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Abstract: The recent setbacks in the withdrawal and approval delays of antibody treatments of
neurodegenerative disorders (NDs), attributed to their poor entry across the blood–brain barrier (BBB),
emphasize the need to bring novel approaches to enhance the entry across the BBB. One such approach
is conjugating the antibodies that bind brain proteins responsible for NDs with the transferrin
molecule. This glycoprotein transports iron into cells, connecting with the transferrin receptors (TfRs),
piggybacking an antibody–transferrin complex that can subsequently release the antibody in the
brain or stay connected while letting the antibody bind. This process increases the concentration of
antibodies in the brain, enhancing therapeutic efficacy with targeted delivery and minimum systemic
side effects. Currently, this approach is experimented with using drug-transferring conjugates
assembled in vitro. Still, a more efficient and safer alternative is to express the conjugate using
mRNA technology, as detailed in this paper. This approach will expedite safer discoveries that can be
made available at a much lower cost than the recombinant process with in vitro conjugation. Most
importantly, the recommendations made in this paper may save the antibodies against the NDs that
seem to be failing despite their regulatory approvals.

Keywords: mRNA; antibodies; nanobodies; neurological diseases; protein aggregates; protein
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1. Introduction

Neurodegenerative diseases (NDs) are complex disorders with multifactorial pathol-
ogy that result in progressive damage to neuronal cells and loss of neuronal connectivity,
ultimately leading to impaired mobility and/or cognition. Protein aggregation due to mis-
folding and oligomerization gives rise to extracellular or intracellular inclusions, a common
hallmark for many NDs. Further spreading of these amyloid aggregates in the nervous
system, like prion-based infections, hence, a prion-like mechanism, is often considered
a significant element in the etiology of NDs [1]. In the past few decades, many of the
genetic and biochemical causes underlying NDs associated with protein aggregation were
uncovered, leading to the distinction between rarer familial forms, where disease-causing
mutations are genetically inherited, and the more common sporadic forms, where genetic
and environmental risk factors drive the pathogenesis [2]. In both cases, the affected pro-
teins are found enriched in pathological aggregates, highlighting their importance in the
manifestation of the disease. However, despite the accumulated knowledge and the many
clinical trials in which attempts were made to alleviate protein aggregation, no therapeutic
strategy has been broadly accepted to cure any of the NDs. This led many scientists to
question whether protein aggregation was central to ND etiology or a manifestation of
other underlying causes [3,4]. Nonetheless, collectively, the work of the past decades
generated a more complex understanding of how each aggregation-prone protein engaged
with many critical cellular pathways. This review aims to provide an overview of these
intricate connections by combining core findings and more recent discoveries.
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For each ND, different sets of genes are typically found mutated in the familial forms,
and different brain regions and cell types are initially affected. For example, Huntington’s
Disease (HD) and spinocerebellar ataxia type 1 (SCA1) are linked to the expansion of the
CAG repeat of the huntingtin (HTT) and ataxin 1 (ATXN1) genes, respectively, resulting
in proteins with an unusually long polyglutamine (polyQ) tract that is very prone to
aggregation and causes intracellular deposits in striatal neurons [5,6]. In Alzheimer’s
disease (AD), two different types of deposits are observed. The aberrant cleavage products
of the transmembrane protein amyloid-β (Aβ) precursor protein (APP) form extracellular
plaque deposits in the temporal and parietal brain regions. In contrast, the protein tau
accumulates intracellularly in neurofibrillary tangles [7]. In Parkinson’s disease (PD), the
primarily affected brain area is the substantia nigra (SN), where α-synuclein aggregates
are found to accumulate in dopaminergic neurons [8]. In ALS, cellular aggregates of
superoxide dismutase 1 (SOD1), RNA-binding protein FUS (FUsed in Sarcoma), and TAR-
DNA-binding protein 43 (TDP-43) have been identified in motor neurons of the primary
motor cortex, brainstem, and spinal cord [9].

Protein misfolding and aggregation of disease-associated proteins are facilitated by
mutations and post-translation modifications (e.g., phosphorylation and protein cleavage)
that avert the formation of the native protein structure. At the same time, in some other
cases, misfolding can also seemingly occur sporadically without a clear explanation. Aggre-
gation is first typically initiated by a seed or/and an oligomer, in which sequence-specific
elements of the misfolded protein interact to adopt a non-native conformation, which
can then convert other proteins into the toxic form. In many cases, the oligomerization
of misfolded proteins leads to the formation of amyloid fibrils with a distinctive β-sheet
structure that arises when soluble oligomers assemble into small protofibrils [10]. When
more proteins are converted into non-native forms, these protofibrils become longer fibrils
that can then form more extensive cellular inclusions visible by light microscopy. Recently,
it has been proposed that oligomerization may be favored by liquid–liquid phase sepa-
ration of aggregation-prone proteins [11]. Moreover, it is evident that there are different
polymorphs for most amyloid fibrils in vitro and in vivo (polymorph is a term used to
indicate the capacity of a polypeptide to generate fibrils with different structures) [12,13].

The protein fibrils formed would be expected to be removed by the autoimmune
responses. Still, the less efficient production of antibodies in the brain must be supported
by systemic entry of the BBB [14,15], leading to extensive research and development of
these therapies.

