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Abstract: Psoriatic arthritis (PsA) is a chronic inflammatory arthritis primarily affecting peripheral
and axial joints. The osteolytic effect in the damaged joint is mediated by osteoclast activation. We
aimed to investigate differential gene expression in peripheral CD14+ monocytes between patients
with psoriatic arthritis (n = 15) and healthy controls (HCs; n = 15). Circulating CD14+ monocytes
were isolated from peripheral blood mononuclear cells using CD14+ magnetic beads. Cell apoptosis
was measured via Annexin V using flow cytometry. The gene expression profiling was analyzed via
microarray (available in the NCBI GEO database; accession number GSE261765), and the candidate
genes were validated using PCR. The results showed a higher number of peripheral CD14+ monocytes
in patients with PsA than in the HCs. By analyzing the microarray data, identifying the differentially
expressed genes, and conducting pathway enrichment analysis, we found that the apoptosis signaling
pathway in CD14+ cells was significantly impaired in patients with PsA compared to the HCs. Among
the candidate genes in the apoptotic signaling pathway, the relative expression level of cathepsin L
was confirmed to be significantly lower in the PsAs than in the HCs. We concluded that the numbers
of peripheral CD14+ monocytes increased, and their apoptosis activity was impaired in patients with
PsA, which could lead to enhanced macrophage maturation and osteoclast activation. The resistance
of apoptotic death in peripheral CD14+ monocytes may contribute to active joint inflammation
in PsA.

Keywords: CD14+ monocytes; apoptosis; cathepsin L; osteoclast; psoriatic arthritis

1. Introduction

Psoriatic arthritis (PsA) is a chronic inflammatory musculoskeletal disease that re-
sults in peripheral arthritis, axial spondylarthritis, enthesitis, dactylitis, and functional
disabilities [1]. Approximately 30% of patients with psoriasis suffer from PsA [2]. The
progression of PsA significantly decreases patients’ functional status and increases their
risk of death [3].

The biomechanical strain, cutaneous inflammation of psoriasis, and metabolic and
microbial factors have been reported to recruit abnormal immune cells into joint cavities
in PsA. Among these risk factors, biomechanical stress on the enthesis is an important
initiator of PsA [4]. The microdamage in the enthesis is capable of recruiting a large number
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of inflammatory cells and then activating resident immunocytes during high mechani-
cal strain [5,6]. The pathological findings of PsA in the enthesis are composed mainly
of macrophage, lymphocyte, and neutrophil infiltration. Macrophages are essential in
triggering enthesitis [7]. Interleukin (IL)-23, originating from monocytes and macrophages,
could induce the activation of IL-23R+Th17 lymphocytes [8,9].

The erosion of bones in PsA arises from the activity of osteoclasts [10] that are derived
from precursors of the monocyte/macrophage lineage [11]. The macrophage colony-
stimulating factor (M-CSF) promotes the development of osteoclast precursors (OCPs) from
circulating CD14+ monocytes, and it also induces the expression of receptor activator of
nuclear factor-κB (RANK) on the cell surface. The receptor activator of the NF-κB ligand
(RANKL) further differentiates the OCPs into osteoclasts [12]. OCP expansion has been
observed in the bone marrow of patients with PsA [3]. The presence of bone marrow edema
may serve as a predictive factor for the development of erosion within a year in various
inflammatory joint diseases, including PsA and reactive arthritis [13]. Magnetic resonance
imaging (MRI) signals may indicate altered bone remodeling or enhancement stemming
from an enriched vascular supply [14]. Our previous study showed that monocytes from
patients with PsA had preferential osteoclastogenesis and osteolytic effects [15]. Elevated
levels of tumor necrosis factor alpha (TNF-α), a well-known proinflammatory cytokine,
have been identified in the skin and joints of individuals with psoriasis [16]. TNF-α
increases the production of monocyte chemotactic protein-1 (MCP-1) from the monocyte-
derived osteoclasts of patients with PsA and recruits additional OCPs into joint tissues [17].

