genes were
not suitable for this kind of mRNA vaccine. Notably, hub pyroptosis-related genes were
significantly enriched in immune-associated functions and pathways, including Cytokine
Signaling in Immune System, Cytokine–Cytokine Receptor Interaction pathways, etc.,
further emphasizing the broad interaction between pyroptosis and immune systems.

Our findings have provided a novel treatment option for PAAD, but there are some
limitations. For example, although we use data from two databases, in vitro validation of
mRNA vaccines is needed to strengthen our study. Moreover, more samples are needed to
confirm and verify our typing system.

5. Conclusions

In summary, we identified four pyroptosis-related genes as potential PAAD antigens
for mRNA vaccine development, namely ANO6, PAK2, CHMP2B, and RAB5A. The mRNA
vaccine may be beneficial for patients of PS3 and for patients with low expressions of
hub genes. Our research provides a theoretical foundation for the development of mRNA
vaccines against PAAD and screens for the optimal candidates for vaccination.
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