An emerging therapeutic strategy in neurodegenerative diseases involves designing
antibodies to target and clear abnormal protein aggregates. Two such monoclonal antibod-
ies (mAbs), aducanumab and lecanemab, have received accelerated approval from the US
FDA for the treatment of AD [16,17]; however, aducanumab is discontinued effective 2024,
without reasons and with the claim that it is not due to issues with safety or efficacy [18].
Another monoclonal antibody, donanemab, was in the advanced stages of development for
patients with early AD [19]. Still, the FDA has delayed its approval, likely due to a lack
of proof of efficacy [20]. Another drug, Relyvrio (Cinpanemab), for ALS, is being recalled
due to lack of efficacy [21,22]. The data reporting on clinicaltrials.gov show that around
250 interventional studies treat NDs involving antibodies [23]. However, the status of the
failure of antibodies to provide a treatment solution for NDs requires rethinking whether
an antibody alone can be effective in NDs without adding functions to promote their entry
across the BBB.

The options available to enhance the entry of antibodies into the brain include in-
vasive techniques, including intra-cerebral injection, convection-enhanced delivery, and
intra-cerebroventricular infusion [24]. The BBB can be disrupted using bradykinin analogs,
ultrasonography, and osmotic pressure [25]. Adding microbubbles makes these techniques
more effective [26,27]. Pharmacological techniques involve encapsulating medications into
liposomes or chemically modifying pharmaceuticals to lipophilic molecules [28]. Opsoniza-
tion and drug delivery by nanoparticles across the blood–brain barrier is the process in
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which the drug is adsorbed onto the particles passively [29]. Intranasal delivery routes can
bypass the BBB, offering a direct path to the CNS [30]. While all these approaches can be
effective, none allow for a consistent and predictable response, which is one reason why
these approaches have not been used in developing antibodies against NDs.

2. Transcytosis

One approach, a physiological procedure of transporter-mediated delivery, receptor-
mediated transcytosis, and adsorptive-mediated transcytosis [31], offers a viable choice if
the transcytosis mechanism is part of the drug structure. This is one of the several mecha-
nisms involved in transporting various chemicals into the brain (Figure 1), as described in
detail elsewhere [32].

Biomedicines 2024, 12, x FOR PEER REVIEW 3 of 19 
 

techniques more effective [26,27]. Pharmacological techniques involve encapsulating 
medications into liposomes or chemically modifying pharmaceuticals to lipophilic mole-
cules [28]. Opsonization and drug delivery by nanoparticles across the blood–brain bar-
rier is the process in which the drug is adsorbed onto the particles passively [29]. Intrana-
sal delivery routes can bypass the BBB, offering a direct path to the CNS [30]. While all 
these approaches can be effective, none allow for a consistent and predictable response, 
which is one reason why these approaches have not been used in developing antibodies 
against NDs. 

2. Transcytosis 
One approach, a physiological procedure of transporter-mediated delivery, receptor-

mediated transcytosis, and adsorptive-mediated transcytosis [31], offers a viable choice if 
the transcytosis mechanism is part of the drug structure. This is one of the several mech-
anisms involved in transporting various chemicals into the brain (Figure 1), as described 
in detail elsewhere [32]. 

 
Figure 1. The blood–brain barrier means expediting natural or induced transport as a therapeutic 
measure [shutterstock_2304653921 Licensed]. 

The BBB is a highly selective semipermeable border that separates the circulating 
blood from the brain and extracellular fluid in the CNS. The BBB is composed of micro-
vascular endothelial cells, which tightly regulate the movement of molecules, ions, and 
cells between the blood and the brain, unlike in other body parts. This regulation is crucial 
for maintaining the brain’s stable environment, which is necessary for proper neuronal 
function. The BBB performs several critical roles, including protecting the brain from 
harmful substances in the blood, regulating the transport of essential nutrients, and main-
taining a constant environment for the brain [33,34]. 

Substances allowed to cross the BBB include water, some gases (like oxygen and car-
bon dioxide), and lipid-soluble substances (e.g., alcohol, nicotine, and caffeine) that can 
diffuse through the cell membranes of the endothelial cells. Additionally, specific 
transport mechanisms exist for essential nutrients that the brain requires but are not lipid-

Figure 1. The blood–brain barrier means expediting natural or induced transport as a therapeutic
measure [shutterstock_2304653921 Licensed].

The BBB is a highly selective semipermeable border that separates the circulating blood
from the brain and extracellular fluid in the CNS. The BBB is composed of microvascular
endothelial cells, which tightly regulate the movement of molecules, ions, and cells between
the blood and the brain, unlike in other body parts. This regulation is crucial for maintaining
the brain’s stable environment, which is necessary for proper neuronal function. The BBB
performs several critical roles, including protecting the brain from harmful substances
in the blood, regulating the transport of essential nutrients, and maintaining a constant
environment for the brain [33,34].

Substances allowed to cross the BBB include water, some gases (like oxygen and
carbon dioxide), and lipid-soluble substances (e.g., alcohol, nicotine, and caffeine) that can
diffuse through the cell membranes of the endothelial cells. Additionally, specific transport
mechanisms exist for essential nutrients that the brain requires but are not lipid-soluble,
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such as glucose and amino acids. These substances use facilitated diffusion and active
transport mechanisms to cross the BBB. Conversely, most large molecules, including many
drugs and pathogens, are generally prohibited from passing through the BBB. This selective
permeability presents a significant challenge for drug delivery to the brain, particularly for
the treatment of brain diseases such as Alzheimer’s and Parkinson’s [35].