Apoptosis, the predominant form of death in immunological cells, serves as a central
regulatory feature of the immune system [18]. It is a process of programmed cell death
and involves two primary pathways: the intrinsic and the extrinsic pathways [19]. Cas-
pases are involved in the mitochondrial dysfunction of the intrinsic pathway, and TNF-α/
TNF receptor 1 (TNFR1) initiates cell shrinkage and DNA fragmentation in the extrinsic
pathway [19,20]. Previous studies have shown decreased spontaneous in vitro apoptosis
of peripheral monocytes in patients with rheumatoid arthritis (RA) and systemic juvenile
idiopathic arthritis (JIA) [21,22].

Monocytes are the precursors of macrophages and osteoclasts, two key cells in the
pathogenesis of PsA [23]. Dysregulated apoptosis in inflammatory cells has been reported
in several autoimmune diseases [24,25]. To date, it remains unknown how apoptotic
death in peripheral CD14+ monocytes controls inflammation in patients with PsA. We will
investigate the difference in gene expression in peripheral CD14+ monocytes from patients
with PsA and healthy controls (HCs).

2. Materials and Methods
2.1. Subject Enrollment

This study was approved by the Institutional Review Board of Chang Gung Memorial
Hospital (IRB-201802336A3). All individuals in the PsA group met the classification for
psoriatic arthritis (CASPAR) criteria for diagnosis, confirmed by both dermatologists and
rheumatologists at the Department of Dermatology of Kaohsiung Chang Gung Memorial
Hospital. The HCs were age- and sex-matched patients who received excisions of cuta-
neous benign neoplasms at our department. To ensure the absence of psoriatic lesions or
inflammatory joint pain, the HCs underwent thorough examinations. Patients with active
infections were excluded. All of the patients provided written informed consent.

2.2. Monocyte Enrichment

A standard peripheral venous blood sample was obtained from each patient, and
30 mL of whole blood was processed to eliminate the red blood cells, yielding buffy coats
enriched with peripheral blood mononuclear cells (PBMCs). CD14+ monocytes were then
isolated from the PBMCs using CD14+ MicroBeads (Miltenyi Biotec, Bergisch Gladbach,
Germany), and the purity of the CD14+ cells post-selection was approximately 96.4%,
as determined by flow cytometry analysis based on a previous study [26]. For the eight
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patients with severe PsA, peripheral blood was acquired at baseline and after 28 weeks of
standard biological treatment (adalimumab, 40 mg by subcutaneous injection every other
week, or ixekizumab, 160 mg by subcutaneous injection at week 0, followed by 80 mg
every 4 weeks). Six patients with PsA received adalimumab treatment for 7 months, and
the other two patients with PsA received ixekizumab treatment for 7 months. All of the
other patients and the healthy controls had one sample of blood collected and processed
for this study.

2.3. Gallium-67 Whole-Body Scans and Interpretation

Total body imaging was conducted 48 h after intravenous administration of 111 MBq
(3 mCi) of gallium-67 (67Ga) citrate. The imaging utilized a dual-headed variable-angle
gamma camera (Symbia T; Siemens Medical Solutions, Hoffman Estates, IL, USA) equipped
with a medium-energy collimator. For the acquisition, the three primary energy peaks of
67Ga, 93 keV, 184 keV, and 300 keV were selected. The whole-body scans were performed
at a rate of 8 cm/min, from head to toe.

In the visual assessment of the images, the result was deemed to be positive when the
focal radiotracer accumulation in joints exhibited higher intensity than the liver uptake.
Conversely, negative results were obtained when the tracer activity was confined to its
normal biodistribution patterns.

All imaging studies were independently reviewed and interpreted by two experi-
enced board-certified nuclear medicine physicians without knowledge of the patient’s
identity, clinical history, or the results of other studies. In instances of discrepant or am-
biguous interpretations, a third board-certified nuclear medicine specialist was consulted
to facilitate consensus.