However, the BBB can be compromised under certain pathological conditions, such
as inflammation, ischemic stroke, or high blood pressure, allowing for the substances
usually blocked to enter the brain. This breach in the BBB’s integrity can contribute to
the progression of various neurological disorders by permitting toxins, pathogens, and
immune cells to invade and damage brain tissues [36].

Misfolded proteins in AD and PD follow a well-defined connectomics-based spatial
progression. Several anti-tau and anti-alpha synuclein (aSyn) antibodies have failed to
provide clinical benefit in clinical trials despite substantial target engagement in the ex-
perimentally accessible cerebrospinal fluid (CSF). The proposed mechanism of action is
reducing neuronal uptake of oligomeric protein from the synaptic cleft. Integration with a
physiologically based pharmacokinetic (PBPK) model has allowed for the simulation of clin-
ical trials of anti-tau antibodies gosuranemab, tilavonemab, semorinemab, and anti-aSyn
antibodies cinpanemab and prasineuzumab [37].

Some antibody fragments have many advantages over monoclonal antibodies, such
as small sizes, lack of the crystallizable fraction (Fc), etc. There are three main antibody
fragments: single-chain variable fragments (scFvs); Fab fragments; and single-domain
antibody fragments. Nanoparticles can facilitate the entry of drug molecules across the
blood–brain barrier, making them excellent carriers. Various kinds of nanoparticles have
been applied in the treatment of AD. The combination of nanoparticles and antibody
fragments against amyloid-β can be used to diagnose and treat Alzheimer’s disease,
including antibody fragments against amyloid-β in AD [38].

Understanding the mechanisms of BBB permeability and its role in health and disease
is a critical area of research, with implications for developing new therapeutic strategies for
various neurological conditions.

Receptor-mediated transcytosis (RMT) is a highly specialized process that allows for
the transport of specific molecules, particularly antibodies, across the BBB via receptors on
the surface of endothelial cells. This process is vital for the delivery of essential nutrients
and biomolecules that are not lipid-soluble and cannot diffuse via the endothelial cell
membranes of the BBB. Several well-documented examples of RMT into the brain involve
the transport of transferrin, insulin, and low-density lipoprotein (LDL) related proteins.

2.1. Transferrin

The transferrin receptor (TfR) is involved in the transport of iron into the brain via
transferrin, a protein that binds iron tightly. The TfR-mediated transferrin transport across
the BBB is crucial for maintaining iron homeostasis in the brain, as iron is essential for
various brain functions, including oxygen transport, DNA synthesis, and electron trans-
port [39,40]. The TfR [41] can effectively transport therapeutic levels of antibodies across
the BBB [42] by attaching them to transferrin or transferrin-mimicking peptides, thereby
facilitating their crossing of the BBB [43,44]. Another target is the insulin receptor (IR),
which, like the TfR, can mediate the transport of antibodies across the BBB, offering a
pathway for therapeutic intervention [45]. So, theoretically, a conjugate of insulin and an
antibody should enhance the entry of antibodies across the BBB, though no such studies
have been reported (Figure 2).



Biomedicines 2024, 12, 851 5 of 17Biomedicines 2024, 12, x FOR PEER REVIEW 5 of 19 
 

 
Figure 2. Transferrin-fused antibodies are transported across the BBB. 

2.2. Insulin 
The insulin receptor facilitates the transport of insulin across the BBB through RMT. 

Insulin in the brain is essential for multiple brain functions, including neuronal growth, 
survival, and regulating appetite and cognitive functions. Insulin transport into the brain 
is believed to play a role in the central regulation of peripheral glucose metabolism (Banks, 
2004 [46]). 

2.3. Low-Density Lipoprotein (LDL) Receptor-Related Proteins (LRP) 
LRP1 and LRP2 (as megalin) transport various ligands across the BBB, including vit-

amin A-binding protein and apolipoprotein E-containing lipoproteins. These processes 
are essential for delivering vitamins, cholesterol, and other lipids crucial for brain devel-
opment, maintenance, and function [47]. The low-density lipoprotein receptor-related 
protein-1 (LRP1) also serves as a conduit for the delivery of certain therapeutics into the 
brain, capitalizing on its role in transporting various molecules, including lipoproteins 
and amyloid-beta precursors [48]. LRP1, involved in transporting various endogenous 
ligands, including apolipoprotein E-containing lipoproteins, has been identified as an al-
ternative pathway for BBB crossing. This receptor participates in the clearance of amyloid-
beta from the brain and has been implicated in the transport of other therapeutic agents 
[49]. 

The other two proteins, GLUT1 and P-glycoprotein (P-gp), have not been well stud-
ied or found effective [35]. 

These examples of RMT highlight the complexity and specificity of the mechanisms 
that regulate the transport of molecules across the BBB. Understanding these pathways is 
crucial for developing strategies to enhance drug delivery to the brain, particularly for 
treating neurological diseases. 

The decision to use transferrin or LRP1 as a delivery mechanism would, thus, be 
based on the specific requirements of the therapeutic agent, including its size, required 
dosage, and targeted area within the brain [50]. 

3. Transcytosis Approach 
Using transferrin for the targeted delivery of therapeutic agents, including antibod-

ies, to treat neurodegenerative disorders is based on exploiting the TfR pathway. This 
pathway facilitates crossing the BBB through receptor-mediated transcytosis. While nu-
merous research efforts have been focused on utilizing this pathway to treat neurodegen-
erative diseases, such treatments’ development and clinical application are still in the 
early stages. AD research has explored using transferrin-conjugated nanoparticles or 

BBB 

Figure 2. Transferrin-fused antibodies are transported across the BBB.

2.2. Insulin

The insulin receptor facilitates the transport of insulin across the BBB through RMT.
Insulin in the brain is essential for multiple brain functions, including neuronal growth,
survival, and regulating appetite and cognitive functions. Insulin transport into the brain
is believed to play a role in the central regulation of peripheral glucose metabolism (Banks,
2004 [46]).

2.3. Low-Density Lipoprotein (LDL) Receptor-Related Proteins (LRP)

LRP1 and LRP2 (as megalin) transport various ligands across the BBB, including
vitamin A-binding protein and apolipoprotein E-containing lipoproteins. These processes
are essential for delivering vitamins, cholesterol, and other lipids crucial for brain devel-
opment, maintenance, and function [47]. The low-density lipoprotein receptor-related
protein-1 (LRP1) also serves as a conduit for the delivery of certain therapeutics into the
brain, capitalizing on its role in transporting various molecules, including lipoproteins and
amyloid-beta precursors [48]. LRP1, involved in transporting various endogenous ligands,
including apolipoprotein E-containing lipoproteins, has been identified as an alternative
pathway for BBB crossing. This receptor participates in the clearance of amyloid-beta from
the brain and has been implicated in the transport of other therapeutic agents [49].

The other two proteins, GLUT1 and P-glycoprotein (P-gp), have not been well studied
or found effective [35].

These examples of RMT highlight the complexity and specificity of the mechanisms
that regulate the transport of molecules across the BBB. Understanding these pathways
is crucial for developing strategies to enhance drug delivery to the brain, particularly for
treating neurological diseases.

The decision to use transferrin or LRP1 as a delivery mechanism would, thus, be based
on the specific requirements of the therapeutic agent, including its size, required dosage,
and targeted area within the brain [50].

3. Transcytosis Approach

Using transferrin for the targeted delivery of therapeutic agents, including antibodies,
to treat neurodegenerative disorders is based on exploiting the TfR pathway. This pathway
facilitates crossing the BBB through receptor-mediated transcytosis. While numerous
research efforts have been focused on utilizing this pathway to treat neurodegenerative
diseases, such treatments’ development and clinical application are still in the early stages.
AD research has explored using transferrin-conjugated nanoparticles or therapeutic agents
to enhance delivery across the BBB. These approaches target amyloid-beta (Aβ) plaques
or tau proteins, characteristic of AD pathology. For instance, a study by Liao et al. [51]
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investigated the use of transferrin-conjugated nanoparticles to deliver siRNA specifically
targeting BACE1, a critical enzyme in producing Aβ, demonstrating successful delivery
and therapeutic effects in a mouse model of AD. For PD, where dopaminergic neurons are
progressively lost, research has focused on delivering neuroprotective agents directly to
the affected brain regions. While direct examples of transferrin-antibody conjugates for PD
are limited, the concept has been considered for delivering neurotrophic factors that could
potentially halt or reverse neuronal degeneration.

Biologic drugs are large molecules that do not cross the BBB. Brain penetration is
possible following re-engineering the biological drug as an IgG fusion protein. The IgG
domain is a mAb against an endogenous BBB receptor such as the TfR. The TfRmAb acts
as a molecular Trojan horse to ferry the fused biological drug into the brain via receptor-
mediated transport on the endogenous BBB TfR. The BBB delivery of biologic drugs is
possible following re-engineering as a fusion protein with a molecular Trojan horse such as
a TfRmAb. The efficacy of this technology will be determined by the outcome of future
clinical trials [52].

Transferrin conjugates have shown promise in the treatment of neurodegenerative dis-
orders, demonstrating the effectiveness of transferrin as a delivery vector for nerve growth
factor (NGF) in targeting the central nervous system (CNS) and improving recognition and
memory in neurodegenerative diseases [53,54].

Transferrin receptor antibody-NGF conjugate prevented the degeneration of choliner-
gic striatal neurons in a model of Huntington’s disease [55]. The ability of transferrin to
transport neurotrophic factors across the blood–brain barrier showed that an OX-26-GDNF
conjugate enhanced the survival of spinal cord motor neurons [56]. However, the potential
role of transferrin in the uptake of neurotoxic agents remains a concern [57].

A recent study shows that mucopolysaccharidosis type I causes systemic accumulation
of glycosaminoglycans due to a genetic deficiency of alpha-L-iduronidase, which results in
progressive systemic symptoms affecting multiple organs, including the central nervous
system (CNS). A genetically modified protein consisting of IDUA fused with humanized
anti-human TfR antibody (lepunafusp alfa) shows distribution into the brain [58], bringing
about systemic reductions in heparan sulfate and dermatan sulfate concentrations.

Single-domain shark antibodies that bind to the TfR1 on brain endothelial cells have
been used to shuttle antibodies and other cargos across the BBB to the brain. The TXB4 brain
shuttle was fused with a TrkB neurotrophin receptor agonist antibody for these studies.
The TXB4-TrkB fusion retained potent agonist activity at its cognate receptor and, after
systemic administration, showed a 12-fold increase in brain levels over the unmodified
antibody [59].

Pabinafusp alfa is a novel enzyme drug that crosses the blood–brain barrier by tran-
scytosis via transferrin receptors [60].