2.4. Microarray Assay and Analysis

CD14+ monocytes from patients with PsA and HCs were lysed in Trizol reagent
(ThermoFisher Scientific, Waltham, MA, USA). Total RNA was extracted using Direct-zol™
RNA Kits (Zymo Research, Irvine, CA, USA) according to the manufacturer’s protocol.
The collected RNA samples were first subjected to quality control by measuring the RNA
integrity number (RIN) values with TapeStation 4200 (G2991BA, Agilent, Santa Clara, CA,
USA). The RNA samples with RIN ≥ 7 were subjected to further processing using the WT
PLUS reagent kit (902280, Thermo Fisher Scientific, Inc., Carlsbad, CA, USA), followed by
measuring the gene expression level using a Clariom D Human microarray chip (902927,
Thermo Fisher Scientific, Inc., Carlsbad, CA, USA). The generated raw CEL files were
analyzed using Transcription Analysis Console 4.0 (Thermo Fisher Scientific, Inc., Carlsbad,
CA, USA) to conduct ANOVA, identify the differentially expressed genes, and generate the
volcano plot. In addition, we also used Partek Genomics Suite 7.0 (Partek, St. Louis, MO,
USA) to conduct pathway enrichment analysis. The microarray raw data are available in
the NCBI GEO database, accession number GSE261765.

2.5. Real-Time qPCR Assay

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed on the
Roche LightCycler® 96 System (Roche Applied Science, Penzberg, Upper Bavaria, Germany)
using the Fast SYBR Green PCR Master Mix (Applied Biosystems; Thermo Fisher Scientific,
Inc., Carlsbad, CA, USA). The PCR program consisted of initial denaturation at 95 ◦C for
20 s, followed by 45 cycles of qRT-PCR at 95 ◦C for 3 s (denaturation) and 60 ◦C for 30 s
(annealing, extension, and reading fluorescence). The primer sequences for cathepsin L
(CTSL), inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB), and 18S are listed
in Supplementary Table S1.

2.6. Flow Cytometry Assay

For the evaluation of apoptotic cells, 3 × 105 CD14+ monocytes/well were cultured in
RPMI 1640 (Gibco, Karlsruhe, Germany) with FBS (10%, v/v; Invitrogen, Waltham, MA,
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USA) and 1% (v/v) penicillin/streptomycin solution (Gibco, Karlsruhe, Germany) in a
5% CO2 atmosphere at 37 ◦C. The cells were either stimulated with 100 ng/mL of TNF-α
(PeproTech, Rocky Hill, NJ, USA) or 4% dimethyl sulfoxide (DMSO) (Sigma, St. Louis, MO,
USA) for 24 h. The 4% DMSO induced obvious apoptosis, according to a previous study;
thus, it served as the positive control group [27]. The CD14+ monocytes were washed twice
with cold PBS with 1% FBS; then, we resuspended the cells in Annexin V Binding Buffer
(BioLegend, San Diego, CA, USA) at a concentration of 1 × 106 cells/mL. The cells were
stained with Annexin V-FITC (1:50, BioLegend, San Diego, CA, USA) for 20 min at room
temperature. After being washed with Annexin V Binding Buffer, the 7-AAD (Cayman,
Ann Arbor, MI, USA) was also stained and incubated for 10–15 min at room temperature.
The percentage of apoptotic cells was measured using flow cytometry. The apoptotic cells
were defined as Annexin V-positive and 7-amino actinomycin D (AAD)-negative [28].

2.7. Statistical Analysis

The age, sex, number of peripheral CD14+ monocytes, percentage of apoptotic cells,
and expression of CTSL and IKBKB were compared between the patients with PsA and
HCs using the Mann–Whitney U test and ANOVA after establishing that they followed a
normal distribution. All statistical analyses were performed with SPSS 29.0 (IBM, Armonk,
NY, USA). A p value less than 0.05 was considered statistically significant for all tests.

3. Results
3.1. Subject Information

Fifteen patients with PsA (male/female: 8/7, average age: 47.6 years old) and fifteen
HCs (male/female: 8/7, average age: 44.1 years old) were recruited (Table 1). Thirteen of
the fifteen patients with PsA had severe psoriasis (average PASI of 17.6), and all fifteen had
peripheral arthritis, including 46.7% with axial arthritis, 33.3% with dactylitis, and 66.7%
with enthesitis. The average disease duration of PsA was 8.9 years (Table 1).