Erythropoietin, a hematopoietic growth factor and a promising therapy for Alzheimer’s
disease, has low permeability across the blood–brain barrier. The transferrin receptor an-
tibody fused to erythropoietin, a chimeric monoclonal antibody that ferries EPO into the
brain via the transvascular route [61].

The TfR has remained a popular target since its original description for this purpose,
although the clinical progression of TfR-targeted drug constructs or nanomedicines remains
unsuccessful [62].

One issue related to using TfR-targeting in nanomedicines is the efficient tuning of the
ligand density on the nanoparticle surface [63].

Targeting TfR on the surface of brain capillaries has been a popular strategy to give a
preferential accumulation of drugs or nanomedicines, but several aspects of this targeting
strategy remain elusive; monovalent ligands may be beneficial for obtaining transcytosis
of TfR-targeted nanomedicines across the BBB, which is relevant for future design of
nanomedicines for brain drug delivery [64].

Recombinantly fused two single-chain variable fragments (scFv) of the TfR antibody
8D3 to the light chains of mAb158, an antibody selectively binding to Abeta protofibrils,
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which are involved in the pathogenesis of AD, markedly increasing mAb158 brain uptake,
which makes it a strong candidate for improved Abeta immunotherapy and as a PET
radioligand for early diagnosis and evaluation of treatment effect in AD [65].

Monoclonal antibodies directed against the TfR have been proposed as potential
carrier candidates [66]. Anti-amyloid antibodies (AAA) are under development as new
therapeutics that disaggregate the amyloid plaque in the brain in AD. An AAA was
re-engineered for receptor-mediated transport across the BBB via the endogenous BBB
TfR [67].

4. Conjugation

This antibody–transferrin conjugation strategy is particularly valuable in the devel-
opment of targeted drug delivery systems as it can potentially enhance the ability of
therapeutic agents to cross the blood–brain barrier via receptor-mediated transcytosis,
exploiting transferrin’s natural ability to bind to transferrin receptors that are abundantly
expressed on the surface of brain capillary endothelial cells [68].

Connecting an antibody to a transferrin protein requires meticulous bioconjugation
techniques. This process starts with the purification and accurate quantification of both
proteins to ensure the success of subsequent reactions [69]. The transferrin protein un-
dergoes chemical activation to introduce functional groups capable of forming stable
bonds with the antibody. This step typically employs cross-linking agents. There are
several ways to create an antibody–transferrin conjugate; the most common method is
to bind an antibody to transferrin in vitro; this process involves a series of biochemical
techniques aimed at creating a conjugate that can be used for various research and ther-
apeutic purposes. This process, known as antibody–transferrin conjugation, typically
starts with the purification of the antibody and transferrin to ensure their compatibility
and functionality in subsequent steps. One common method for conjugation uses bi-
functional cross-linking agents, such as N-succinimidyl 3-(2-pyridyldithio)propionate or
succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, which can form stable
bonds with amine groups on the antibody and thiol groups on the transferrin [70]. How-
ever, creating a flexible link to remove constraints is desirable so that both molecules can
interact independently. These linkers can include polyethylene glycol spacers, which not
only increase the flexibility of the conjugate but also enhance its solubility and reduce
immunogenicity. The flexibility provided by such linkers can be crucial for allowing the
proteins to move and interact with their targets effectively [71].

The conditions under which transferrin is activated—temperature, pH, and reaction
time—are carefully controlled to preserve protein integrity and function. The antibody
is then introduced to the activated transferrin under conditions favoring the coupling
reaction between the functional groups of both proteins. Optimal conditions are main-
tained to facilitate effective conjugation while preserving the biological functions of each
molecule. Post-reaction, the conjugation mixture necessitates purification to isolate the
desired antibody–transferrin conjugate from unreacted components and by-products. Tech-
niques such as dialysis, gel filtration chromatography, or affinity chromatography are
commonly employed for this purpose, each selected based on the specific properties of
the conjugate and the reagents used. Finally, the success and efficiency of the conjugation
process are established using analytical techniques like SDS-PAGE, Western blotting, or
mass spectrometry to verify the formation of the conjugate and assess its molecular weight
and purity. The biological activity of the conjugate, particularly its target specificity and
cell-binding efficiency, is then tested in relevant bioassays to ensure that the functionalities
of both the antibody and transferrin have been retained post-conjugation. This meticulous
validation ensures that the final product is suitable for its intended diagnostic or therapeutic
applications [72].
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5. Linkers

Several considerations must be considered when selecting a linker to bind an antibody
to transferrin to facilitate entry into the brain. First and foremost, it is crucial to understand
the mechanisms by which molecules, including antibodies, can cross the BBB [73]. TfRs
are one of the targets for transporting molecules across the BBB. Therefore, conjugating
antibodies to transferrin can facilitate brain entry via receptor-mediated transcytosis. Sec-
ondly, the linker should be designed to be stable during circulation but cleavable in the
brain milieu to release the antibody from transferrin. Various cleavable linkers, such as
protease-sensitive or pH-sensitive linkers, can be considered [52,74]. Thirdly, the linker
should maintain stability in the bloodstream to prevent premature release of the antibody–
transferrin conjugate. Stability can be influenced by factors such as serum proteases and
pH [75].

Additionally, the linker should be designed to be cleavable within the unique microen-
vironment of the BBB, which may have different enzymatic activities or pH compared to
other tissues [76]. Once a linker design is proposed, it is crucial to validate its efficacy
in facilitating brain entry and cleavage in preclinical models [77]. Optimization may be
necessary to achieve the desired pharmacokinetics and brain distribution. Finally, assessing
the safety profile of the linker and ensuring the specificity of brain targeting are important
considerations to minimize off-target effects and potential toxicity [73].

The pH-sensitive linkers play a crucial role in drug delivery systems, as they are
designed to remain stable at physiological pH but become cleavable under acidic conditions
typically found in endosomes or lysosomes. One example is hydrazone linkers, which form
via the reaction between a hydrazide and a carbonyl group under acidic conditions. They
exhibit stability at neutral pH but undergo hydrolysis in acidic environments, facilitating
linker cleavage. This mechanism has been utilized in various drug delivery systems,
including liposomes and polymer conjugates [78]. Another commonly used pH-sensitive
linker is the acetal linker, which remains stable at neutral pH but undergoes acid-catalyzed
hydrolysis to release the payload under acidic conditions. This linker has found applications
in polymeric micelles and nanoparticles, offering controlled drug release in response
to pH changes [79]. Vinyl ether linkers represent another type of pH-sensitive linker,
remaining stable at neutral pH but rapidly hydrolyzing under acidic conditions. They
have been employed in antibody-drug conjugates and prodrugs for targeted drug delivery,
showcasing their versatility in pH-responsive drug release systems [80].

Additionally, ortho ester linkers are stable at neutral pH but undergo rapid hydrolysis
under acidic conditions. This property has been exploited in various drug delivery systems,
including polymeric nanoparticles and liposomes, enabling controlled intracellular drug
release in response to acidic environments [81]. These examples highlight the significance
of pH-sensitive linkers in achieving controlled drug release at specific sites within the body,
enhancing the efficacy and safety of drug delivery systems.

Designing peptide linkers for targeted cleavage in the brain involves intricate knowl-
edge of protease activity and substrate specificity. Examples include neprilysin (NEP)
and its substrates [82], tPA and plasmin system [83], peptide linker design in therapeutic
proteins [84], and bioinformatics tools for linker design [85].

6. Molecular Modeling and Testing

A molecular docking exercise can help select a particular fragment. Molecular docking
is a pivotal bioinformatics technique that predicts the preferred orientation of one molecule
to a second when bound to each other to form a stable complex. Understanding the interac-
tion between antibody fragments (such as Fab, F(ab’)2, or scFvs) and target proteins like
amyloid-beta or alpha-synuclein is crucial. Tools like AutoDock Vina (https://vina.scripps.
edu/ accessed on 1 March 2024), one of the most cited and utilized software in molecular
docking studies, enable researchers to simulate the docking process and evaluate the bind-
ing affinity between molecules [86,87]. Another widely used platform is Schrödinger’s suite,
which offers comprehensive tools, including Glide, for high-throughput virtual screening

https://vina.scripps.edu/
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and precise docking [88]. For specifically dealing with proteins like amyloid-beta and
alpha-synuclein, Rosetta’s protein–protein docking protocol has been effectively employed
to predict the structure of protein complexes in a near-native state [89]. A more straightfor-
ward approach is to use HADDOCK [https://wenmr.science.uu.nl/haddock2.4/ accessed
on 14 March 2024] and PRODIGY [https://bianca.science.uu.nl/prodigy/. accessed on
14 March 2024] platforms.

These tools collectively provide a robust suite for predicting and analyzing the molec-
ular interactions between antibody fragments and their specific targets, offering insights
into the mechanism of action and facilitating the optimization of therapeutic antibodies for
neurodegenerative diseases. Through applying these bioinformatics tools, researchers can
gain a deeper understanding of the complex interactions at play, guiding the development
of more effective and targeted treatments.

To test whether a projected conjugate is effective, isotope labeling can be exploited as
a powerful technique for tracing the entry and distribution of proteins and their fragments,
such as therapeutic antibodies, into the brain. This method involves labeling proteins with
stable or radioactive isotopes, such as 13C 15N, or radioisotopes like 131I, which can be
detected using various imaging and analytical techniques. A prominent application of
this approach is in studying the BBB permeability and the biodistribution of therapeutics
targeting neurological conditions. One commonly used method is positron emission
tomography (PET), where isotopically labeled proteins can be visualized in vivo, providing
real-time data on their brain uptake. For instance, labeling antibody fragments targeting
amyloid-beta or alpha-synuclein with 11C or 18F allows for the PET imaging of their
distribution within the brain, offering valuable insights into their therapeutic potential and
mechanism of action [90].

Additionally, stable isotope labeling with amino acids in cell culture is used in
proteomics to incorporate isotopically labeled amino acids into proteins, enabling the
quantitative analysis of protein dynamics and interactions through mass spectrometry.
This approach can elucidate the trafficking and metabolism of therapeutic proteins and
peptides within the brain tissue [91]. These isotopic labeling methods, combined with
advanced imaging and analytical tools, provide a robust framework for understand-
ing how therapeutic proteins and their fragments cross the BBB and interact with tar-
get sites in the brain, contributing significantly to developing effective treatments for
neurodegenerative diseases.