Table 1. Demographic and clinical characteristics of patients with psoriatic arthritis (PsA) and
healthy controls.

PsA
(n= 15)

Healthy Control
(n= 15)

Age (years) 43.7 ± 14.5 44.9 ± 12.6
Female sex no. (%) 7 (46.7) 7 (46.7)
Psoriasis (years) 17.5 ± 9.7
Psoriatic arthritis (years) 8.9 ± 6.9
PASI 17.6 ± 9.3
Peripheral arthritis 15 (100)
Peripheral and axil arthritis 7 (46.7)
Dactylitis 5 (33.3)
Enthesitis 10 (66.7)
Tender joint count (of 68 joints) 16.9 ± 11.9
Swollen joint count (of 66 joints) 9.7 ± 6.9

PsA: psoriatic arthritis; PASI: Psoriasis Area and Severity Index.

3.2. Higher Level of Monocytes in Patients with PsA

To determine whether there was a higher number of peripheral CD14+ monocytes
in the patients with PsA (n = 15) than in the HCs (n = 15), peripheral CD14+ monocytes
were obtained and sorted using CD14+ magnetic beads. The results showed a significantly
higher level of CD14+ monocytes in the patients with PsA compared to the HCs (p < 0.001)
(Figure 1A).

We then determined whether the level of CD14+ monocytes returned to the baseline
level of the HCs after successful treatment. Eight of fifteen patients with PsA received
biologic treatment for more than 7 months. CD14 monocytes from these eight patients
achieved ACR20 after biologic treatment. The number of CD14 monocytes significantly
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decreased after biologic therapy (p = 0.01) (Figure 1B). This proved that the level of CD14+
monocytes (OCPs) from peripheral monocytes was significantly higher in patients with
PsA than in HCs and that the treatment of PsA restored them to a more normal level.
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Figure 1. The number of peripheral CD14+ monocytes is higher in patients with PsA than in healthy
controls (HCs), and it returned to the level of HCs after successful biologic treatment. (A) The CD14+
monocytes were analyzed from patients with PsA (n = 15) and HCs (n = 15). (B) To investigate the
change in the number of CD14+ monocytes in patients with PsA after successful biologic treatment,
the CD14+ monocytes were analyzed from eight patients with PsA before and 7 months after
successful biologic treatment. * denotes p value < 0.05 and *** denotes p value < 0.001 based on
Mann–Whitney U test.

3.3. Increased 67Ga Activity in the Joints of Patients with PsA

The patients with PsA could present with oligoarthritis or polyarthritis. A 67Ga scan
was used to detect the increased white cell infiltration. To evaluate the involvement of
joint inflammation, we used 67Ga scans to determine the inflammatory joints in the whole
body. Three patients with PsA with active arthritis showed increased gallium activity in all
of their tender and swollen joints. Representative images from one patient with PsA are
shown in Figure 2. We could therefore evaluate the inflammatory joints in patients with
PsA easily.