7. mRNA-Based Transcytosis

This process involves the ribosome moving along the mRNA strand, reading its se-
quence three nucleotides (a codon) at a time. Each codon specifies a particular amino acid,
the building block of proteins. Transfer RNA (trNA) molecules carrying specific amino
acids match up with the codons on the mRNA strand via their anticodon region. As the
ribosome facilitates this matching, it also catalyzes the formation of peptide bonds between
the amino acids, elongating the protein chain. This continues until the ribosome encounters
a stop codon, signaling the end of the protein-coding sequence. The newly formed protein
then folds into its functional three-dimensional structure and begins performing its role
in the cell. As suggested in this paper, the protein could be an antibody, a fragment of
an antibody, or a conjugate with transferrin protein. This should be compared with the
recombinant manufacturing of proteins and in vitro conjugation. Recombinant manufactur-
ing involves complex cloning, transformation, and purification steps, requiring significant
biotechnological infrastructure and expertise. The mRNA-based production simplifies
some of these steps by directly utilizing the host’s cellular machinery for protein synthesis,
bypassing the need for culturing cells and extracting the protein. The mRNA synthesis
can be faster and more easily scaled than traditional recombinant protein production,
which is advantageous for rapid response scenarios, such as vaccine development during
a pandemic. While recombinant protein production is a well-established and versatile
method suitable for a wide range of proteins, mRNA-based production is particularly

https://wenmr.science.uu.nl/haddock2.4/
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effective for applications where direct expression within the host is desired, such as vac-
cine development or delivery of antibody–transferrin conjugates. Presently, antibodies
to treat NDs are produced by a recombinant engineering process that is expensive and
takes a long time to establish the safety and efficacy of an antibody. The bioconjugation
process then follows their production and purification. However, the conjugate can be
produced by in vivo translation using mRNA; in that case, the conjugation can be made
using a variety of linkers, such as glycine–serine-rich linkers often used in fusion proteins to
provide flexibility and distance between functional domains [92]. The (Gly-Gly-Gly-Ser)n
linkers provide highly flexible links to minimize interference with the biological activity
of the linked domains [93]. The elastin-like polypeptides provide elasticity and flexibil-
ity [94]. The helix-forming linkers adopt a helical structure to bridge protein domains to
provide a balance between flexibility and stability [95]. Some chemical linkers do not apply
to the mRNA translation of antibody–transferrin conjugate. Still, as shown below, the
glycine–serine linker provides sufficient stability and does not interfere with the binding.

The mRNA technology is preferred for its faster and lower cost development and does
not face the complexity of the upstream and downstream processes and post-translational
modification consideration. The mRNA sequence can be synthesized by in vitro transcrip-
tion in a cell-free environment: a linearized, plasmid DNA molecule is combined with
ribonucleotides in the presence of bacteriophage RNA polymerase (of which T7 is the most
widely used); the polymerases then recognize the promoter region in the DNA template
and synthesize the RNA transcripts in the presence of ribonucleotides [96,97] (Figure 3).
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mRNA Design

The mRNA template used to deliver antibodies is shown in Table 1, wherein the
antibody heavy and light chains are linked using the GGGS link, and the transferrin is
connected. The final sequence of the mRNA is presented for the antibodies currently in
use or waiting to enter the market. For mRNA translation, a single chain is structured
as follows: Transferrin (PO2787)-GSGSGSGS-Heavy chain-linker-light chain, ending in a
linear chain sequence; the linker need not break provided there is enough flexibility that
can be tested using bioinformatics tools.
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Table 1. mRNA template to produce antibody–transferrin conjugates.
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GAATAAACTAGTATTCTTCTGGTCCCCACAGACTCAGAGAGAACCCGCCACC

Signal peptide
(48)

S glycoprotein signal peptide (extended leader sequence) guides translocation of the nascent polypeptide
chain into the endoplasmic reticulum:

ATGTTCGTGTTCCTGGTGCTGCTGCCTCTGGTGTCCAGCCAGTGTGTG

Coding region (n) Codon-optimized sequence (ORF). Replace U with Ψ, but mRNA sequencing projections require replacement
with T for projections.

3′-UTR (268)

The 3′ untranslated region comprises two sequence elements derived from the amino-terminal enhancer of
split (AES) mRNA and the mitochondrial encoded 12S ribosomal RNA to confer RNA stability and high total

protein expression:
GCTAGCTGCCCCTTTCCCGTCCTGGGTACCCCGAGTCTCCCCCGACCTCGGGTC-

CCAGGTATGCTCCCACCTCCACCTGCCCCACT CACCACCTCTGCTAGTTCCAGACA-
CCTCCCAAGCACGCAGCAATGCAGCTCAAA ACGCTTAGCCTAGCCACACCCCCACG-

GGAAACAGCAGTGATTAACCTTTAGCAATA AACGAAAGTTTAACTAAGCTATACTAACC-
CCAGGGTTGGTCAATTTCGTGCCAGCCACACCCTGGAGCTAGC

poly(A) (110)

A 110-nucleotide poly(A)-tail consisting of a stretch of 30 adenosine residues, followed by a 10-nucleotide
linker sequence and another 70 adenosine residues:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCATATGACTAAAAAAAAAAAAAAAAAA-
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Interestingly, many of the currently approved or tested antibodies against NDs also
show activity using single-chain variable fragments (scFvs), Fab fragments, and single-
domain antibody fragments that provide a remarkable opportunity for further development
of the current antibodies as these smaller sizes are more functional and more accessible
to construct.

8. Regulatory

The ND products mentioned above that have failed or are failing under development
to treat NDs have cost billions of dollars. Such losses will dampen the research in the field of
ND treatment by antibodies; however, these products can be rejuvenated using a regulatory
plan based on the FDA’s new guideline [98] that encourages innovative approaches that
apply to the regulatory plan. While conjugates have been designed with transferrin in vitro,
a much lower cost and faster development can be achieved using the mRNA technology. For
example, suppose the current failing drugs are conjugated with transferrin and expressed
through mRNA. In that case, these will still be new biological license applications, but with
fewer and shorter studies that can be readily affordable and completed quickly.

To establish the proof of efficacy, as suggested above, a pharmacokinetic analysis based
on a radioactive drug [99] in animal species should suffice; the process involves making
the current product radioactive and conjugating it with transferrin first in vitro, comparing
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the radio image with the same molecule but without conjugation, before transforming
the process to mRNA. Since these studies do not involve humans, they can be conducted
without regulatory involvement within a very short time [100] and with almost negligible
cost. Once the proof of concept is established, the regulatory agencies should be approached
with a development plan that includes efficacy testing. However, these studies could be
minimized by using a “generally accepted scientific knowledge-based” presentation based
on comparable animal studies [98].

9. Challenges

The initiation of new mRNA-based protein production faces several significant chal-
lenges and difficulties spanning technical, regulatory, and intellectual property landscapes.
First, the patent landscape for mRNA technology is complex and densely populated, with
key intellectual property rights held by a few entities, which can hinder new entrants from
accessing foundational technologies without navigating costly licensing agreements [101].
Secondly, the expertise required to design, optimize, and manufacture mRNA constructs
and the lipid nanoparticles crucial for their delivery is highly specialized, representing a
significant barrier to entry [102]. Moreover, rigorous testing and regulatory approval pro-
cesses, which include preclinical studies, clinical trials, and manufacturing quality control,
are time-consuming and resource-intensive [103]. These processes are critical to ensuring
the safety and efficacy of mRNA-based therapies but represent a substantial upfront invest-
ment with no guaranteed outcome. Developing mRNA technology for new proteins also
requires overcoming scientific challenges such as ensuring stability, efficient cellular uptake,
and precise control over protein expression levels [104]. Each area presents challenges,
making initiating new mRNA-based protein production complex and multifaceted.

The advancement and global dissemination of mRNA technology have been signifi-
cantly supported by a network of international agencies and partnerships committed to
public health innovation and equitable vaccine access. The Coalition for Epidemic Pre-
paredness Innovations, launched in 2017, has emerged as a key player in funding mRNA
vaccine research, emphasizing the importance of readiness for future epidemics [105].

Similarly, the World Health Organization has been central to coordinating the global
health response, including efforts to ensure equitable distribution of mRNA vaccines via
initiatives aimed at technology transfer to low- and middle-income countries (LMICs) [106].

GAVI, the Vaccine Alliance, through its COVAX facility, has worked tirelessly to fa-
cilitate fair access to COVID-19 vaccines, underscoring the role of global collaborations in
addressing vaccine equity [107]. Non-profit organizations like PATH and philanthropic
entities such as The Bill & Melinda Gates Foundation have also supported mRNA vaccine
development and addressed the logistical and economic challenges of vaccine deploy-
ment in underserved regions. The WHO’s mRNA Technology Transfer Hub initiative
also represents a concerted effort to enhance manufacturing capacity for mRNA vaccines
globally, aiming to democratize production and ensure broader vaccine access [108]. These
resources make the deployment of technology more accessible, yet the regulatory cost
remains formidable, a primary concern for developing new biological drugs. However,
this can be reduced by producing multiple products over a short period and testing them
before entering phase I stages.

10. Conclusions

Therapeutic antibodies represent one of the fastest-growing segments in the pharma-
ceutical industry [109], expanding the scope to various antibody types, including nanobod-
ies and Ab fragments, with optimized affinity, stability, and solubility [110].

NDs frequently involve disordered proteins that the inefficient immune system of
the brain is not capable of removing, leading to scores of untreatable disorders. Much of
current research is focused on designing antibodies, and a few have been approved, yet
their use remains limited due to their poor entry into the brain, even as nanobodies. The
effectiveness of these antibodies can be substantially higher if they are conjugated with
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transferrin protein as a choice modification to enhance their entry into the brain. Currently,
the dose of antibodies entering the brain is less than 1%; thus, any change brought by
improved transit across the brain will dramatically change their efficacy. In our opinion,
this modification should be a standard approach for all future treatments since this provides
a more reproducible means of promoting the entry of antibodies into the brain compared
to dozens of other invasive and noninvasive techniques [32].

We recommend that aducanumab and lecanemab, which have received accelerated
approval from the US FDA for the treatment of AD [16,17], donanemab [19], and Relyvrio
(Cinpanemab) for ALS [21,22] can be good targets to investigate their transferrin con-
jugates expressed by mRNA as a logical option to rejuvenate their status and frontline
ND treatment.

The advantages of mRNA over recombinant process are well established [111]; besides
the safety of RNA products, as they do not enter the nucleus, the benefit of developing
these products at a fraction of the cost of developing recombinant products and with the
speed that had never been possible in any new drug development should be the choice
approach to save these drugs. While safety and efficacy testing should never be comprised
of the development cost, making these products accessible to the developing world is a dire
humanitarian cause [112], particularly when treating NDs [113]. Since the development of
mRNA is fast and costs much less than recombinant production [102], we have estimated
that per dose cost of goods should not be higher than one dollar [102,111,114], not counting
the amortization of the development cost, but that too is much lower than the billions of
dollars spent on recombinant drugs.
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