3.4. Repressed Apoptosis Pathway in the Monocytes from Patients with PsA

To investigate why the patients with PsA had a higher number of monocytes than the
HCs, we conducted a microarray assay (Clariom D Human) on the monocyte samples from
patients with PsA and HCs. The generated data were further analyzed using TAC 4.0 and
Partek 7.0. As a result, 1621 upregulated genes and 1209 downregulated genes relative to the
HCs were found in the PsA monocytes (p value < 0.05, Figure 3A, Supplementary Table S2).
To derive their possible functions, we conducted pathway enrichment analysis on the two
sets of differentially expressed genes. The analysis results are shown in Supplementary
Tables S3 and S4. As demonstrated in Supplementary Table S4, the apoptosis pathway
was enriched in the downregulated pathway, which implied that apoptosis pathway
activity was repressed in the monocytes of patients with PsA. Furthermore, 14 of the 1209
downregulated genes were involved in the apoptosis pathway (Supplementary Table S4).
We selected two downregulated apoptosis-related genes, CTSL and IKBKB, for qPCR
validation since they had the largest expression variations (1.54- and 1.66-fold, respectively).
We measured the RNA expression level of CTSL and IKBKB in monocytes from the patients
with PsA (n = 15) and HCs (n = 15). As shown in Figure 3B,C, qPCR validation confirmed
that CTSL was downregulated in the monocytes of patients with PsA (p = 0.039). Although
the expression of IKBKB was lower in monocytes from the patients with PsA than those
from HCs, it did not reach statistical significance (p = 0.254).
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67Ga uptake.
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Figure 3. The gene expression profiles were examined using microarray and qPCR assays. (A) We
used a volcano plot (generated using Transcription Analysis Console 4.0) to illustrate the results
of the microarray assays examining the monocyte samples from two HCs and two subjects with
PsA. The red and green dots denote the upregulated and downregulated genes in the PsA samples,
respectively (p value < 0.05 based on ANOVA). (B,C) The qPCR results compared nine HC and nine
PsA monocyte samples with 18S as the internal control gene. * Denotes p value < 0.05 based on
Mann–Whitney U test.
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3.5. Impaired Apoptosis Activity in PsA Monocytes with Flow Cytometry

Based on the microarray data and pathway enrichment analysis, the results showed
that the apoptosis pathway was repressed in the monocyte samples from patients with
PsA. We further conducted flow cytometry to validate the apoptosis activity in monocytes
from patients with PsA (n = 5) and HCs (n = 5). As shown in Figure 4, the percentage of
apoptotic cells was lower in the CD14+ monocytes from patients with PsA compared to the
HCs (4.0 ± 0.5% versus 12.3 ± 2.9%, p = 0.009).
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Figure 4. The apoptosis of CD14+ monocytes from healthy controls and patients with PsA after
TNF-α treatment. CD14+ monocytes from patients with PsA and HCs were cultured with 100 ng/mL
TNF-α for the evaluation of apoptosis using flow cytometry. (A) The apoptosis of CD14+ monocytes
from patients with PsA and HCs was measured by flow cytometry. (B) The percentage of apoptotic
cells from CD14+ monocytes of patients with PsA (n = 6) and HCs (n = 6) was measured. ** Denotes
p value < 0.01 based on Mann–Whitney U test.

4. Discussion

This is the first study to investigate the role of apoptotic signaling in CD14+ monocytes
in patients with PsA. Our results revealed a higher number of CD14+ monocytes in patients
with PsA than in HCs. Interestingly, the number of CD14+ monocytes in the patients
with PsA returned to the level of the HCs after successful biologic treatment. The 67Ga
activity scan reflected increased leukocyte inflammation in the tender and swollen joints.
The results of the microarray study showed a repressed apoptotic pathway in the CD14+
monocytes in patients with PsA. Further, we found an impaired apoptotic process with a
decreased expression of CTSL in the CD14+ monocytes in patients with PsA.

Monocytes and macrophages play an essential role in the activation of the innate
immune system. After recognition of pathogens, they release inflammatory cytokines
such as TNF, IL-6, IL-1, and chemokines that activate and attract other immune cells to
the sites of inflammation [29]. Moreover, a previous study has shown that OCPs derived
from circulating CD14+ monocytes were markedly elevated in the peripheral blood of
patients with PsA, and they were significantly reduced after treatment with anti-TNF
agents [30]. In addition, granulocyte and monocyte adsorption apheresis could selectively
remove monocytes and granulocytes from the blood and further provide an effective
treatment choice for PsA [31]. Our results showed increased peripheral CD14+ monocytes



Biomedicines 2024, 12, 775 8 of 11

in patients with PsA, which returned to a normal level after successful biologic treatment.
The increased CD14+ monocytes in peripheral blood provided OCPs and contributed to
active osteoclastogenesis and joint inflammation in PsA.

Early diagnosis is important to prevent irreversible joint damage in patients with PsA.
However, there has not been a gold standard diagnostic tool. Ultrasound is a valuable
tool for assessing enthesitis in PsA, but it lacks a well-reported methodology in most
studies [32,33]. MRI can be used to assess inflammation and damage in joints, tendon
sheaths, tendons, bone marrow edema, and entheses in patients with PsA. However, the
limitations of MRI include 1. a limited number of anatomical areas per scan and 2. the
exclusion of patients with claustrophobia or certain metallic implants [34]. 67Ga citrate
and labeled leukocyte imaging are established techniques for diagnosing inflammation
and infection. 67Ga uptake is increased within the leucocytes that accumulate in inflamed
joints. A previous study indicated that 67Ga uptake occurs in joints affected by rheumatoid
arthritis and reflects the degree of synovial inflammation [35]. Furthermore, 67Ga imaging
can be used for the diagnosis of inflammation throughout the entire body. Our results
showed an increased 67Ga uptake in the tender and swollen joints in patients with PsA.
This reflected increased monocytes, OCPs, and macrophages in the inflammatory joints.
We propose that 67Ga scanning can be used as a diagnostic tool for PsA.

Apoptosis is the predominant model of cell death within immunological cells, serving
as a pivotal regulatory mechanism within the immune system [18]. Both the extrinsic
(death receptor) pathway and the intrinsic (mitochondrial) pathway contribute to apoptosis.
Beyond caspase-mediated proteolysis, additional proteases like cathepsins may participate
in apoptosis regulation [36]. Annexin V, a recombinant phosphatidylserine-binding protein,
serves as a robust tool for apoptosis detection due to its strong and specific interaction
with phosphatidylserine residues [28]. Resistance to in vitro apoptosis has been reported
to occur in human-activated monocytes [37]. Increased spontaneous IL-1β secretion and
activated NF-kB signaling were reported to impair the apoptosis of monocytes in patients
with RA [21]. In addition, overexpression of antiapoptotic molecules such as Fas-associated
death domain-like interleukin-1β-converting enzyme-inhibitory protein (FLIP) [38] or self-
sustained NF-kB activation [39] could also reinforce resistance to apoptosis in RA. These
apoptotic defects further aggravate the disease of RA via the survival of proinflammatory
monocytes. Our results showed a repressed apoptotic process in monocytes in patients with
PsA. The percentage of apoptotic cells in monocytes in patients with PsA was lower than
in HCs after TNF-α stimulus. This explains the increased number of activated monocytes
in the inflammatory joints of PsA.

Cathepsins play significant roles in the physiological process of apoptosis. CTSL
is one of the major lysosomal proteases responsible for lysosomal protein degradation
and induction of apoptosis [40]. It has been reported to induce apoptosis via B-Myb in
rotenone-treated neuron cells [41]. In addition, another study showed that high expression
of CTSL induced increased spontaneous apoptosis in monocyte-derived macrophages in
patients with coronary artery disease [42,43]. Our results showed lower CTSL expression
in monocytes in patients with PsA than in HCs.

This study has several limitations. First, the case number was small, and the results
may need to be validated by large-scale studies. Second, the recruited patients with PsA
may have different co-morbidities that affect the number of monocytes (e.g., cerebrovas-
cular disease, hypertension, etc.). Third, intrinsic limitations exist in this case–control
study design, although we attempted to reduce the confounding factors. Fourth, human
monocytes are divided into three major populations: classical, non-classical, and interme-
diate [44]. These three populations of monocytes present unique characteristics [29]. We
investigated the apoptosis of all peripheral CD14+ monocytes combined in this study. The
difference in the apoptotic activity in the three subpopulations of CD14+ monocytes should
be studied further.
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5. Conclusions

Our study demonstrated low expression of CTSL and impaired apoptosis in peripheral
CD14+ monocytes in patients with PsA, which are likely to be causally associated with
increased levels in these patients.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biomedicines12040775/s1. Supplementary Table S1: The primer
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between the HC and PsA samples. Supplementary Table S3: The output result of pathway enrichment
analysis, using Partek Genomics Suite 7.0, based on the upregulated genes in the PsA samples. The
enrichment p value was calculated based on hyper-geometric distribution. Supplementary Table S4:
The output result of pathway enrichment analysis, using Partek Genomics Suite 7.0, based on the
downregulated genes in the PsA samples. Supplementary Table S5: The downregulated genes
involved in the apoptosis pathway.
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